Magnesium Compound Containing Patents (Class 501/108)
  • Patent number: 10150699
    Abstract: Embodiments of the present disclosure are directed to methods for inducing color change in glass and glass-ceramic articles. According to one embodiment, color change may be x-ray induced in glass or glass-ceramic articles. The method for x-ray inducing color change may include exposing the glass or glass-ceramic article to x-rays at a temperature of up to 200° C. to induce a colored area in the glass or glass-ceramic article. The glass or glass-ceramic article may comprise: 50-85 mole % SiO2; 5-25 mole % Al2O3; 0-15 mole % P2O5; 0-15 mole % B2O3; 5-25 mole % R2O, wherein R2O=Li2O+Na2O+K2O.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: December 11, 2018
    Assignee: CORNING INCORPORATED
    Inventors: John F Baum, Jr., Nicholas Francis Borrelli, Candy Elizabeth Card, Matthew John Dejneka, Eileen Marie Fanning, Karen Estelle Fitzsimmons
  • Patent number: 9845268
    Abstract: In one aspect, sintered ceramic bodies are described herein which, in some embodiments, demonstrate improved resistance to wear and enhanced cutting lifetimes. For example, a sintered ceramic body comprises tungsten carbide (WC) in an amount of 40-95 weight percent, alumina in an amount of 5-30 weight percent and ditungsten carbide (W2C) in an amount of at least 1 weight percent.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: December 19, 2017
    Assignee: KENNAMETAL INC.
    Inventors: Jason Goldsmith, Sheng Chao
  • Patent number: 9828288
    Abstract: A rotary kiln includes a stationary fuel nozzle and a perforated flame holder positioned within an inclined rotating shell. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder to shift most heat transfer from the combustion reaction from radiation heat transfer to convective heat transfer.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: November 28, 2017
    Assignee: CLEARSIGN COMBUSTION CORPORATION
    Inventors: Joseph Colannino, Douglas W. Karkow, Christopher A. Wiklof
  • Patent number: 9522846
    Abstract: In the present invention, the attempt was made to increase the denseness (to lower the porosity) of a magnesia carbon brick furthermore thereby providing the magnesia carbon brick having a high durability never found in the past. The magnesia carbon brick of the present invention comprises a magnesia raw material and a graphite, wherein the magnesia carbon brick contains the graphite with the amount thereof in the range of 8% or more by mass and 25% or less by mass and the magnesia raw material with the amount thereof in the range of 75% or more by mass and 92% or less by mass, the both amounts being relative to the total amount of the magnesia raw material and the graphite; as a grain size distribution of the magnesia raw material, the magnesia raw material having particle diameter of in the range of 0.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 20, 2016
    Assignee: KROSAKIHARIMA CORPORATION
    Inventors: Michiharu Shiohama, Masato Tanaka, Yoshinori Matsuo, Jouki Yoshitomi
  • Patent number: 9362529
    Abstract: The present invention relates to an OLED device and a corresponding display apparatus, which includes a metal cathode; an organic emitter layer which is disposed on the metal cathode; a transparent cathode which is disposed on the organic emitter layer; and a reflective layer which is disposed between the metal cathode and the organic emitter layer. The reflective layer is an Ag—Mg—Cu alloy layer. The OLED device and the corresponding display apparatus of the present invention have low production cost and high light outputted efficiency.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: June 7, 2016
    Assignee: SHENZHEN CHINA OPTOELECTRONICS CO., LTD.
    Inventor: Hao Kou
  • Patent number: 9212098
    Abstract: The invention relates to a blend for the production of a sintered refractory material containing chromium oxide, a sintered refractory material containing chromium oxide, a method for the manufacture of a sintered refractory material containing chromium oxide and to a use of magnesium titanate.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: December 15, 2015
    Assignee: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO.
