Aluminum Compound Other Than Clay Patents (Class 501/119)
  • Patent number: 10336625
    Abstract: An alumina sintered body according to the present invention includes a surface having a degree of c-plane orientation of 5% or more, the degree of c-plane orientation being determined by a Lotgering method using an X-ray diffraction profile obtained through X-ray irradiation at 2?=20° to 70°. The alumina sintered body contains Mg and F, a Mg/F mass ratio is 0.05 to 3500, and a Mg content is 30 to 3500 ppm by mass. The alumina sintered body has a crystal grain size of 15 to 200 ?m. When a field of view of 370.0 ?m long×372.0 ?m wide is photographed with a 1000-fold magnification and the photograph is visually observed, a number of pores having a diameter of 0.2 to 0.6 ?m is 250 or less.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 2, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Kiyoshi Matsushima, Morimichi Watanabe, Kei Sato, Tsutomu Nanataki
  • Patent number: 9915756
    Abstract: A method for forming an optical window. In one example, the method includes depositing a layer of eutectic bonding material onto a first surface of a first section of window material, positioning a second surface of a second section of window material onto the layer of eutectic bonding material such that the first surface is disposed opposite the second surface, and heating the eutectic bonding material to a temperature above a eutectic temperature of the eutectic bonding material and below a melting temperature of the window material for a predetermined length of time to form an optical window. The window material of the first section and the second section may be transparent to infrared radiation and comprise aluminum.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: March 13, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Christopher S. Nordahl
  • Patent number: 9624464
    Abstract: A process for capturing or concentrating microorganisms for detection or assay comprises (a) providing a concentration agent that comprises an amorphous metal silicate and that has a surface composition having a metal atom to silicon atom ratio of less than or equal to about 0.5, as determined by X-ray photoelectron spectroscopy (XPS); (b) providing a sample comprising at least one microorganism strain; and (c) contacting the concentration agent with the sample such that at least a portion of the at least one microorganism strain is bound to or captured by the concentration agent.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 18, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Manjiri T. Kshirsagar, Tushar A. Kshirsagar, Thomas E. Wood
  • Patent number: 9227875
    Abstract: Comminuted pre-mixtures for technical ceramics production, and ceramic bodies made therefrom, the comminuted pre-mixtures being comprised of cellulosic components and alumina source components and the bodies being produced by compounding the comminuted pre-mixtures with powdered inorganic components into batch mixtures, adding liquids to the batch mixtures to form plastic batches, forming the plastic batches into shaped bodies, and heating the shaped bodies to form the ceramic bodies.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 5, 2016
    Assignee: Corning Incorporated
    Inventors: Kevin Ying Chou, Sumalee Likitvanichkul, Bryan Ray Wheaton
  • Patent number: 9136031
    Abstract: An alumina sintered body contains alumina as a main component and titanium. The alumina sintered body further contains at least one element selected from the group consisting of lanthanum, neodymium, and cerium. Aluminum is contained in the alumina sintered body in an amount such that a ratio of aluminum oxide to total oxides in the alumina sintered body becomes 93.00 to 99.85% by weight where the total oxides are defined as a total amount of all oxides contained in the alumina sintered body. Titanium is contained in an amount such that a ratio of titanium oxide to the total oxides becomes 0.10 to 2.00% by weight. Lanthanum, neodymium, and cerium are contained in a combined amount such that a ratio of the combined amount to the total oxides becomes 0.05 to 5.00% by weight. Volume resistivity is 1×105 to 1×1012 ?·cm at room temperature.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 15, 2015
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Yoichi Ito, Masaki Tsuji, Akifumi Tosa, Takenori Sawamura
  • Patent number: 8889273
    Abstract: A non-conductive ceramic material contains a base ceramic material and at least one other ceramic material having a lower coefficient of thermal expansion than that of the base material so that the coefficient of thermal expansion of the non-conductive ceramic material is identical to that of a metallic material to which it will be matched. Methods of making and using same are disclosed.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 18, 2014
    Assignee: CeramTec GmbH
    Inventors: Alfred Thimm, Jürgen Ruska, Johannes Ernst, Stefan Stolz
  • Patent number: 8759240
    Abstract: The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 24, 2014
