Alkaline Earth Metal Compound Containing Patents (Class 501/123)
  • Publication number: 20030049329
    Abstract: The present invention provides a novel process for producing a calcium phosphate cement or filler which hardens in a temperature dependent fashion in association with an endothermic reaction. In the reaction a limited amount of water is mixed with dry calcium phosphate precursors to produce a hydrated precursor paste. Hardening of the paste occurs rapidly at body temperature and is accompanied by the conversion of one or more of the reactants to poorly crystalline apatitic calcium phosphate. The hardened cements, fillers, growth matrices, orthopedic and delivery devices of the invention are rapidly resorbable and stimulate hard tissue growth and healing. A composite material is provided including a strongly bioresorbable, poorly crystalline apatitic calcium phosphate composite and a supplementary material. The supplementary material is in intimate contact with the hydroxyapatite material in an amount effective to impart a selected characteristic to the composite.
    Type: Application
    Filed: November 23, 2001
    Publication date: March 13, 2003
    Inventors: Dosuk D. Lee, Christian Rey, Maria Aiolova, Aliassghar Tofighi
  • Patent number: 6517693
    Abstract: The invention presents an ion conductor with high reliability, that is one of the following perovskite oxides: {circle around (1)} perovskite oxide of the composition BaZr1-xCexO3-p (0<x<0.8); {circle around (2)} perovskite oxide consisting essentially of Ba, Zr, Ce and O, and substantially conducting protons only; {circle around (3)} perovskite oxide of the composition BaZr1-x-yCexMyO3-p (M, O≦x<1,0<y<1, x+y<1) that is a single-phase polycrystal of cubic, tetragonal or orthorhombic crystal structure whose unit cell edges a, b and c (with a≧b≧c) satisfy 0.8386 nm<a<0.8916 nm and b/a≧0.90; {circle around (4)} perovskite oxide of the same composition as in {circle around (3)} that is a single-phase sintered product with a density of at least 96% of the theoretical density; and {circle around (5)} perovskite oxide of the same composition as in {circle around (3)} that is a single-phase sintered product with 1 to 30 &mgr;m granular diameter.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: February 11, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Noboru Taniguchi
  • Publication number: 20030027027
    Abstract: The present invention relates to compositions of matter represented by the general formula
    Type: Application
    Filed: April 27, 2001
    Publication date: February 6, 2003
    Inventors: Raymond Ashton Cutler, Robin Edward Richards
  • Patent number: 6512879
    Abstract: Phosphate free, Er/Yb co-doped borosilicate glass compositions and optical devices made from said compositions are disclosed; said compositions comprising, for 100 parts by weight of: 60 to 70 parts by weight SiO2 or SiO2+GeO2 with SiO2 always being greater than 40 parts by weight, 8 to 12 parts by weight of B2O3, 10 to 25 parts by weight M2O wherein M2O is an alkali metal oxide, 0 to 3 parts by weight of BaO, 0.1 to 5 parts by weight Er2O3, and from 0.1 to 12 parts by weight of Yb2O3 and from 0 to less than 5 parts by weight F; and within which, the boron atoms are of tetrahedral spatial coordination.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: January 28, 2003
    Assignee: Corning Incorporated
    Inventors: Alain Beguin, Patrice Camy, Pascale LaBorde, Christian Lerminiaux
  • Publication number: 20030013596
    Abstract: Grain oriented ceramics constituted of a polycrystalline body of a layered cobaltite in which a {001}plane of each grain constituting the polycrystalline body has an average orientation degree of 50% or more by the Lotgering's method. In this case, the layered cobaltite is preferably a layered calcium cobaltite expressed by the following general formula: {(Ca1−xAx)2CoO3+&agr;} (CoO2+&bgr;)y (where A represents one or more elements selected among an alkali metal, an alkaline earth metal and Bi, 0 ≦×≦0.3, 0.5 ≦y ≦2.0, and 0.85 ≦{3+&agr;+(2+&bgr;)y}/(3+2y) ≦1.15). Such grain oriented ceramics are obtained by molding a mixture of the first powder constituted of a Co(OH)2 platelike powder and the second powder constituted of CaCO3 and the like such that a developed plane of the platelike powder is oriented, and by heating the green body at a predetermined temperature.
