Producer Patents (Class 48/203)
  • Patent number: 8025705
    Abstract: A method for gasification of fuel in an entrained flow of a gasification reactor. The method includes jointly gasifying a mixture of at least two different fuels having different degrees of coalification, including those of differing coal qualities such as brown coals and stone coals. The method also includes pulverizing the coals forming the mixture in specific grain bands and drying the coals forming the mixture to a specific residual water content.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: September 27, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Bernd Holle, Volker Kirchhübel, Joachim Lamp, Manfred Schingnitz, Günter Tietze
  • Patent number: 8002855
    Abstract: A reactor is proposed for entrained flow gasification for operation with pulverized or liquid fuels, with an externally cooled draft tube protecting the slag discharge outlet. An outlet of the draft tube remains above a water line of a sump of the reactor and is formed from Molybdenum, an alloy featuring molybdenum, Tantalum or an alloy featuring Tantalum.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 23, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Köhler, Joachim Lamp
  • Patent number: 7942943
    Abstract: A down-draft fixed bed gasifier is disclosed that produced clean producer or synthesis gas. The gasifier can be installed at a stationary location or can be scaled down to enable placing the gasifier on a trailer that can be moved to the site of biomass generation. The gasifier is vertically oriented and generally cylindrical, and the design allows for a continual input of feedstock into the gasifier with less clogging and without lowering the gas pressure inside the gasifier. The design incorporates an internal catalyst to clean tars from the produced gas, and uses heat from the combustion chamber of the gasifier to heat the catalyst. The flow of air may be either positive flow or negative flow.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: May 17, 2011
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventor: Chandra S. Theegala
  • Publication number: 20110036011
    Abstract: A method of producing a synthetic gas (syngas) includes injecting a plurality of reactant streams into a gasification reactor via at least one injection device having a plurality of injection annuli, an inner portion that extends annularly about a centerline extending through the at least one injection device, and an outer portion extending substantially annularly about the inner portion. At least a portion of the outer portion is oriented obliquely with respect to the at least one injection device centerline. The method also includes mixing at least a portion of each of the streams together such that a plurality of recirculation zones is defined by the streams. The method further includes producing a syngas within the recirculation zones via mixing at least a portion of each of the streams. The injection device includes an inner portion that extends annularly about a centerline extending through the injection device.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 17, 2011
    Inventors: Kenneth M. Sprouse, Shahram Farhangi, Robert M. Saxelby
  • Publication number: 20110016788
    Abstract: A tube and shell heat exchanger for a gasification system is provided. The heat exchanger includes a first shell-side inlet positioned proximate to a heat exchanger tube-side inlet. The first shell-side inlet is configured to receive a first portion of a scrubbed syngas flow therethrough. This first scrubbed syngas portion facilitates substantially preventing fouling at the heat exchanger inlet. The heat exchanger also includes a second shell-side inlet positioned proximate to a heat exchanger tube-side outlet. The second shell-side inlet is configured to receive a second portion of a scrubbed syngas flow therethrough.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Inventors: Pradeep S. Thacker, Paul Steven Wallace, George Morris Gulko
  • Publication number: 20100325958
    Abstract: A method for processing pre-combustion syngas includes, in an exemplary embodiment, providing an absorber unit having a membrane contactor having a plurality of micro-pores, channeling pre-combustion syngas along a first surface of the membrane contactor, channeling an amine based solvent along a second opposing surface of the membrane contactor, and contacting the solvent with the syngas such that the solvent and the syngas contact at gas-liquid interface areas, defined by the plurality of micro-pores in the membrane contactor, to separate CO2 from the flue gas by a chemical absorption of CO2 into the solvent to produce a solvent containing CO2.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventor: Jennifer Lynn Molaison
  • Patent number: 7842108
    Abstract: A method and device for the gasification of solid fuels such as bituminous coal, lignite coal, and petroleum coke in the flue stream with an oxidizing medium containing free oxygen, by partial oxidation at pressures between atmospheric pressure and 80 bar and at temperatures between 1,200 and 1,900 degrees. The fuel is gasified by pneumatic metering of pulverized fuel, gasification reaction in a reactor with cooled reactor chamber contour, quencher cooling, crude gas scrubbing, and partial condensation.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 30, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Bernd Holle, Manfred Schingnitz, Norbert Fischer