    Inventors: Boro Djuricic, Roland Nilica, Klaus Santowski
  • Patent number: 8980775
    Abstract: The invention relates to a powder comprising more than 70% of glass-ceramic and/or refractory particles, a particle of said powder being classed in the fraction called “matrix” or in the fraction called “aggregate” according to whether it is smaller than, or equal to 100 ?m, or bigger than 100 ?m, respectively, the aggregate, representing more than 60% of the powder, comprising: more than 40% of particles of a glass-ceramic material having a crystallization rate of higher than 50% and a thermal expansion value, measured at 700° C., of less than 0.3%, called “glass-ceramic grains”; less than 35% of particles of a refractory material different from a glass-ceramic material, called “refractory grains”, the quantity of refractory grains being higher than 10% if the aggregate comprises more than 40% of glass-ceramic grains having a thermal expansion value, measured at 700° C., of less than or equal to 0.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 17, 2015
    Assignee: Saint-Gobain Centre de Recherches et D'Etudes European
    Inventors: Olivier Jean Francy, Eric Jorge
  • Patent number: 8951496
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Amastan Technologies LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Patent number: 8889273
    Abstract: A non-conductive ceramic material contains a base ceramic material and at least one other ceramic material having a lower coefficient of thermal expansion than that of the base material so that the coefficient of thermal expansion of the non-conductive ceramic material is identical to that of a metallic material to which it will be matched. Methods of making and using same are disclosed.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 18, 2014
    Assignee: CeramTec GmbH
    Inventors: Alfred Thimm, Jürgen Ruska, Johannes Ernst, Stefan Stolz
  • Patent number: 8883309
    Abstract: A blue light-emitting silicate phosphor favorably employable as a blue light-emitting source of a light-emitting apparatus which gives emission of a visible light upon irradiation of ultraviolet rays having a wavelength of 254 nm, such as ultraviolet rays emitted by a fluorescent lamp is produced by a method comprising calcining a powdery mixture comprising a magnesium oxide powder, an MeO source powder, a EuO source powder and a SiO2 source powder, said magnesium oxide powder having a purity of 99.9 wt. % or higher and a BET specific surface area in the range of 3 to 60 m2/g and having been prepared by bringing a metallic magnesium vapor into contact with oxygen whereby oxidizing the metallic magnesium vapor.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: November 11, 2014
    Assignee: Ube Material Industries, Ltd.
    Inventors: Toru Inagaki, Masato Yamauchi, Seiji Noguchi, Kouichi Fukuda, Akira Ueki
  • Patent number: 8822360
    Abstract: An article which includes a structure of a ceramic material that has a composition SiOxMzCy, where Si is silicon, O is oxygen, M is at least one metal and C is carbon and wherein x<2, y>0 and z<1 and x and z are non-zero.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 2, 2014
    Assignee: United Technologies Corporation
    Inventors: Wayde R. Schmidt, Paul Sheedy, Tania Bhatia Kashyap, Daniel G. Goberman, Xia Tang
  • Patent number: 8778502
    Abstract: A glass ceramic composition includes a SrZrO3 ceramic, a Li2O—MgO—ZnO—B2O3—SiO2-based glass, Mg2SiO4 in an amount of about 5 to 40 weight percent, and a SrTiO3 ceramic in an amount in the range of about 0 to about 6 weight percent of the total. The Li2O—MgO—ZnO—B2O3—SiO2-based glass accounts for about 1 to about 12 weight percent of the total.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Sugimoto, Sadaaki Sakamoto, Hiroshige Adachi
  • Patent number: 8778860
    Abstract: Cleaning and disinfecting compositions containing one or more “green” surfactants are disclosed. The compositions may be present as micro-emulsions that generally include green disinfecting agents, green surfactants, and water. The composition may also contain other green ingredients such as linkers, pH adjusting agents, natural fragrances, natural insecticides, and other natural organic actives such as natural oils. The composition may be used as a green cleaning and disinfecting composition with performance comparable or superior to conventional cleaning and disinfecting products with less desirable ecological profiles.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 15, 2014
    Assignee: S.C. Johnson & Son, Inc.