    Assignee: Corning Incorporated
    Inventors: Daniel Edward McCauley, Anthony Nicholas Rodbourn, Patrick David Tepesch, Christopher John Warren
  • Patent number: 8679997
    Abstract: The ceramic clay is provided by kneading a forming raw material containing a ceramic forming material. The forming raw material contains, in addition to the ceramic forming material, a layered double hydroxide represented by a predetermined chemical formula in an amount of from 0.01 to 5 mass % based on the total amount of the layered double hydroxide and the ceramic forming material. The layered double hydroxide turns into a gel when dispersed in water, and when the layered double hydroxide is dispersed in water at a concentration of 6 mass %, the layered double hydroxide has a viscosity of from 1000 to 20000 mPa·s.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 25, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiro Tomita, Kenji Morimoto
  • Patent number: 8669199
    Abstract: The present disclosure relates to cordierite-forming batch materials and methods of using the same, and in particular batch materials for forming porous cordierite bodies suitable for treating engine emissions. The batch materials include sources of magnesium, alumina, silica, and high BET specific surface area raw kaolin clay. In some embodiments, the BET specific surface area of the raw kaolin clay is greater than 22 m2/g. In other embodiments, the BET specific surface area of the raw kaolin clay is greater than 13 m2/g, and the source of magnesium oxide and the source of non-kaolin clay source of silica both have relatively coarse particle size.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: March 11, 2014
    Assignee: Corning Incorporated
    Inventors: Chris Maxwell, Martin Joseph Murtagh
  • Patent number: 8618007
    Abstract: The invention provides a fused cast refractory product having the following mean chemical composition by weight, as a percentage by weight based on the oxides: 25%<MgO<30%; 70%<Al2O3<75%; other species: <1%. The invention is applicable to a regenerator associated with a soda-lime glass fusion furnace operating under reducing conditions.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 31, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Isabelle Cabodi, Michel H G Gaubil
  • Publication number: 20130345043
    Abstract: To provide an aluminum magnesium titanate crystal structure which can be used stably in variable high temperatures, because of its excellent heat resistance, thermal shock resistance, high thermal decomposition resistance and high mechanical property, and a process for its production. An aluminum magnesium titanate crystal structure, which is a solid solution wherein at least some of Al atoms in the surface layer of aluminum magnesium titanate crystal represented by the empirical formula MgxAl2(1?x)Ti(1+x)O5 (wherein 0.1?x<1) are substituted with Si atoms, and which has a thermal expansion coefficient of from ?6×10?6 (1/K) to 6×10?6 (1/K) in a range of from 50 to 800° C. at a temperature raising rate of 20° C./min, and a remaining ratio of aluminum magnesium titanate of at least 50%, when held in an atmosphere of 1,100° C. for 300 hours.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: OHCERA CO., LTD.
    Inventors: Tsutomu FUKUDA, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 8497222
    Abstract: A molten and cast refractory material having a chemical composition, in weight percent on the basis of oxides, of: —Al2O3: the remainder up to 100%; —MgO: 28% to 50%; —CuO: 0.05% to 1.0%; —B2O3: ?1.0%; —SiO2: <0.5%; —Na2O+K2O: <0.3%; —CaO: <1.0%; —Fe2O3+TiO2: <0.55%; —and other oxide species: <0.5%.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: July 30, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Eric Jorge, Sebastien Bourdonnais
  • Publication number: 20130136893
    Abstract: Disclosed are ceramic articles comprising ceramic honeycomb bodies and an aqueous composition, for example in the form of a cold-set plug, as well as processes for preparing ceramic articles and processes for making an aqueous composition for use with ceramic articles, for example as a cold-set plug composition.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: Keith Norman Bubb, Anthony Joseph Cecce, Thomas Richard Chapman
  • Patent number: 8450227
    Abstract: The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Corning Incorporated
    Inventors: Daniel Edward McCauley, Anthony Nicholas Rodbourn, Patrick David Tepesch, Christopher John Warren
  • Patent number: 8440584
    Abstract: Provided herein are methods and apparatus to remove unwanted elements in commercial powders, and particularly in commercial powders that include one or more of a crystalline ceramic oxide. The methods involve treating powders in reduced pressure atmosphere, such as a vacuum, with or without heating, for a period of time sufficient to remove impurities. Impurities and contaminants, including anionic species, are removed from the powders without any undesirable changes in the physical characteristics of the starting material, such as particle size and particle size distribution, surface area, and volume, for example. The resulting purified powder starting material can be consolidated without the need for any sintering aids such as LiF to produce nearly colorless, extremely transparent polycrystalline articles that approach identical properties and performance of single crystal spinels.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 14, 2013