  • Publication number: 20100293853
    Abstract: Proposed are a system and method for wasteless pyrolytic processing and complete utilization of municipal and domestic wastes. The wastes are sequentially passed through units of sorting, grinding, drying, accumulating, and sending to a pyrolysis reactor for pyrolytic treatment. The syngas produced in the pyrolysis is passed through dry cleaning, dust catching, a first wet cleaning with water, a second wet cleaning with alkali, and a floatation unit for separation of water which is purified to an extent sufficient for technical use. The purified syngas is also passed through an absorber and is then used as a working medium for a power generation unit such as a gas turbine co-generator that generates electricity. Solid products of the pyrolysis reaction, such as coke, are returned to the reactor for afterburning, and the heat of the reaction can be utilized in a dryer, or the like.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Inventors: Arkady Feerer, Marat Hasbulatovich Kulakov, Denis Zagorsky
  • Patent number: 7789941
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: September 7, 2010
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Publication number: 20100199558
    Abstract: A method and system for supplying fuel are provided. The fuel supply system includes a supply of a flow of fuel wherein the fuel includes an amount of moisture in a first predetermined range, a supply of a flow of gas wherein the gas includes an amount of moisture in a second predetermined range and wherein the second predetermined range is less than the first predetermined range. The fuel supply system further includes a vessel configured to receive the flow of fuel and the flow of gas, mix the flow of fuel and the flow of gas, and separate the flow of fuel from the flow of gas wherein moisture is transferred from the flow of fuel to the flow of gas.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 12, 2010
    Inventor: Raymond Douglas Steele
  • Publication number: 20100175320
    Abstract: A system and apparatus is provided that maximizes mass and energy conversion efficiencies in an integrated thermochemical process for the conversion of fossil fuel or renewable biomass to synthesis gas. The system combines gasification, catalytic conversion of gas to liquid, electricity generation, steam and chilled water generation with a system controller to maximize the conversion efficiency from syngas to merchantable products over the efficiency of syngas alone burned as a fuel. A clean synthesis gas stream is introduced into a catalytic reactor that utilizes specially formulated catalysts to generate liquid fuel from CO and H2 while concentrating CH4 and other combustible, but non-reactive gases in the syngas product stream. The methane rich stream is introduced into an engine for the production of electricity and heat while the unreacted CO and H2 can be recycled to produce additional liquid fuel. Excess heat can be used for other co-located processes and facilities.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 15, 2010
    Applicant: PACIFIC RENEWABLE FUELS LLC
    Inventors: Dennis Schuetzle, Ronald G. Hurley, Robert W. Schuetzle
  • Publication number: 20100132257
    Abstract: Systems and methods for processing carbonaceous material are provided. In one or more embodiments, a carbonaceous material and water can be mixed to provide a slurried mixture. The water mixed with the carbonaceous material can be at least 90% liquid phase. At least a portion of the slurried mixture can be gasified in the presence of a combustion gas to provide carbonaceous solids and a syngas comprising hydrogen, carbon monoxide, and carbon dioxide. The syngas can be at a temperature of from about 400° C. to about 1,650° C. At least a portion of the carbonaceous solids can be selectively separated from the syngas to provide a syngas product and carbonaceous solids. At least a portion of the separated carbonaceous solids can be combusted in the presence of an oxidant to provide at least a portion of the combustion gas.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Ravindra K. Agrawal, Jayachandran Chandrasekaran
  • Publication number: 20100095590
    Abstract: The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 22, 2010
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Shabbir AHMED, Dionissios D. Papadias, Sheldon H.D. LEE, Rajesh K. AHLUWALIA
  • Publication number: 20100037519
    Abstract: A downdraft gasifier is disclosed. The gasifier includes a biomass section that accepts and stirs raw biomass materials, a pyrolysis and tar cracking section having an inner cylinder for receiving biomass and an outer surrounding cylinder for gases from the biomass, and a char gasification section for receiving biomass and gases from the pyrolysis and tar cracking section. The char gasification section provides a grating and scraper for passing gases and ash and retaining biomass for char gasification on the grate.