    Inventor: Marie-Esther Saint Victor
  • Patent number: 8747546
    Abstract: The composition applied to the refractory structure has a magnesia-based refractory material, calcia source and a binder. After application of the refractory material to a refractory structure and upon application of heat to the applied refractory material a matrix is formed which protects against penetration of the slag into the refractory material. The resulting refractory material has improved hot strength, slag resistance and durability.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: June 10, 2014
    Assignee: Specialty Minerals (Michigan) Inc.
    Inventors: William J. Peschler, Dominick M. Colavito, Yves C. Vermeulen
  • Patent number: 8709961
    Abstract: A method for superconductingly connecting two or more wires (1, 2), each comprising at least one filament (3a-3d) that contains MgB2 or a mixture of Mg and B, wherein a superconducting connection is realized through exposed end regions (4a) of the filaments (3a-3d) via an MgB2 matrix, is characterized in that a bulk boron powder (4) is provided into which the exposed end regions (4a) of the filaments (3a-3d) of the wires (1, 2) project, the boron of the bulk boron powder (4) being present in amorphous modification. The bulk powder (4) is then compacted together with the projecting exposed end regions (4a) of the filaments (3a, 3b) to form a compressed element (8) and the compressed element (8) is infiltrated with molten magnesium (10) from the surface (13) of the compressed element (8). The method improves the quality, in particular, the current-carrying capacity and the critical magnetic field strength of a superconducting connection of MgB2 superconducting wires.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 29, 2014
    Assignee: Bruker EAS GmbH
    Inventors: Felicitas Tenbrink, André Aubele, Volker Gluecklich, Bernd Sailer, Klaus Schlenga
  • Patent number: 8696962
    Abstract: A method of reducing the defects in ceramic articles and precursors, particularly ceramic articles and precursors made using a batch composition containing an oil phase material. The method includes increasing the concentration of a water insoluble soap in the batch composition, which can increase the cohesive strength of the oil phase, leading to a reduction in the incidence of defects in the ceramic articles and precursors.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: April 15, 2014
    Assignee: Corning Incorporated
    Inventor: Kevin Ying Chou
  • Publication number: 20140094356
    Abstract: A treatment process, an oxide-forming treatment composition, and a treated component are disclosed. The treatment process includes applying an oxide-forming treatment composition to a ceramic coating and heating the oxide-forming treatment composition to form an oxide within the ceramic coating. The oxide-forming treatment composition includes a solute and a corrosion inhibitor. The oxide-forming treatment composition is super-saturated with the corrosion inhibitor. The treated component includes a ceramic coating and one or both of a corrosion inhibitor and an oxide formed by an oxide-forming treatment composition having the corrosion inhibitor. The corrosion inhibitor and the oxide-forming treatment composition are within the ceramic coating.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yuk-Chiu LAU, Vinod Kumar PAREEK, Joshua L. MARGOLIES, Raymond Grant ROWE
  • Patent number: 8679997
    Abstract: The ceramic clay is provided by kneading a forming raw material containing a ceramic forming material. The forming raw material contains, in addition to the ceramic forming material, a layered double hydroxide represented by a predetermined chemical formula in an amount of from 0.01 to 5 mass % based on the total amount of the layered double hydroxide and the ceramic forming material. The layered double hydroxide turns into a gel when dispersed in water, and when the layered double hydroxide is dispersed in water at a concentration of 6 mass %, the layered double hydroxide has a viscosity of from 1000 to 20000 mPa·s.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 25, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiro Tomita, Kenji Morimoto
  • Patent number: 8669198