    Assignee: Lehigh University
    Inventors: Animesh Kundu, Martin P. Harmer
  • Patent number: 8394732
    Abstract: Disclosed is the preparation of sintered cordierite-based glass-ceramic bodies via a procedure which uses three all natural starting materials which are white sand, kaolin clay and magnesite. These three raw materials are combined in relative amounts which form, upon subsequent mixing and heating, a specific mixture of oxides of silicon, aluminum and magnesium. Upon melting at 1500-1550° C., this combination of raw materials forms transparent brown glass which after solidification by quenching is then crushed and reduced to grains having a median particle size less than 65 microns. These brown glass grains are consolidated, for example by compaction, to form a green body for sintering. Sintering of the green body at temperatures between about 1000° C. and 1375° C. for from 2 to 5 hours produces glass-ceramic bodies containing a polycrystalline material which comprises mostly material of the cordierite crystal structure.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: March 12, 2013
    Assignee: King Abdulaziz City for Science and Technology
    Inventors: Omar A. Alharbi, Esmat M. Hamzawy
  • Patent number: 8389430
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 5, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Patent number: 8357262
    Abstract: Disclosed is a corrosion resistant member comprising a sintered material having an ?-Al2O3 crystal and an YAG (yttrium-aluminum-garnet) crystal. The corrosion resistant member contains metal elements, 70 to 98% by mass (inclusive) of Al in terms of Al2O3 and 2 to 30% by mass of Y in terms of Y2O3. The corrosion resistant member has a peak intensity ratio I116/I104 within the range from 0.94 to 1.98, preferably. 2.21 or higher, wherein I116 and I104 represent peak intensities attributed to the (116) face and the (104) face, respectively, of an ?-Al2O3 crystal as measured by X-ray diffractometry on its surface layer.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: January 22, 2013
    Assignee: Kyocera Corporation
    Inventors: Masahiro Nakahara, Tetsuji Hayasaki, Yoshihiro Okawa
  • Publication number: 20120311985
    Abstract: The present invention is a process for producing an aluminum titanate-based ceramics comprising a step of firing a starting material mixture containing a titanium source powder, an aluminum source powder, and a copper source.
    Type: Application
    Filed: December 24, 2010
    Publication date: December 13, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kentaro Iwasaki, Tetsuro Tohma
  • Publication number: 20120299227
    Abstract: Comminuted pre-mixtures for technical ceramics production, and ceramic bodies made therefrom, the comminuted pre-mixtures being comprised of cellulosic components and alumina source components and the bodies being produced by compounding the comminuted pre-mixtures with powdered inorganic components into batch mixtures, adding liquids to the batch mixtures to form plastic batches, forming the plastic batches into shaped bodies, and heating the shaped bodies to form the ceramic bodies.
    Type: Application
    Filed: February 17, 2011
    Publication date: November 29, 2012
    Inventors: Kevin Ying Chou, Sumalee Likitvanichkul, Bryan Ray Wheaton
  • Patent number: 8313725
    Abstract: An in-situ method for nanomixing magnesium aluminate spinel nanoparticles with a uniformly distributed controlled concentration of nanoparticles of an inorganic sintering aid, such as LiF, to produce ready-to-sinter spinel powder. The spinel-sintering aid nanomixture is formed by induced precipitation of the sintering aid nanoparticles from a dispersion of the spinel nanoparticles in an aqueous solution of the sintering aid, followed by separation, drying and deagglomeration of the spinel-sintering aid nanomixed product.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: November 20, 2012
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Raouf O. Loutfy, Juan L. Sepulveda, Sekyung Chang
  • Publication number: 20120276387
    Abstract: It is provided a high-temperature assembly that is favorable for increasing the sealing property at the boundary area between a first member and a second member that are used in a high-temperature environment. Further it is provided a method for producing the high-temperature assembly, and a heat-resistant sealing material. The heat-resistant sealing material, which is disposed at the boundary area between a first member and a second member, comprises ceramic particles made of a plurality of materials which form a ceramics the volume of which increases when the ceramics is synthesized.