    Type: Application
    Filed: June 29, 2009
    Publication date: February 18, 2010
    Applicant: THE BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY
    Inventors: KRUSHNA N. PATIL, RAYMOND L. HUHNKE, DANIELLE D. BELLMER
  • Publication number: 20100037518
    Abstract: The present invention relates to a system and process for gasifying feedstock such as carbonaceous materials. The invention includes partial combustion of dry solids and pyrolysis of carbonaceous material slurry in two separate reactor sections and produce mixture products comprising synthesis gas. The invention employs one or more catalytic or sorbent bed for removing tar from the synthesis gas. The inventive system and process allow a gasification to be carried out under higher slurry feeding rate and lower temperature with the provision to manage the tar being produced, therefore to increase the conversion efficiency of the overall gasification.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Albert C. TSANG, Chancelor L. WILLIAMS, Max W. THOMPSON, David L. BRETON
  • Publication number: 20100024300
    Abstract: A method for co-producing a sulfur-containing raw synthetic gas and an essentially desulfurized solid residue from a sulfur-containing heavy petroleum residue feedstock, comprising feeding a bubbling fluidized-bed gasification reactor with the feedstock, and converting the feedstock to a raw synthetic gas by a partial oxidation reaction in the presence of water at a temperature at or below about 1000° C. and a pressure at or below about 10 atm, thereby also producing an essentially desulfurized solid residue, while the sulfur components are essentially comprised in the raw synthetic gas; and separately recovering the essentially desulfurized solid residue and the sulfur-containing raw synthetic gas.
    Type: Application
    Filed: December 10, 2007
    Publication date: February 4, 2010
    Applicant: AFINA ENERGY ,INC.
    Inventors: Esteban Chornet, Aca Mincic, Martin Gagnon, Boris Valsecchi
  • Publication number: 20090320368
    Abstract: Methods and systems for gasifying process streams are described. In some embodiments, a method for gasifying a process stream includes gasifying the process stream in a first chamber to generate one or more product gases, transporting at least a portion of the one or more product gases to a second chamber, combusting at least a portion of the one or more product gases in the presence of one or more catalysts in the second chamber to generate a heat energy, and indirectly providing the heat energy from the second chamber to the first chamber as a primary heat source to drive gasification of the process stream.
    Type: Application
    Filed: March 30, 2007
    Publication date: December 31, 2009
    Inventors: Marco J. Castaldi, John P. Dooher, Klaus S. Lackner
  • Publication number: 20090307974
    Abstract: A system and process for reducing atmospheric greenhouse gas, particularly carbon dioxide, uses, in some forms, a reactor, such as a plasma gasification reactor (PGR), to chemically reduce sequestered carbon dioxide with high heat in a carbonaceous bed to form gaseous products then used above the bed to convert biomass to lighter hydrocarbons, as well as hydrogen and carbon monoxide. In some arrangements the sequestered carbon dioxide supplied to a reactor is derived from a power plant's exhaust. The gaseous products of a reactor may be supplied to an additional reactor for processing to form liquid fuels or may be supplied as gas fuel to an electric power plant or otherwise combusted. Where the output of the CO2 conversion and the biomass conversion is converted to liquid fuels, such as ethanol, such fuels may be either applied as transportation fuels or used to generate electric power, among other uses.
    Type: Application
    Filed: June 14, 2008
    Publication date: December 17, 2009
    Inventors: Shyam V. Dighe, Ingo Krieg
  • Publication number: 20090300976
    Abstract: Disclosed are flexible hybrid conversion systems that can be used with a wide spectrum of resources and feedstock. The disclosed systems can be sufficiently versatile to provide many added value products including clean energy, synthetic fuels and chemical products. Processes and system disclosed herein can produce, for example, shaft power and/or electricity from the expansion of species change of hot, hydrogen-laden syngas produced by gasification or steam reforming of inferior feedstock such as coal, bitumen, tar from sands and wastes, including biomass, municipal solid waste (MSW) sewage sludge and certain industrial wastes. This disclosure also teaches innovative system thermal integration methods of endothermic and exothermic processes and reaction enhancement approaches for the economic, clean and flexible production of synthetic gaseous and liquid fuels as well as chemicals.