    Type: Application
    Filed: April 26, 2002
    Publication date: January 16, 2003
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hiroshi Itahara, Shin Tajima, Toshihiko Tani, Kunihito Koumoto
  • Publication number: 20020158373
    Abstract: A method of making a cristobalite-free, mullite grain capable of withstanding reaction with molten aluminum, comprising the steps of: producing a clay slurry comprised of water and kaolin clay of a specific particle size; mixing a water insoluble barium or strontium containing compound into the clay slurry in an amount wherein the barium or strontium containing compound content of the slurry is equal to about 8% by weight of the kaolin clay in the slurry; removing sufficient water from the slurry to form a material having an pelletizable consistency; forming the material into pellets; heating the pellets by continuously moving them through a furnace having a zone, wherein the material is exposed to temperatures of at least 2,650° F. (1,455° C.) for at least 30 minutes.
    Type: Application
    Filed: April 15, 2002
    Publication date: October 31, 2002
    Applicant: North American Refractories Co.
    Inventors: H. David Prior, Daniel F. Fura
  • Patent number: 6458732
    Abstract: A dry refractory composition having superior insulating value. The dry refractory composition also may have excellent resistance to molten metals and slags. The composition includes filler lightweight material, which may be selected from perlite, vermiculite, expanded shale, expanded fireclay, expanded alumina silica hollow spheres, bubble alumina, sintered porous alumina, alumina spinel insulating aggregate, calcium alumina insulating aggregate, expanded mulllite, cordierite, and anorthite, and matrix material, which may be selected from calcined alumina, fused alumina, sintered magnesia, fused magnesia, silica fume, fused silica, silicon carbide, boron carbide, titanium diboride, zirconium boride, boron nitride, aluminum nitride, silicon nitride, Sialon, titanium oxide, barium sulfate, zircon, a sillimanite group mineral, pyrophyllite, fireclay, carbon, and calcium fluoride.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: October 1, 2002
    Assignee: Allied Mineral Products, Inc.
    Inventors: Douglas K. Doza, John Y. Liu
  • Publication number: 20020114938
    Abstract: A porous sintered body of a calcium phosphate-based ceramic having a porosity of 80% or more. The porous sintered body is produced by a method comprising the steps of: (1) preparing a slurry comprising a calcium phosphate-based ceramic powder, a water-soluble high molecular compound and a nonionic surface active agent; (2) stirring the slurry vigorously to froth the slurry; (3) solidifying the frothed slurry into a gel; and (4) drying and sintering the gel.
    Type: Application
    Filed: December 7, 2001
    Publication date: August 22, 2002
    Applicant: ASAHI KOGAKU KOGYO KABUSHIKI KAISHA
    Inventor: Toshio Matsumoto
  • Patent number: 6436861
    Abstract: The present invention relates to porous calcium zirconate/magnesia composites having a thermally and chemically stable porous structure, which consist of sintered compacts having a fine composite structure stable under high temperatures due to uniformly dispersed equimolar amounts of calcium zirconate [CazrO3] and magnesia [MgO] and controlled grain growth, and a method of producing the same, and the present porous composites are useful as, for instance, a functional material for filtering highly corrosion resistant materials, lightening members used at super-high temperatures, catalyst carriers, insulation or sound-absorbing materials, and the like.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: August 20, 2002
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yoshikazu Suzuki, Tatsuki Ohji, Peter E. D. Morgan
  • Publication number: 20020094930
    Abstract: Disclosed are a new silica refractory brick, a method for making the same and a glass manufacturing furnace comprising the same. Said brick is made from quartz grains, contains calcium oxide binder, consists essentially of (i) silica and (ii) less than 1 weight percent of calcium oxide binder, and when subject to ASTM C-987 alkali vapor test at 1370° C. for 24 hours, has an erosion depth of less than 4 mm and a penetrated depth of less than 3 mm. The brick has reduced level of calcium oxide binder and improved resistance to alkalis and is particularly useful in oxygen-fuel fired glass furnaces.