    Type: Application
    Filed: November 15, 2010
    Publication date: November 1, 2012
    Applicant: TYK CORPORATION
    Inventors: Hirokatsu Hattanda, Tomohiro Yotabun
  • Publication number: 20120263929
    Abstract: A refractory object can include a beta alumina. In an embodiment, the refractory object is capable of being used in a glass fusion process. In another embodiment, the refractory object can have a total Al2O3 content of at least 10% by weight. Additionally, a Mg—Al oxide may not form along a surface of the refractory object when the surface is exposed to a molten glass including an Al—Si—Mg oxide. In a particular embodiment, a refractory object can be in the form of a glass overflow forming block used to form a glass object that includes an Al—Si—Mg oxide. When forming the glass object, the glass material contacts the beta alumina, and during the flowing of the glass material, a Mg—Al oxide does not form along the beta alumina at the surface.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Applicant: SAINT-GOBAIN CERAMIC & PLASTICS, INC.
    Inventor: Olivier Citti
  • Patent number: 8242039
    Abstract: The present invention is intended to drastically improve a precision polishing characteristic of a cordierite-based sintered body which has low thermal expansibility, high dimensional long-term stability and high rigidity (high elastic modulus). The cordierite-based sintered body comprises cordierite as primary components, and one or more selected from the group consisting of La, Ce, Sm, Gd, Dy, Er, Yb and Y in an oxide-equivalent amount of 1 to 8 mass %, without any crystal phase other than a cordierite crystal phase. A mass ratio of primary components of the cordierite satisfies the following relations: 3.85?SiO2/MgO?4.60, and 2.50?Al2O3/MgO?2.70, and the cordierite-based sintered body after being subjected to precision polishing has a precisely polished surface with an average surface roughness (Ra) of 1 nm or less.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 14, 2012
    Assignee: Krosakiharima Corporation
    Inventor: Jun Sugawara
  • Patent number: 8242038
    Abstract: A cement mixture suitable for use with ceramic honeycomb bodies, such as for forming an outer layer on the outer periphery of the honeycomb body, or for forming plugs in the honeycomb body. The cement mixture, when fired, preferably exhibits low coefficient of thermal expansion and high strength. The cement mixture can be applied to a green honeycomb body and simultaneously fired with the green body or can be applied to an already fired ceramic honeycomb body and then fired. Includes cement mixture comprising a plurality of inorganic components comprising talc, kaolin, alumina, silica, and aluminum hydroxide, wherein the mixture contains less than or equal to 18.0% silica and greater than or equal to 17.0% aluminum hydroxide, in percent by weight of the inorganic components.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 14, 2012
    Assignee: Corning Incorporated
    Inventors: David A Earl, Tonia Havewala Fletcher, Robert John Paisley, Irene Mona Peterson
  • Patent number: 8242037
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 14, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Min Kim
  • Publication number: 20120183790
    Abstract: This invention relates to thermal spray composite coatings on a metal or non-metal substrate. The thermal spray composite coatings comprise a ceramic composite coating having at least two ceramic material phases randomly and uniformly dispersed and/or spatially oriented throughout the ceramic composite coating. At least a first ceramic material phase is present in an amount sufficient to provide corrosion resistance to the ceramic composite coating, and at least a second ceramic material phase is present in an amount sufficient to provide plasma erosion resistance to the ceramic composite coating. This invention also relates to methods of protecting metal and non-metal substrates by applying the thermal spray coatings. The composite coatings provide erosion and corrosion resistance at processing temperatures higher than conventional processing temperatures used in the semiconductor etch industry, e.g., greater than 100° C.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 19, 2012
    Inventors: Christopher Petorak, Graeme Dickinson, Neill Jean McDill
  • Patent number: 8168555
    Abstract: A ceramic substrate is provided as one having a large coefficient of thermal expansion ?, having properties suitable for use as a high-frequency substrate, being capable of being fired at a low temperature, and having an excellent substrate strength. The ceramic substrate has a main composition containing Mg2SiO4 and a low-temperature-fired component, has the coefficient of thermal expansion a of not less than 9.0 ppm/° C., and contains up to 25 vol. % (excluding zero) ZnAl2O4 or up to 7 vol. % (excluding zero) Al2O3. A dielectric-porcelain composition is provided as one being capable of being fired at a temperature lower than a melting point of an Ag-based metal and being capable of demonstrating a sufficient bending strength even through firing at a low firing temperature. The dielectric-porcelain composition contains Mg2SiO4 as a major component and contains a zinc oxide, a boron oxide, an alkaline earth metal oxide, a copper compound, and a lithium compound as minor components.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: May 1, 2012
    Assignee: TDK Corporation
    Inventors: Toshiyuki Suzuki, Yasuharu Miyauchi, Isao Kanada
  • Publication number: 20120100043
    Abstract: A molten and cast refractory material having a chemical composition, in weight percent on the basis of oxides, of: —Al2O3: the remainder up to 100%; —MgO: 28% to 50%; —CuO: 0.05% to 1.0%; —B2O3: ?1.0%; —SiO2: <0.5%; —Na2O+K2O: <0.3%; —CaO: <1.0%; —Fe2O3+TiO2: <0.55%; —and other oxide species: <0.5%.