    Type: Application
    Filed: January 17, 2007
    Publication date: December 10, 2009
    Inventors: Momtaz N. Mansour, Ravi Chandran
  • Publication number: 20090293360
    Abstract: A method of gasifying organic materials (carbonaceous compounds) such as coal and fossil fuel and their mixtures including gasifying wastes into syngas, and an apparatus thereof. The apparatus is suitable to gasify carbonaceous wastes without secondary pollutants formed from oxidation. Further, the apparatus can be used in a system to drive a fuel cell.
    Type: Application
    Filed: January 23, 2008
    Publication date: December 3, 2009
    Inventor: Hyun Yong Kim
  • Patent number: 7626061
    Abstract: A method and apparatus for the continuous recycling of hydrocarbon containing used and waste materials such as plastic and polymeric waste including, for example, polyurethane, rubber wastes and the like, and in particular scrap rubber tires, are disclosed. The process is carried out under moderate temperatures and atmospheric pressure in the presence of air and a feed of liquid(s) containing oxygen. The method is characterized by the low residence time.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: December 1, 2009
    Assignee: MPCP GmbH
    Inventors: Leonid Datsevich, Jorg Gerchau, Frank Gorsch, Ralph Wolfrum
  • Patent number: 7621973
    Abstract: Methods and systems for a gasifier having a partial moderator bypass are provided. The gasifier includes a partial oxidation reactor including an inlet and an outlet and a primary reaction zone extending therebetween, the partial oxidation reactor configured to direct a flow of products of partial oxidation including fuel gases, gaseous byproducts of partial oxidation, and unburned carbon, and a secondary reaction chamber coupled in flow communication with the partial oxidation reactor, the secondary reaction chamber is configured to mix a flow of moderator with the flow of gaseous byproducts of partial oxidation and unburned carbon such that a concentration of fuel gases is increased.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: November 24, 2009
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Publication number: 20090282738
    Abstract: An apparatus, system, and method for subjecting biomass to pyrolysis to extract energy products using a pyrolysis unit comprising generally concentric chambers including a combustion chamber and at least one pyrolysis chamber. Each chamber is in communication with an adjacent chamber such that a directed, generally-deoxygenated heated gas stream passes through the combustion chamber to each of the pyrolysis chambers in turn. Additionally, each pair of adjacent chambers shares a heat-conducting wall, further promoting heat transfer throughout the unit. A heat source, which can be a burn enclosure configured as part of the pyrolysis unit, produces the heated gas stream. Biomass introduced into the pyrolysis unit is pyrolysized by the gas stream, resulting in exhaust containing non-condensing gases, bio-oil vapor, and entrained char. The exhaust is directed from the pyrolysis unit to other parts of the system where the bio-oil and char can be separated from the exhaust and collected.
    Type: Application
    Filed: January 29, 2009
    Publication date: November 19, 2009
    Inventor: John M. Tharpe, JR.
  • Publication number: 20090277089
    Abstract: In a gasifier system, the gas thermal conductivity of the producer gas may beneficially be used as a control variable in controlling the combustion parameters of the gasifier process or gasifier system. For example, the control variable may be used to modulate the volume amount of air provided to a gasifier vessel or to modulate an oxidizer delivery rate.
    Type: Application
    Filed: March 27, 2009
    Publication date: November 12, 2009
    Inventor: James K. Neathery
  • Publication number: 20090235585
    Abstract: A fuel processor for producing a hydrogen-containing product stream from a fuel stream and an oxidant stream is actively-cooled by a gaseous or liquid coolant which is directed to flow in contact with at least a portion of the outer shell of the fuel processor. Active cooling can improve the operating characteristics of the fuel processor as well as allowing for the use of compact fuel processor designs that would otherwise tend to have insufficient heat loss capability.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Inventors: Jacobus Neels, Xuantian Li
  • Publication number: 20090217584
    Abstract: Integrated catalytic gasification processes are provided involving generating steam for converting carbonaceous materials to combustible gases, such as methane. Generally, steam generated from the combustion of a biomass is provided to a catalytic gasifier, wherein under appropriate temperature and pressure conditions, a carbonaceous feedstock is converted into a plurality of product gases, including, but not limited to, methane, carbon monoxide, hydrogen, and carbon dioxide.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 3, 2009
    Applicant: GreatPoint Energy, Inc.