    Type: Application
    Filed: August 15, 2001
    Publication date: July 18, 2002
    Inventors: John T. Brown, John F. Wosinski, Jean A. Wosinski
  • Patent number: 6398977
    Abstract: The present invention provides a hollow shape strontium iron oxide particle powder. Not only is the particle powder high in safety and excellent in workability, but exhibits a large dielectric constant when formed into an artificial dielectric material utilizing electrical conduction by being dispersed in an organic medium such as a rubber.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: June 4, 2002
    Assignee: Toda Kogyo Corporation
    Inventors: Tatsuya Nakamura, Yoji Okano, Akihisa Kajiyama
  • Publication number: 20020045531
    Abstract: A method of manufacturing oriented sintered ceramic product which enables to manufacture an oriented sintered product with an average crystal grain size of 20 &mgr;m or less and a grain width 0.4 times or less of the grain size, or an oriented sintered product with an average crystal grain size of 20 &mgr;m or more and a grain width 0.5 times or more of the grain size with no grain growth of plate-like seed crystals, the method comprising dispersing a non-ferromagnetic powder having a not-cubic crystal structure into a slurry, consolidating the slurry under a magnetic field and sintering the molding product.
    Type: Application
    Filed: May 15, 2001
    Publication date: April 18, 2002
    Inventors: Toru Suzuki, Yoshio Sakka
  • Patent number: 6365535
    Abstract: A ceramic composition having a high adsorptive capacity for oxygen at elevated temperature, including at least one of: Bi2−yEryO3−d; Bi2−yYyO3−d; La1−yBayCo1−xNixO3−d; La1−ySryCo1−xNixO3−d; La1−yCayCo1−xNixO3−d; La1−yBayCo1−xFexO3−d; La1−ySryCo1−xFexO3−d; and La1−yCayCo1−xFexO3−d; wherein x is from 0.2 to 0.8, y is from 0 to 1.0 and d=0.1 to 0.9. Such ceramic composition may be made using a modified Pechini synthetic procedure. The resulting ceramic composition is usefully employed as an adsorbent for separation of oxygen from an oxygen-containing feed gas mixture, e.g., in a pressure swing adsorption (PSA) process.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: April 2, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Delwyn Cummings, Philip Chen
  • Patent number: 6352790
    Abstract: A barrier layer for a silicon containing substrate comprises an alkaline earth aluminosilcate and an additive component capable of forming a reaction product with silica.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: March 5, 2002
    Assignee: United Technologies Corporation
    Inventors: Harry E. Eaton, Stephen Chin, John J. Brennan
  • Publication number: 20020025901
    Abstract: A method for producing a barium-containing composite metal oxide, comprising calcining a mixture of a barium compound and a metal compound comprising at least one metal selected from the group consisting of magnesium, aluminum, europium, manganese, strontium, calcium, terbium, zinc and titanium, or calcining a barium-containing composite metal salt comprising barium and at least one metal selected from the group consisting of magnesium, aluminum, europium, manganese, strontium, calcium, terbium, zinc and titanium, in a gas comprising a hydrogen halide and water vapor.
    Type: Application
    Filed: July 26, 2001
    Publication date: February 28, 2002
    Applicant: SUMITOMO CHEMICAL CO., LTD.
    Inventors: Keiji Ono, Susumu Miyazaki
  • Publication number: 20020010072
    Abstract: A method of producing an electronic device comprising a dielectric layer includes a dielectric ceramic composition containing a main component expressed by a composition formula of {(Sr1−xCax)O}m.(Ti1−yZry)O2, wherein the code x in said composition formula fulfills 0≦x≦1.00 and the code y in said composition formula fulfills 0≦y≦0.20, and characterized by producing said dielectric ceramic composition by using a material expressed by a composition formula of {(Sr1−xCax)O}m′.(Ti1−yZry)O2 wherein the mole ratio m′ in said composition formula fulfills m′<m. Due to the method, it is possible to produce an electronic device, such as a chip capacitor, having excellent resistance to reducing during firing and excellent capacity-temperature characteristics after firing, wherein the insulation resistance is hard to be deteriorated particularly when made to be a thin layer and defect rate of the initial insulation resistance is low.