    Abstract: The present invention relates to a basic-refractory composition containing magnesium orthotitanate (Mg2TiO4) and calcium titanate (CaTiO3) suitable for use in rotating kilns for the production of Portland cement or lime.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 11, 2014
    Assignee: Elfusa Geral de Electgrofusao Ltda
    Inventor: Luís Leonardo Horne Curimbaba Ferreira
  • Patent number: 8592041
    Abstract: Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshige Adachi, Sadaaki Sakamoto
  • Patent number: 8450229
    Abstract: Mix which comprises a) one or more very finely divided silicon dioxide powders having an average particle diameter of from 2 to 100 nm and a BET surface area of at least 30 m2/g, b) one or more particulate components selected from the group consisting of oxides, carbides and nitrides, in each case having an average particle diameter of from >0.5 ?m to 30 mm, c) one or more synthetic resins as binders and d) one or more metallic antioxidants having an average particle diameter of from >0.5 to 250 ?m. Process for producing a shaped body, in which to the mix is introduced into a mould, pressed if appropriate and heated to a temperature at which the synthetic resin crosslinks thermally. Shaped body which can be obtained therefrom. Process for producing a refractory shaped body, in which the shaped body is carbonized. Refractory shaped body which can be obtained therefrom.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 28, 2013
    Assignees: Evonik Degussa GmbH, Technische Universität Bergakademie Freiberg—Institut für Keremik, Glas-und Baustofftechnik
    Inventors: Christos G. Aneziris, Uwe Klippel, Christoph Tontrup
  • Patent number: 8440108
    Abstract: A composition of matter and method of forming a radiation shielding member at ambient temperatures in which the composition of matter includes a ‘cold-fired’ chemically bonded oxide-phosphate ceramic cement matrix; with one or more suitably prepared and distributed radiation shielding materials dispersed in the ‘cold-fired’ chemically bonded oxide-phosphate ceramic cement matrix.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: May 14, 2013
    Assignee: Co-Operations, Inc.
    Inventors: Judd Hamilton, Vernon D. Hamilton
  • Patent number: 8420558
    Abstract: A method for connecting two or more superconducting wires (1, 2), each comprising at least one filament (3a-3b) that contains MgB2, wherein the superconducting connection is realized through exposed end regions (13) of the filaments (3a-3d) via a superconducting matrix, is characterized in that a bulk powder (4) of a high-temperature superconductor (HTS) powder with a transition temperature of Tc>40K is provided, into which the exposed end regions (13) of the filaments (3a-3d) project, wherein the Boron of the Boron powder of the bulk powder (4) is in amorphous modification, and the bulk powder (4) is compacted together with the projecting exposed end regions (13) of the filaments (3a-3d) to form a compressed element (8). The method improves the quality, in particular, the current carrying capacity and the critical magnetic field strength of a superconducting connection of two MgB2 wires.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 16, 2013
    Assignee: Bruker EAS GmbH
    Inventors: Felicitas Tenbrink, André Aubele, Volker Gluecklich, Bernd Sailer, Klaus Schlenga
  • Publication number: 20130023401
    Abstract: Initially, an Yb2O3 raw material was subjected to uniaxial pressure forming at a pressure of 200 kgf/cm2, so that a disc-shaped compact having a diameter of about 35 mm and a thickness of about 10 mm was produced, and was stored into a graphite mold for firing. Subsequently, firing was performed by using a hot-press method at a predetermined firing temperature (1,500° C.), so as to obtain a corrosion-resistant member for semiconductor manufacturing apparatus. The press pressure during firing was specified to be 200 kgf/cm2 and an Ar atmosphere was kept until the firing was finished. The retention time at the firing temperature (maximum temperature) was specified to be 4 hours. In this manner, the corrosion-resistant member for semiconductor manufacturing apparatus made from an Yb2O3 sintered body having an open porosity of 0.2% was obtained.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 24, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventor: NGK INSULATORS, LTD.