    Inventors: Pattabhi K. Raman, Donald Anthony
  • Publication number: 20090165377
    Abstract: The invention concerns a method for producing synthetic gas on an industrial site comprising at least one gas turbine wherein the oxygen-containing gas produced by the gas turbine is upgraded in a combustion implemented on the industrial site or in a heat recovery unit of the industrial site. Preferably, the oxygen-containing gas is used as oxidant of the combustion thereby enabling the reaction for forming the syngas. The invention also concerns a method for controlling the introduction of the oxygen-containing required for combustion to enable the syngas to be formed into a syngas reactor and an associated device.
    Type: Application
    Filed: September 15, 2006
    Publication date: July 2, 2009
    Applicant: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Daphne Koh, Pascal Avart, Bhadra S. Grover
  • Publication number: 20090158657
    Abstract: In at least one embodiment of the present invention, a method of heating a FCC unit having a regenerator and a reactor having overall CO2 reduction is provided. The method comprises compressing syngas to define compressed syngas. Separating a first stream of gas comprising CO2 from the compressed syngas. A second stream of gas comprising O2 is expanded with the first stream of gas to produce a feed gas. The feed gas is introduced to the regenerator at gasification conditions to burn coke from coke heavy spent catalyst advanced from the reactor, producing syngas and heat for operating the reactor at reaction temperatures.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Applicants: UOP LLC, BP CORPORATION NORTH AMERICA INC.
    Inventor: BRIAN W. HEDRICK
  • Publication number: 20090064578
    Abstract: A down-draft fixed bed gasifier is disclosed that produced clean producer or synthesis gas. The gasifier can be installed at a stationary location or can be scaled down to enable placing the gasifier on a trailer that can be moved to the site of biomass generation. The gasifier is vertically oriented and generally cylindrical, and the design allows for a continual input of feedstock into the gasifier with less clogging and without lowering the gas pressure inside the gasifier. The design incorporates an internal catalyst to clean tars from the produced gas, and uses heat from the combustion chamber of the gasifier to heat the catalyst. The flow of air may be either positive flow or negative flow.
    Type: Application
    Filed: June 16, 2008
    Publication date: March 12, 2009
    Inventor: Chandra S. Theegala
  • Publication number: 20090064581
    Abstract: A plasma-assisted waste gasification system and process for converting waste stream reaction residues into a clean synthesis gas (syngas) is disclosed. The feedstock is fed into a reactor roughly one-third from the bottom through the use of a feed mechanism. The reactor has three zones; a bottom zone where melting occurs, a middle zone where gasification takes place, and a top zone with integrated plasma torches to control the temperature and polish the syngas. The residence times in the three zones are selected to optimize the syngas composition and melted products. The syngas leaves the reactor and is partially quenched with relatively cooler synthesis gas. The partially quenched syngas is further cooled to recover heat for steam generation and/or preheating the waste stream to the reactor. The cold syngas is then processed to remove pollutants. The clean synthesis gas is combusted in power generation equipment to generate electricity, or converted to other fuels by chemical processes.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Christian Nielsen, Richard Anthony DePuy, Aditya Kumar, James Patrick Francis Lyons, Vitali Lissianski, Ruijie Shi, Surinder Prabhjot Singh, Kenneth Brakeley Welles, Vladimir Zamansky
  • Publication number: 20080307703
    Abstract: Disclosed are a method and a corresponding apparatus for converting a biomass reactant into synthesis gas. The method includes the steps of (1) heating biomass in a first molten liquid bath at a first temperature, wherein the first temperature is at least about 100° C., but less than the decomposition temperature of the biomass, wherein gas comprising water is evaporated and air is pressed from the biomass, thereby yielding dried biomass with minimal air content. (2) Recapturing the moisture evaporated from the biomass in step 1 for use in the process gas. (3) Heating the dried biomass in a second molten liquid bath at a second temperature, wherein the second temperature is sufficiently high to cause flash pyrolysis of the dried biomass, thereby yielding product gases, tar, and char. (4) Inserting recaptured steam into the process gas, which may optionally include external natural gas or hydrogen gas or recycled syngas for mixing and reforming with tar and non-condensable gases.