    Type: Application
    Filed: March 19, 2001
    Publication date: January 24, 2002
    Applicant: TDK CORPORATION
    Inventors: Takashi Fukui, Yasuo Watanabe, Mikio Takahashi, Akira Sato
  • Patent number: 6340648
    Abstract: A calcium phosphate porous sintered body which comprises spherical pores communicating with one another substantially throughout the body with a porosity of 55% or more and 90% or less, and has an average diameter of the inter-pore communicating parts of 50 &mgr;m or more, a pore diameter of 150 &mgr;m or more, and a three-point bending strength of 5 MPa or more, and a method for producing the same.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: January 22, 2002
    Assignees: Toshiba Ceramics Co., Ltd., National Institute for Research in Inorganic Materials-Science and Technology Agency, Toshiba Denko Co., Ltd.
    Inventors: Kohichi Imura, Hideo Uemoto, Akimichi Hojo, Junzo Tanaka, Masanori Kikuchi, Yasushi Suetsugu, Hiraku Yamazaki, Masami Kinoshita, Nobuaki Minowa
  • Patent number: 6322622
    Abstract: A flame spray mending material effective for applying a dense thermal spray mending layer to a silica brick wall of an industrial furnace, having a high crystallization ratio immediately after thermal spraying in a broad thermal spray condition, having an oxide concentration of 89% by weight or more of SiO2, more than 2.0 to 4.0% by weight of Na2O and/or more than 0.2 to 4.0% by weight of Li2O, having a 80% or more crystallization ratio after thermal spraying and 200 kgf/cm2 or more compression strength. A slight amount of CaO may be present to make a flame spray mending material with an oxide concentration of 89% by weight or more of SiO2, more than 2.0 to 5.0% by weight of CaO, 0.5 to 4.0% by weight of Na2O and/or more than 0.2 to 4.0% by weight of Li2O, and 1.0% by weight of less of Al2O3.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: November 27, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Hisahiro Matsunaga, Masato Kumagai, Yasumasa Fukushima
  • Patent number: 6323146
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: November 27, 2001
    Assignee: Millenium Biologix, Inc.
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Patent number: 6313057
    Abstract: A fused silica refractory material made from quartz grains and a method of making the material which contains calcium oxide binder in an amount less than one weight percent. The reduction in calcium oxide binder prevents the degradation of fused silica refractory bricks in furnace environments containing alkali vapors, such as in oxygen-fuel fired glass furnaces. The invention also includes a method of preventing the degradation of silica refractory material by alkalis.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: November 6, 2001
    Assignee: Corning Incorporated
    Inventors: John Thomas Brown, John F. Wosinski
  • Publication number: 20010017152
    Abstract: This invention provides a complex oxide comprising the features of: (i) being represented by the formula: Ca3-xRExCo4Oy wherein RE is a rare earth element, 0≦x≦0.5 and 8.5≦y≦10, (ii) having a Seebeck coefficient of 100 &mgr;V/K or more at a temperature of 300° C. or higher, and (iii) having an electric conductivity of 103 S/m or more at a temperature of 300° C. or higher. The complex oxide is composed of low-toxicity elements, excellent in heat resistance and chemical durability and high in thermoelectric conversion efficiency.
    Type: Application
    Filed: December 8, 2000
    Publication date: August 30, 2001
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Satoshi Sodeoka
  • Publication number: 20010007381
    Abstract: The invention relates to a process for production of a sintered oxide ceramic of composition CexMyDzO2-a with dense structure without open porosity or with a predetermined porosity. The first doping element M is at least one element of the group consisting of the rare earths but M≢Ce, alkali and earth alkali metals. The educts are used with a second doping element D of at least one metal of the group consisting of Cu, Co, Fe, Ni and Mn, in the submicron particle size or as a salt solution, and sintered at a temperature in the range of 750-1250° C. into an oxide ceramic with extremely fine structure of a grain size of maximum around 0.5 &mgr;m.