  • Patent number: 8303702
    Abstract: Preparation for producing refractory materials, characterized in that it comprises one or more particulate, refractory components and one or more binders, where—the particulate, refractory component has a mean particle diameter of >0.3 m and—the binder is selected from among—from 0.05 to 50% by weight of a very finely particulate binder having a mean particle diameter of from 10 nm to 0.3 m selected from the group consisting of aluminum oxide, titanium dioxide, zirconium dioxide and/or mixed oxides of the abovementioned oxides, —from 0 to 20% by weight of an inorganic binder, from 0 to 20% by weight of a hydraulically setting binder, —from 0 to 15% by weight of an organic, silicon-free binder—and the preparation additionally contains from 0 to 35% by weight of water, where—the proportion of the particulate, refractory component is equal to 100 and the percentages of the further materials in the preparation are based on the particulate component.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: November 6, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Christoph Tontrup, Wolfgang Lortz, Christoph Batz-Sohn
  • Publication number: 20120227445
    Abstract: A refractory object can include at least 10 wt % Al2O3. In an embodiment, the refractory object can further include a dopant including an oxide of a rare earth element, Ta, Nb, Hf, or any combination thereof. In another embodiment, the refractory object may have a property such that the averaged grain size does not increase more than 500% during sintering, an aspect ratio less than approximately 4.0, a creep rate less than approximately 1.0×10?5 ?m/(?m×hr), or any combination thereof. In a particular embodiment, the refractory object can be in the form of a refractory block or a glass overflow forming block. The glass overflow forming block can be useful in forming an Al—Si—Mg glass sheet. In a particular embodiment, a layer including Mg—Al oxide can initially form along exposed surfaces of the glass overflow forming block when forming the Al—Si—Mg glass sheet.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Andrea Kazmierczak
  • Patent number: 8257485
    Abstract: The composition applied to the refractory structure has a magnesia-based refractory material, calcium carbonate and a binder. After application of the refractory material to a refractory structure and upon application of heat to the applied refractory material a matrix is formed which protects against penetration of the slag into the refractory material. The resulting refractory material has improved hot strength, slag resistance and durability.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 4, 2012
    Assignee: Specialty Minerals (Michigan) Inc.
    Inventors: Dominick M. Colavito, Yves C. Vermeulen
  • Patent number: 8242037
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 14, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Min Kim
  • Patent number: 8236720
    Abstract: The invention relates to an unshaped refractory material comprising a refractory base component and a binder component, the binder component comprising, related to the refractory material, an acidic component of the group comprising an acid, salt of an acid, ester of an acid, salt and ester of an acid as phosphate, sulfate or carbonate, in an amount of ?1.5 wt.-% and ?6 wt.-%, and a basic component of the group comprising: base, urotropin, calcium oxide, calcium hydroxide, magnesium oxide, caustic MgO, sodium hydroxide, potassium hydroxide, magnesium hydroxide, in an amount of ?1 wt.-% and ?4 wt.-%, wherein said material receives an earth-moist, crumbly consistency by addition of 1 to 5 wt.-% of water and which solidifies after an exothermic reaction of the binder component.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 7, 2012
    Assignee: Refractory Intellectual Property GmbH & Co. KG
    Inventors: Bernd Petritz, Alfons Lüftenegger
  • Publication number: 20120183790
    Abstract: This invention relates to thermal spray composite coatings on a metal or non-metal substrate. The thermal spray composite coatings comprise a ceramic composite coating having at least two ceramic material phases randomly and uniformly dispersed and/or spatially oriented throughout the ceramic composite coating. At least a first ceramic material phase is present in an amount sufficient to provide corrosion resistance to the ceramic composite coating, and at least a second ceramic material phase is present in an amount sufficient to provide plasma erosion resistance to the ceramic composite coating. This invention also relates to methods of protecting metal and non-metal substrates by applying the thermal spray coatings. The composite coatings provide erosion and corrosion resistance at processing temperatures higher than conventional processing temperatures used in the semiconductor etch industry, e.g., greater than 100° C.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 19, 2012
    Inventors: Christopher Petorak, Graeme Dickinson, Neill Jean McDill
  • Patent number: 8197780
    Abstract: A method of producing a boron suboxide composite material having improved fracture toughness.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: June 12, 2012
    Assignee: Element Six (Production) (Pty) Ltd.