    Type: Application
    Filed: April 24, 2008
    Publication date: December 18, 2008
    Inventors: Mark A. Dietenberger, Mark H. Anderson
  • Publication number: 20080184621
    Abstract: A system and process for maximizing the generation of electrical power from a variety of hydrocarbon feedstocks. The hydrocarbon feedstocks are first gasified and then oxidized in a two-chamber system and process using oxygen gas rather than ambient air. Intermediate gases generated in the system and process are recirculated and recycled to the gasification and oxidation chambers in order to maximize energy production. The energy produced through the system and process is used to generate steam and produce power through conventional steam turbine technology. In addition to the release of heat energy, the hydrocarbon feedstocks are oxidized to the pure product compounds of water and carbon dioxide, which are subsequently purified and marketed. The system and process minimizes environmental emissions.
    Type: Application
    Filed: October 1, 2007
    Publication date: August 7, 2008
    Inventor: STEVE L. CLARK
  • Publication number: 20080098653
    Abstract: A downdraft gasifier is disclosed. The gasifier has a biomass feeding unit, a combustion chamber, and a separator unit. The biomass feeding unit accepts raw biomass materials and selectively feeds the materials into the combustion chamber. The combustion chamber provides means to induce pyrolysis, tar cracking, and char gasification of the raw biomass materials to produce gases and ash. The separator unit accepts the gases and ash from the combustion chamber and separates the gases from the ash.
    Type: Application
    Filed: July 5, 2007
    Publication date: May 1, 2008
    Applicant: THE BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY
    Inventors: Krushna N. Patil, Raymond L. Huhnke, Danielle D. Bellmer
  • Patent number: 7217302
    Abstract: Process for the recovery of chemicals and energy from spent liquor obtained in the chemical pulping process, in which the spent liquor is gasified under sub-stoichiometric conditions to produce partly one phase of solid and/or fused material, together with partly one phase of a flammable gaseous material, whereafter the said phases are cooled by direct contact with a cooling medium (9), is separated from the said phase of flammable gaseous material in order to be dissolved and collected up as a product liquid in a product liquid receiver (11). According to the invention, the said cooling medium (9) consists of an essentially water-free cooling medium, which after vaporizing/cracking increases the calorific value of the flammable gaseous material drawn off. At the same time, the process is improved in this way since the flammable gases can be used more effectively for the purpose of e.g. generating energy.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: May 15, 2007
    Assignee: Chemrec Aktiebolag
    Inventor: Bengt Nilsson
  • Patent number: 7108730
    Abstract: This invention relates to a method for providing controlled heat to a process utilizing a flameless distributed combustion.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: September 19, 2006
    Assignee: Shell Oil Company
    Inventors: Rashmi K Shah, Thomas Mikus, Pettai Krishna Shankar
  • Patent number: 6960234
    Abstract: A gasifier is disclosed combining a fixed bed gasification section where coarse fuel is gasified and an entrained flow gasification section where fine fuel is gasified. The fixed bed section includes upper and lower sections. Coarse fuel is devolatilized in the upper fixed bed section and subjected to elevated temperatures sufficient to crack and destroy tars and oils in the effluent gases. The entrained flow gasification section is disposed in a lower plenum adjacent the lower fixed bed section. A plurality of injection ports are configured to introduce oxygen, steam, or air into different sections of the gasifier to control temperature and operating conditions. Activated carbon may be formed in the upper fixed bed section and in the entrained flow section. The activated carbon may be used as a sorbent to remove pollutants from the effluent gases. The gasifier may be used with various coarse and fine fuel feedstocks.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: November 1, 2005
    Assignee: Emery Energy Company, L.L.C.