    Type: Application
    Filed: June 1, 2010
    Publication date: April 26, 2012
    Applicant: Saint-Gobain Centre De Recherches Et D'Etudes Europeen
    Inventors: Eric Jorge, Sebastien Bourdonnais
  • Publication number: 20120096822
    Abstract: Fused particles containing, by weight percent: more than 15% but less than 55% of Al2O3; more than 20% but less than 45% of TiO2; more than 3% but less than 30% of SiO2; less than 20%, in total, of at least one oxide selected from the group consisting of ZrO2, Ce2O3, and HfO2; less than 1% of MgO; and more than 1% but less than 15%, in total, of at least one selected from the group consisting of CaO, Na2O, K2O, SrO, B2O3, and BaO. Also, a ceramic product or material obtained by sintering the fused particles.
    Type: Application
    Filed: June 25, 2010
    Publication date: April 26, 2012
    Applicant: SAINT-GOBAIN CENTRE DE RECH. ET D'ETUDES EUROPEEN
    Inventor: Stephane Raffy
  • Patent number: 8163667
    Abstract: A transmitting optical element of polycrystalline material that includes crystallites of magnesium spinel MgAl2O4 or lutetium-aluminum garnet Lu3Al5O12, wherein the polycrystalline material includes an average total concentration of foreign element contamination caused by Y, Sc, Co, Ni, Zr, Mo, Sn and/or Nb of less than 50 ppm, preferably of less than 20 ppm, and more preferably of less than 15 ppm.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 24, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Wilfried Clauss
  • Patent number: 8143182
    Abstract: The present invention provides a fused ceramic particle, having the following chemical composition, in percentages by weight based on the oxides and for a total of 100%: 50%<ZrO2+HfO2<70%; 10%<SiO2<30%; 6.5%<MgO<9.5%; Al2O3 in a quantity such that the MgO/Al2O3 weight ratio is in the range 2.4 to 6.6; 0.1%<Y2O3; CeO2<10%; and less than 0.6% of other oxides. Use in particular as milling agents, wet medium dispersion agents, propping agents, heat exchange agents, or for the treatment of surfaces.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 27, 2012
    Assignee: Saint-Gobain Centre de Recherches Et d'Etudes Europeen
    Inventors: Yves Boussant-Roux, Emmanuel Nonnet
  • Patent number: 8143180
    Abstract: Disclosed are cements for ceramic honeycomb bodies. Such cements can be applied to a fired ceramic honeycomb body then fired, or can be applied to an unfired (green) honeycomb body and co-fired with the green honeycomb body. The cement can also be used to plug one or more cells in a honeycomb body, wherein the cement can be inserted into a green or a fired ceramic honeycomb body, then fired. Also disclosed are methods of manufacturing a ceramic honeycomb article with the cement.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: March 27, 2012
    Assignee: Corning Incorporated
    Inventors: David A Earl, Tonia Havewala Fletcher, Robert John Paisley
  • Publication number: 20120046155
    Abstract: A high-temperature, heat-resistant fill material is disclosed. The high-temperature, heat-resistant fill material includes an alumina refractory waste material having one or more of a used alumina-magnesium-carbon material, a used high-alumina material and a used fused-grain alumina material is disclosed. A method for method for manufacturing a material is also disclosed.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicants: Melt Solutions, L.L.C., Edw. C. Levy Co.