    Inventors: Geoffrey John Davies, Iakovos Sigalas, Mathias Herrmann, Thembinkosi Shabalala
  • Patent number: 8193110
    Abstract: The invention relates to a refractory, ceramically fired, carbon-bonded magnesia brick whose matrix is more than 70% by weight, in particular from 80 to 98% by weight, of MgO grains and also a carbon framework binder matrix resulting from carbonization, and pores, wherein the MgO grains are fixed by means of carbon bonding of the carbon framework and at least 30%, in particular from 50 to 100%, of the MgO grains have at least one sintering bridge resulting from the ceramic firing.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: June 5, 2012
    Assignee: Refratechnik Holding GmbH
    Inventor: Helge Jansen
  • Patent number: 8182603
    Abstract: Disclosed are cement compositions for applying to honeycomb bodies. The cement compositions can be applied as a plugging cement composition, segment cement, or even as after applied artificial skins or coatings. The cement compositions generally include an inorganic powder batch mixture consisting essentially of inorganic particles having a particle size greater than 100 nm. The cement compositions can further include an organic binder, a liquid vehicle, and one or more optional processing aids. Also disclosed are honeycomb bodies having the disclosed cement compositions applied thereto and methods for making same.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Corning Incorporated
    Inventors: Anthony Joseph Cecce, Thomas James Deneka, Kintu Odinga X Early, Jeffrey Donald Roche, Patrick David Tepesch
  • Patent number: 8093169
    Abstract: Disclosed is a magnesia-carbon based sleeve brick for steelmaking converters, which is obtained by adding, to a refractory raw material mix containing 60 to 95 mass % of a magnesia raw material and 5 to 20 mass % of graphite, a metal powder of one or more selected from the group consisting of Al, Si, Mg, Ca, Cr and an alloy thereof, in an amount of greater than 3 to 6 mass %, and an organic binder, in addition to 100 mass % of the refractory raw material mix, and subjecting the resulting mixture to kneading, forming and heat treatment, wherein the sleeve brick is used under a condition that a thickness thereof is set at 70 mm or less. This makes it possible to prevent cracking which would otherwise occur in the sleeve brick itself, to allow the sleeve brick to have enhanced durability. One or more selected from the group consisting of B, B4C, MgB2, CaB6, and CrB may be further added in an amount of 0.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 10, 2012
    Assignee: Krosakiharima Corporation
    Inventors: Masato Tanaka, Eiichiro Hatae, Toshiyuki Hokii, Joki Yoshitomi
  • Patent number: 8030235
    Abstract: A magnesia-carbon brick comprised of about 50 to about 95% by weight magnesia and about 1 to about 20% by weight carbon, with or without metallic additions, such that the chemical analysis of the mixture of aggregates used in the brick will comprise, by chemical analysis, about 2 to about 15% SiO2, about 3 to about 50% Al2O3, and about 50 to about 95% MgO.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 4, 2011
    Assignee: North American Refractories Company
    Inventors: Shyam Miglani, H. David Prior, David J. Michael
  • Patent number: 8030236
    Abstract: Disclosed are a fire-resistant ordinary ceramic batch and a fire-resistant product predominantly comprising a) at least one granular, fire-resistant, mineral, alkaline main component made of an MgO-based or MgO and CaO-based fire-resistant material that is based on at least one alkaline fire-resistant raw material, and b) at least one granular, fire-resistant, mineral, MgO-based, additional elasticator in the form of a forsterite material or a mixture forming forsterite material preferably as small molded articles, such as pellets or granulate that is comminuted from compacts. The small molded articles have a grain size ranging from 0.3 to 8 mm while being advantageously provided with a binder at an amount that elasticates the main component.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 4, 2011
    Assignee: Refratechnik Holding GmbH
    Inventors: Hans-Jürgen Klischat, Carsten Vellmer, Holger Wirsing
  • Patent number: 7989381
    Abstract: A fusion-cast refractory product based on zirconium dioxide is provided. The zirconium dioxide crystals are stabilized by magnesium oxide and surrounded by at least one magnesium oxide-containing crystalline phase. The content of magnesium oxide-containing crystalline phases, relative to the total mass of the product, amounts to 1 to 8 wt. %. In an example, the stabilized zirconium dioxide crystals are surrounded by at least one of the following magnesium oxide-containing crystalline phases: forsterite, enstatite, cordierite or spinel.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Refractory Intellectual Property GmbH & Co. KG
    Inventors: Roland Nilica, Klaus Santowski
  • Patent number: 7955579
    Abstract: A boron suboxide composite material having improved fracture toughness consists of particulate or granular boron suboxide distributed in a binder phrase, such as AlxByOz, for example.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: June 7, 2011
    Assignee: Element Six (Production) (Pty) Ltd.