    Inventor: Scott E. Hassett
  • Patent number: 6955695
    Abstract: This invention discloses improvements on previous inventions for catalytic conversion of coal and steam to methane. The disclosed improvements permit conversion of petroleum residua or heavy crude petroleum to methane and carbon dioxide such that nearly all of the heating value of the converted hydrocarbons is recovered as heating value of the product methane. The liquid feed is distributed over a fluidized solid particulate catalyst containing alkali metal and carbon as petroleum coke at elevated temperature and pressure from the lower stage and transported to the upper stage of a two-stage reactor. Particulate solids containing carbon and alkali metal are circulated between the two stages. Superheated steam and recycled hydrogen and carbon monoxide are fed to the lower stage, fluidizing the particulate solids and gasifying some of the carbon. The gas phase from the lower stage passes through the upper stage, completing the reaction of the gas phase.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: October 18, 2005
    Assignee: Petro 2020, LLC
    Inventor: Nicholas Charles Nahas
  • Patent number: 6911058
    Abstract: A method for producing clean energy from coal by feeding the coal in a reactor which is sealed to the atmosphere and moving the coal in the reactor while injecting oxygen to combust a portion of the coal in a substoichiometric mode to devolatilize the coal and yield a pressurized hydrogen rich raw gas which contains coal-derived cancer causing distillates and hydrocarbons together with a hot char. The distillates and the hydrocarbons are cracked to result in a cracked gas of essentially 2H2 and 1CO which after desulfurization becomes an ideal synthesis gas that can be synthesized to a liquid fuel for heating and transportation as an alternate to petroleum. The hot char is gasified in an air blown gasifier to produce a fuel gas and a molten slag which are jointly directed out of the gasifier through a common port which is maintained open for the free flow of both.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: June 28, 2005
    Assignee: Calderon Syngas Company
    Inventors: Albert Calderon, Terry James Laubis
  • Patent number: 6863878
    Abstract: A method of producing syn gas from biomass or other carbonaceous material utilizes a controlled devolatilization reaction in which the temperature of the feed material is maintained at less than 450° F. until most available oxygen is consumed. This minimizes pyrolysis of the feed material. The method and apparatus utilizes the formed synthesis gas to provide the energy for the necessary gasification. This provides for a high purity syn gas and avoids production of slag.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: March 8, 2005
    Inventor: Robert E. Klepper
  • Patent number: 6808543
    Abstract: An improved system and method is provided for operating a parallel entrainment fluidized bed gasifier system. A first aspect of the present invention relates to a method for reducing ash agglomeration in a parallel entrainment fluidized bed gasifier/combustor system by adding a quantity of MgO to the feedstock used in the gasifier/combustor system. A second aspect of the present invention relates to an apparatus and method for reducing erosion at piping bends in fluidized particulate piping systems which utilizes sand retention cavities positioned to receive and retain a portion of the fluidized particulate. A third aspect of the present invention relates to an apparatus and method for facilitating the flow of sand and char fragments from a first compartment to a second compartment while minimizing the flow of gases between the first and second compartments.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 26, 2004
    Assignee: Ferco Enterprises, Inc.
    Inventor: Mark A. Paisley
  • Patent number: 6647903
    Abstract: Apparatus and method for generating fuel gas and optionally, activated carbon gasification from biomass fuel.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: November 18, 2003
    Inventor: Charles W. Aguadas Ellis
  • Publication number: 20030182858
    Abstract: This invention relates to a method for providing controlled heat to a process utilizing a flameless distributed combustion.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 2, 2003
    Inventors: Rashmi K. Shah, Thomas Mikus, Pettai Krishna Shankar
  • Publication number: 20030159354
    Abstract: A fuel processing system is disclosed. The system includes a steam reformer adapted to produce hydrogen from a feedstock consisting of water and at least one of an alcohol and a hydrocarbon feedstock. The feedstock is exposed to one or more reformation regions including a reformation catalyst and to a membrane region including at least one hydrogen-selective membrane.
    Type: Application
    Filed: April 20, 2001
    Publication date: August 28, 2003
    Inventors: David J. Edlund, William A. Pledger
  • Publication number: 20030024165
    Abstract: A low-energy input process for the pyrolytic conversion of biomass to charcoal or carbonized charcoal is provided. The biomass is sealed in a container, pressurized with air and heated to ignition. Control of pressure by input of air and release of gases to maintain successively lower pressure levels results in a typical time for the conversion of less than 30 minutes.
    Type: Application
    Filed: May 20, 2002
    Publication date: February 6, 2003
    Inventor: Michael J. Antal
  • Publication number: 20030009943
    Abstract: The invention concerns a method for producing a gas mixture containing hydrogen and carbon monoxide, and optionally nitrogen, from at least a hydrocarbon such as methane, propane, butane or LPG or natural gas, which consists in performing a partial catalytic oxidation (1) of one or several hydrocarbons, at a temperature of 500° C., at a pressure of 3 to 20 bars, in the pre of oxygen or a gas containing oxygen, such as air, to produce hydrogen and carbon monoxide; then in recuperating the gas mixture which can subsequently be purified or separated, by pressure swing adsorption, temperature swing adsorption of by permeation (3), to produce hydrogen having a purity of at least 80% and a residue gas capable of supplying a cogeneration unit In another embodiment, the gas mixture can subsequently be purified of its water vapour impurities and carbon dioxide to obtain a thermal treatment atmosphere containing hydrogen, carbon monoxide and nitrogen.