    Type: Application
    Filed: January 17, 2001
    Publication date: July 12, 2001
    Inventors: Christoph Kleinlogel, Martin Goedickemeier, Ludwig Gauckler
  • Patent number: 6218335
    Abstract: A porous spinel type oxide shows a large surface area and a uniform micro-porous structure. The oxide is expressed by general formula MO—Al2O3 and shows a surface area per unit weight of not less than 80 m2/g. Such a porous spinel type compound oxide is obtained by impregnating a specific &ggr;-alumina carrier with a solution of a compound of metal element M capable of taking a valence of 2, drying the impregnated carrier and calcining it at a temperature of 600° C. or higher. The specific &ggr;-alumina carrier shows a surface area per unit weight of not less than 150 m2/g, a micro-pore volume per unit weight of not less than 0.55 cm3/g and an average micro-pore diameter between 90 and 200 angstroms. The micro-pores with a diameter between 90 and 200 angstroms occupy not less than 60% of the total micro-pore volume of the carrier.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: April 17, 2001
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Kenichi Imagawa, Susumu Yamamoto
  • Patent number: 6194083
    Abstract: A ceramic composite material comprises a ceramic material constituting a matrix, and dispersion particles disposed in the matrix in a dispersing manner. A specific shape of a ceramic composite material is, for instance, a sinter or a thermally sprayed layer. The dispersion particles are consisting of a composite oxide including at least one kind of a first metallic element selected from alkaline earth metals such as Mg and Ca, and at least one kind of a second metallic element selected from W, Ti, Ta, Mo, Nb, V, B, Te, Ge and Si, for instance, are composite oxide particles precipitated by reacting a compound containing a first metallic element and a compound including a second metallic element through heat treatment. The precipitated particles consisting of such a composite oxide can be dispersed as planar particles or acicular particles in the ceramic layer to which, for instance, thermal spraying is applied.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: February 27, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Yasuda, Seiichi Suenaga, Kunihiko Wada, Hiroki Inagaki, Yasuhiro Goto
  • Patent number: 6190448
    Abstract: A refractory composition is disclosed comprising a high purity silicon dioxide and a binder. This refractory composition may be applied by trowelling, brushing, casting, pumping and/or spraying it on a worn and/or damaged high purity silica refractory surface. A refractory castable composition is also disclosed that may be employed with forms. Further, an essentially non-slumping, sprayable refractory castable composition that is applied without the use of forms is provided. The sprayable refractory castable composition comprises (a) a tempered, pumpable first component comprising (i) a high purity silicon dioxide and a binder, and (ii) water, if needed, to achieve a pumpable consistency, and (b) a second component comprising a flocculating agent. The flocculating agent is added to the first component for achieving installation of the sprayable refractory composition in an amount to prevent slumping of the sprayable refractory castable composition.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: February 20, 2001
    Assignee: Harbison-Walker Refractories Company
    Inventor: Mark C. Langenohl
  • Patent number: 6187157
    Abstract: A multi-phase solid electrolyte ion transport membrane comprising at least two phases wherein one of the phases comprises an oxygen ion single conductive material, or a mixed conductor. The other phase comprises an electronically-conductive metal or metal oxide that is incorporated into the membrane by deposition of the metal or metal oxide from a polymer made by polymerizing a chelated metal dispersion in a polymerizable organic monomer or prepolymer. The multi-phase composition advantageously comprises a first phase of a ceramic material and a second phase of a metal or metal oxide bound to a surface of the ceramic material. The multi-phase composition is advantageously prepared in an in-situ fashion before fabricating the membrane matrix. As another alternative, a preformed ceramic matrix is surface-coated with a metal or metal oxide.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: February 13, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: Chieh-Cheng Chen, Ravi Prasad
  • Patent number: 6174463
    Abstract: A layer crystal structure oxide, and memory element comprising same, comprising bismuth (Bi), a first element, a second element and oxygen (O), wherein the first element is at least one selected from the group consisting of sodium (Na), potassium (K), calcium (Ca), barium (Ba), strontium (Sr), lead (Pb), and bismuth (Bi), the second element is at least one selected from the group consisting of iron (Fe), titanium (Ti), niobium (Nb), tantalum (Ta), and tungsten (W), and the composition ratio of the bismuth with respect to the second element is larger than the stoichiometric composition ratio, wherein, the composition ratio of the bismuth with respect to the first element is in the range of (2±0.17)/(m−1) including the stoichiometric composition ratio 2/(m−1), where m is an integer from, and including, 2 to 5.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: January 16, 2001
    Assignee: Sony Corporation
    Inventors: Akio Machida, Naomi Nagasawa, Takaaki Ami, Masayuki Suzuki
  • Patent number: 6174832
    Abstract: A ceramic compound which undergoes martensitic transformation comprises a compound represented by compositional formula Ln1-xSixAlO3+0.5x obtained by substituting a part of LnO1.5 in LnAlO3-type compounds with SiO2, where Ln represents at least one element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb, and x=0.01 to 0.3.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: January 16, 2001
    Assignees: Seiko Instruments Inc.