    Inventors: Geoffrey John Davies, Iakovos Sigalas, Mathias Herrmann, Thembinkosi Shabalala
  • Publication number: 20100304082
    Abstract: Lanthanum containing cordierite bodies are provided that exhibit high strength, little or no microcracking, and a high thermal shock resistance. Improved maintenance of low microcracking and high strength is obtained even after exposure to high temperatures.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Inventor: Gregory Albert Merkel
  • Patent number: 7833923
    Abstract: A monolithic refractory material is provided by a method including the steps of kneading cordierite powder having a median diameter in a range of 10 to 50 ?m, and having a sharp mountain-like particle size distribution in which the content of particles smaller than 10 ?m is 1% or more to 36% or less, the content of particles ranging from 10 ?m or more to 50 ?m or less is 50% or more to 75% or less, and the content of particles of 51 ?m or more is 1% or more to 14% or less, and a solvent including water and alumina sol or silica sol solution.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: November 16, 2010
    Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.
    Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
  • Publication number: 20100273636
    Abstract: Mix which comprises a) one or more very finely divided silicon dioxide powders having an average particle diameter of from 2 to 100 nm and a BET surface area of at least 30 m2/g, b) one or more particulate components selected from the group consisting of oxides, carbides and nitrides, in each case having an average particle diameter of from >0.5 ?m to 30 mm, c) one or more synthetic resins as binders and d) one or more metallic antioxidants having an average particle diameter of from >0.5 to 250 ?m. Process for producing a shaped body, in which to the mix is introduced into a mould, pressed if appropriate and heated to a temperature at which the synthetic resin crosslinks thermally. Shaped body which can be obtained therefrom. Process for producing a refractory shaped body, in which the shaped body is carbonized. Refractory shaped body which can be obtained therefrom.
    Type: Application
    Filed: December 10, 2008
    Publication date: October 28, 2010
    Applicants: EVONIK DEGUSSA GMBH, TECH UNIV BER FREI- INST FUER KER, GLAS-UND BAUS
    Inventors: Christos G. Aneziris, Uwe Klippel, Christoph Tontrup
  • Patent number: 7803472
    Abstract: To provide a substrate glass for data storage medium which is excellent in weather resistance even when no additional treatment such as chemical reinforcement treatment is applied and less susceptible to a whitening phenomenon and which has a glass transition temperature of at least 680° C. and is excellent in acid resistance. A substrate glass for data storage medium, which comprises, as represented by mass %, from 47 to 60% of SiO2, from 8 to 20% of Al2O3, from 0 to 8% of MgO, from 0 to 6% of CaO, from 1 to 18% of SrO, from 0 to 13% of BaO, from 1 to 6% of TiO2, from 1 to 5% of ZrO2, from 2 to 8% of Na2O and from 1 to 15% of K2O and which has a glass transition temperature of at least 680° C.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: September 28, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Tetsuya Nakashima, Kei Maeda, Tatsuo Nagashima
  • Patent number: 7795812
    Abstract: A plasma display device includes: a plasma display panel including an address electrode disposed on a first substrate, a pair of first and second display electrodes disposed on a second substrate and crossing the address electrode, a dielectric layer covering the first and second display electrodes on the second substrate, an MgO protective layer covering the dielectric layer on the second substrate, and discharge gases filled between the first and second substrates; a driver that drives the plasma display panel; and a controller that controls a sustain pulse width of a sustain period to be 1 to 3.5 ?s. The MgO protective layer includes 100 to 300 ppm of Ca, 100 to 250 ppm of Al, 10 to 50 ppm of Fe, and 70 to 170 ppm of Si based on MgO. The plasma display device shows improved discharge stability and display quality due to reduced discharge delay time (Ts).