    Type: Application
    Filed: August 21, 2002
    Publication date: January 16, 2003
    Inventors: Cyrille Millet, Daniel Gary, Philippe Arpentinier
  • Publication number: 20030005634
    Abstract: A method for producing clean energy from coal by feeding the coal in a reactor which is sealed to the atmosphere and moving the coal in the reactor while injecting oxygen to combust a portion of the coal in a substoichiometric mode to devolatilize the coal and yield a pressurized hydrogen rich raw gas which contains coal-derived cancer causing distillates and hydrocarbons together with a hot char. The distillates and the hydrocarbons are cracked to result in a cracked gas of essentially 2H2 and 1CO which after desulfurization becomes an ideal synthesis gas that can be synthesized to a liquid fuel for heating and transportation as an alternate to petroleum.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 9, 2003
    Inventors: Albert Calderon, Terry James Laubis
  • Publication number: 20020194782
    Abstract: An integrated biomass gasification and fuel cell system wherein the electrochemical reaction in the fuel cell is effected by providing the reactant gases from a gasifier. Fuel gas from the gasifier is directed to the anode of the fuel cell and at least a portion of the exhaust gas from the anode is directed to the combustor. The portion of the exhaust gas from the anode is then combusted to recover residual energy to increase the overall efficiency of integrated biomass gasification and fuel cell system. Also, the oxidant gas from the combustor may be directed to the cathode of the fuel cell.
    Type: Application
    Filed: April 15, 2002
    Publication date: December 26, 2002
    Inventor: Mark A. Paisley
  • Publication number: 20020174603
    Abstract: A method of generating a H2 rich gas from a fuel includes supplying a mixture of molecular oxygen, fuel, and water to a fuel processor, and converting the mixture of molecular oxygen, fuel, and water in the fuel processor to the H2 rich gas. The fuel has the formula CnHmOp where n has a value ranging from 1 to 20 and is the average number of carbon atoms per mole of the fuel; m has a value ranging from 2 to 42 and is the average number of hydrogen atoms per mole of the fuel; and p has a value ranging from 0 to 12 and is the average number of oxygen atoms per mole of the fuel. The molar ratio of molecular oxygen supplied to the fuel processor per mole of fuel is a value ranging from about 0.5x0 to about 1.5x0, and the value of x0 is equal to 0.312n−0.5p+0.5(&Dgr;Hf, fuel/&Dgr;Hf, water) where n and p have the values described above, &Dgr;Hf, fuel is the heat of formation of the fuel, and &Dgr;Hf, water is the heat of formation of water.
    Type: Application
    Filed: March 23, 2001
    Publication date: November 28, 2002
    Inventors: Shabbir Ahmed, Michael Krumpelt
  • Publication number: 20020152680
    Abstract: A fuel cell system having a water source wherein the water is fed in a controlled manner to a gas stream for cooling the gas stream to a desired temperature. In a preferred embodiment, the water is atomized prior to contacting the gas stream. In a further embodiment, a packing of high surface area material is fed with the cooling water as the gas stream passes through the packing material. By utilizing water already present in the fuel cell power plant, a highly efficient method and system for controlling the temperature of gas streams and O/C ratio in the fuel cell power plant is obtained.
    Type: Application
    Filed: April 18, 2001
    Publication date: October 24, 2002
    Inventors: Vincent M. Callaghan, Roger R. Lesieur, Paul R. Margiott
  • Publication number: 20020134018
    Abstract: Process for pyrolyzing a light feed in a pyrolysis furnace designed for pyrolyzing heavy feed, in which process part of the light feed is introduced at the feed inlet of the convection zone of the pyrolysis furnace and further light feed is introduced into the convection zone together with the dilution gas.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 26, 2002
    Inventors: Emil Eduard Antonius Cruijsberg, Jeroen Cornelis Josephus Maria Goossens, Jeron Van Westrenen