    Inventor: Thomas M. Dunn
  • Patent number: 8097549
    Abstract: A method for manufacturing cordierite ceramics is provided, including forming and heating a cordierite-forming raw material containing ?-alumina. The degree of orientation, expressed by (I006/(I300+I006), where Ihkl is height of X-ray diffraction intensity of an hkl-face of an ?-alumina crystal, by X-ray diffraction measurement of an ?-alumina crystal in a formed article of the raw material for forming cordierite is 0.10 or more.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: January 17, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Atsushi Watanabe, Yuji Katsuda, Yohei Ono
  • Patent number: 7977265
    Abstract: The present invention relates to the machine building industry and it is used for coating of friction surfaces by triboceramics to decrease wear and to reduce the friction coefficient. The triboceramic compound contains oxides—magnesium oxide MgO, silica SiO2, alumine Al2O3, calcium oxide CaO, ferric oxide Fe2O3, being in the chemical composition of serpentine and talc, the natural and/or synthesized heat unprocessed and/or dehydrated minerals—serpentine, talc, clinochlore, magnesite, quartz and aluminium hydroxide are introduced forming a mixture with the following composition of oxides, in mass %: SiO2-46-54; MgO-26-32, Al2O3-2-5; Fe2O3-1.0-1.5; CaO-0.1-0.3, water H2O-5 or less.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 12, 2011
    Assignee: Cerlub Ou
    Inventor: Maris Kesners
  • Publication number: 20110120987
    Abstract: A substrate for a heating assembly comprising a mixture of a mica material with an electrically insulating material, the substrate having a thermal coefficient of expansion that is higher than pure mica. A method of manufacturing the substrate is also disclosed.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicant: THERMOCERAMIX INC.
    Inventor: Richard C. ABBOTT
  • Publication number: 20110077141
    Abstract: A spark plug includes an insulator formed of a ceramic material. The ceramic material comprises Al2O3 in an amount of 98.00 wt % to 99.50 wt %; Group 2 oxides in an amount of 0.16 wt % to 0.70 wt %; SiO2 in an amount of 0.25 wt % to 0.75 wt %, Group 4 oxides in an amount of 0.01 wt % to 0.16 wt %, Group 1 oxides in an amount less than 0.0060 wt %, and P2O5 in an amount of less than 0.0040 wt %. The Al2O3 is formed of particles having a D50 median particle size by volume of 1.2 ?m to 1.8 ?m. The ceramic material is pressed, sintered, and formed to a predetermined shape. The sintered ceramic material includes a glass phase comprising the Al2O3, Group 2 oxides, and SiO2. The sintered ceramic material also includes secondary crystals of calcium hexa-aluminate (CaAl12O19) spinel (MgAl2O4), anorthite (CaAl2Si2O8), and mullite (Al6Si2O13).
    Type: Application
    Filed: August 26, 2010
    Publication date: March 31, 2011
    Inventors: William J. Walker, Michael E. Saccoccia
  • Patent number: 7833923
    Abstract: A monolithic refractory material is provided by a method including the steps of kneading cordierite powder having a median diameter in a range of 10 to 50 ?m, and having a sharp mountain-like particle size distribution in which the content of particles smaller than 10 ?m is 1% or more to 36% or less, the content of particles ranging from 10 ?m or more to 50 ?m or less is 50% or more to 75% or less, and the content of particles of 51 ?m or more is 1% or more to 14% or less, and a solvent including water and alumina sol or silica sol solution.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: November 16, 2010
    Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.
    Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
  • Publication number: 20100261599
    Abstract: A high-temperature, heat-resistant fill material is disclosed. The high-temperature, heat-resistant fill material includes an alumina refractory waste material having one or more of a used alumina-magnesium-carbon material, a used high-alumina material and a used fused-grain alumina material is disclosed. A method for method for manufacturing a material is also disclosed.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 14, 2010
    Applicant: Edw. C. Levy Co.
    Inventor: Thomas M. Dunn
  • Publication number: 20100248935
    Abstract: A method for manufacturing an alumina sintered body of the present invention comprises: (a) forming a mixed powder containing at least Al2O3 and MgF2 or a mixed powder containing Al2O3, MgF2, and MgO into a compact having a predetermined shape; and (b) performing hot-press sintering of the compact in a vacuum atmosphere or a non-oxidizing atmosphere to form an alumina sintered body, in which when a amount of MgF2 to 100 parts by weight of Al2O3 is represented by X (parts by weight), and a hot-press sintering temperature is represented by Y (° C.), the hot-press sintering temperature is set to satisfy the following equations (1) to (4) 1,120?Y?1,300??(1) 0.15?X?1.89??(2) Y??78.7X+1,349??(3) Y??200X+1,212??(4).