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: September 14, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Ki-Dong Kim
  • Publication number: 20100197478
    Abstract: A ceramic substrate is provided as one having a large coefficient of thermal expansion ?, having properties suitable for use as a high-frequency substrate, being capable of being fired at a low temperature, and having an excellent substrate strength. The ceramic substrate has a main composition containing Mg2SiO4 and a low-temperature-fired component, has the coefficient of thermal expansion ? of not less than 9.0 ppm/° C., and contains up to 25 vol. % (excluding zero) ZnAl2O4 or up to 7 vol. % (excluding zero) Al2O3. A dielectric-porcelain composition is provided as one being capable of being fired at a temperature lower than a melting point of an Ag-based metal and being capable of demonstrating a sufficient bending strength even through firing at a low firing temperature. The dielectric-porcelain composition contains Mg2SiO4 as a major component and contains a zinc oxide, a boron oxide, an alkaline earth metal oxide, a copper compound, and a lithium compound as minor components.
    Type: Application
    Filed: July 18, 2008
    Publication date: August 5, 2010
    Applicant: TDK Corporation
    Inventors: Toshiyuki Suzuki, Yasuharu Miyauchi, Isao Kanada
  • Publication number: 20100189896
    Abstract: The composition applied to the refractory structure has a magnesia-based refractory material, calcia source and a binder. After application of the refractory material to a refractory structure and upon application of heat to the applied refractory material a matrix is formed which protects against penetration of the slag into the refractory material. The resulting refractory material has improved hot strength, slag resistance and durability.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 29, 2010
    Applicant: Specialty Minerals (Michigan) Inc.
    Inventors: William J. Peschler, Dominick M. Colavito, Yves C. Vermeulen
  • Patent number: 7763568
    Abstract: The present invention provides a method for producing a MgB2 superconductor, comprising compacting and heating a mixture comprising Mg or MgH2 powder and B powder, wherein said mixture comprises SiC powder and an aromatic hydrocarbon, and a MgB2 superconductor having a higher critical current density (Jc) than that of the known MgB2 superconductors added SiC only or added an aromatic hydrocarbon only such as benzene.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 27, 2010
    Assignees: National Institute for Materials Science, Central Japan Railway Company
    Inventors: Hideyuki Yamada, Nobuhito Uchiyama, Hiroaki Kumakura, Hitoshi Kitaguchi, Akiyoshi Matsumoto
  • Publication number: 20100184584
    Abstract: The invention relates to an unshaped refractory material, to a process for producing an earth-moist, unshaped refractory material, and also to the use of the unshaped refractory material.
    Type: Application
    Filed: July 1, 2008
    Publication date: July 22, 2010
    Applicant: REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
    Inventors: Bernd Petritz, Alfons Lüftenegger
  • Publication number: 20100154856
    Abstract: A substrate (1) for thermoelectric conversion modules has a ceramic material as a main component and has flexibility. A thermoelectric conversion module (2) has a plurality of thermoelectric elements (3, 4) arranged in the longitudinal direct of the substrate (1), at least on one surface of the substrate (1), so that the longitudinal directions of the thermoelectric elements (3, 4) are along the width direction of the substrate (1). Electrodes (5), which electrically connect the thermoelectric elements (3, 4) in series, are arranged on the end portions of the thermoelectric elements (3, 4).
    Type: Application
    Filed: March 11, 2008
    Publication date: June 24, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yuichi Hiroyama, Yoshio Uchida
  • Publication number: 20100130346
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Application
    Filed: July 23, 2009
    Publication date: May 27, 2010
    Inventors: Richard M. Laine, Min Kim
  • Patent number: 7708957
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Saint-Gobain Ceramics & Plastics Inc.
    Inventor: John Stewart Reid