    Type: Application
    Filed: March 12, 2010
    Publication date: September 30, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Naomi Teratani, Toru Hayase, Yuji Katsuda, Masahiro Kida
  • Publication number: 20100237007
    Abstract: Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of the same.
    Type: Application
    Filed: June 27, 2007
    Publication date: September 23, 2010
    Applicant: Corning Incorporated
    Inventors: Gregory Albert Merkel, Patrick David Tepesch, Raja Rao Wusirika
  • Publication number: 20100233497
    Abstract: A non-conductive ceramic material contains a base ceramic material and at least one other ceramic material having a lower coefficient of thermal expansion than that of the base material so that the coefficient of thermal expansion of the non-conductive ceramic material is identical to that of a metallic material to which it will be matched. Methods of making and using same are disclosed.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 16, 2010
    Inventors: Alfred Thimm, Jürgen Ruska, Johannes Ernst, Stefan Stolz
  • Publication number: 20100154856
    Abstract: A substrate (1) for thermoelectric conversion modules has a ceramic material as a main component and has flexibility. A thermoelectric conversion module (2) has a plurality of thermoelectric elements (3, 4) arranged in the longitudinal direct of the substrate (1), at least on one surface of the substrate (1), so that the longitudinal directions of the thermoelectric elements (3, 4) are along the width direction of the substrate (1). Electrodes (5), which electrically connect the thermoelectric elements (3, 4) in series, are arranged on the end portions of the thermoelectric elements (3, 4).
    Type: Application
    Filed: March 11, 2008
    Publication date: June 24, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yuichi Hiroyama, Yoshio Uchida
  • Publication number: 20100148653
    Abstract: An alumina-based sintered body for a spark plug having enhanced mechanical strength and a method of manufacturing the same, as well as a spark plug having the alumina-based sintered body for a spark plug and a method of manufacturing the same.
    Type: Application
    Filed: October 27, 2009
    Publication date: June 17, 2010
    Inventors: Makoto Kuribayashi, Hironori Uegaki, Toshitaka Honda, Hirokazu Kurono
  • Publication number: 20100151232
    Abstract: The invention provides a fused cast refractory product having the following mean chemical composition by weight, as a percentage by weight based on the oxides: 25%<MgO<30%; 70%<Al2O3<75%; other species: <1%. The invention is applicable to a regenerator associated with a soda-lime glass fusion furnace operating under reducing conditions.
    Type: Application
    Filed: April 22, 2008
    Publication date: June 17, 2010
    Inventors: Isabelle Cabodi, Michel Gaubil
  • Publication number: 20100130346
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Application
    Filed: July 23, 2009
    Publication date: May 27, 2010
    Inventors: Richard M. Laine, Min Kim
  • Patent number: 7723250
    Abstract: A ceramic porous body including at least Si as a chemical component, the ceramic porous body being obtained by adding a porous silica powder or a porous silica-containing compound powder to a forming raw material to prepare a clay, forming the resulting ceramic clay into a specific shape, and firing the formed product. The ceramic porous body according to the present invention does not produce carbon dioxide or toxic gas during firing and allows the firing time to be reduced in comparison with the case of using a resin powder or a carbon powder as a pore-forming agent by using the porous silica powder or the porous silica-containing compound powder as the pore-forming agent during production. Moreover, a change in pore-forming characteristics or deformation of a formed product rarely occurs.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: May 25, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shinzou Hayashi, Hiroyuki Suenobu, Hirotake Yamada, Yasushi Noguchi
  • Publication number: 20100113244
    Abstract: A ceramic foam filter for molten aluminum alloys comprising an alumina silicate rich core and a boron glass shell and a chemical composition comprising: 20-70 wt % Al2O3, 20-60 wt % SiO2, 0-10 wt % CaO, 0-10 wt %; MgO and 2-20 wt % B2O3.
    Type: Application
    Filed: April 2, 2007
    Publication date: May 6, 2010
    Applicant: PORVAIR PLC
    Inventors: Feng Chi, David P. Haack, Leonard S. Aubrey
  • Patent number: 7708957
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Saint-Gobain Ceramics & Plastics Inc.
    Inventor: John Stewart Reid