    Inventors: Mamoru Oomori, Toshio Harai
  • Patent number: 6143679
    Abstract: Provided are a layered crystal structure oxide showing ferroelectricity or paraelectricity and a process for easily producing the same. A raw material containing Bi.sub.2 O.sub.3 as a flux is heated up to 1330.degree. C. or higher and 1450.degree. C. or lower at a suitable temperature-elevating rate (heating step); the raw material is maintained at this heating temperature for prescribed time (constant temperature step); and then, it is slowly cooled down to 800.degree. C. or higher and 1300.degree. C. or lower at a rate of 1.degree. C./hour or more and 20.degree. C./hour or less (slow cooling step). This makes it possible to evaporate the flux and take out directly Bi.sub.2 SrTa.sub.2 O.sub.9. In this Bi.sub.2 SrTa.sub.2 O.sub.9, Bi is partially substituted with Sr, and oxygen is selectively deficient or disordered. Or, Bi and O in the fluorite layer are relatively displaced each other in the polarization direction.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: November 7, 2000
    Assignee: Sony Corporation
    Inventors: Naomi Nagasawa, Akio Machida, Takaaki Ami, Masayuki Suzuki
  • Patent number: 6127296
    Abstract: Disclosed is a novel ceramic-glass composite material useful as a material of electronic parts for attenuation of noise components in the GHz range. The composite material is a sintered body obtained by a heat treatment of a powder blend consisting of 35-55% by weight of a hexagonal ferrite of the formula Ba.sub.3 M.sub.2 Fe.sub.24 O.sub.41 (M.dbd.Co, Ni and/or Zn) and the balance of a glass material consisting of SiO.sub.2, Al.sub.2 O.sub.3, SrO, CaO, MgO and B.sub.2 O.sub.3, of which the content of SrO is 15-25% by moles, at a relatively low sintering temperature of 850-920 .degree. C. for 10-30 minutes.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 3, 2000
    Assignee: TDK Corporation
    Inventor: Fumio Uchikoba
  • Patent number: 6117808
    Abstract: An improved highly oxygen permeable substrate is provided comprising Sr--Fe--Co-oxide and a metal combined with said material. Also provided is a method for producing an improved membrane to facilitate oxidation of compounds comprising combining metal or metal alloys with Sr--Fe--Co-oxide to create a mixture, and sintering the mixture so as to allow the metal to melt within the mixture. The membrane is also utilized in a method for converting methane to syngas whereby a fluid containing oxygen is contacted to a first surface of the membrane for a sufficient period of time so as to cause some of the oxygen to be transported to a second surface of the membrane; and contacting methane to the second surface for a sufficient period of time to cause oxidation of the methane.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: September 12, 2000
    Assignee: The University of Chicago
    Inventors: P. Subraya Maiya, John J. Picciolo, Joseph T. Dusek
  • Patent number: 6110851
    Abstract: A method of producing a ceramic material based on calcium phosphate compounds for use in dental medicine by adding a phosphate solution to a calcium salt solution, separating the precipitation formed in the reaction solution from the mother liquor, drying, crushing and sintering is characterised in that at least one orthophosphate and at least one diphosphate, each in solution, are added to the calcium salt solution, wherein the molar ratio of diphosphate to orthophosphate is in the region of 0.001 to 0.03:1, and keeps the pH-value of the reaction solution in which the precipitation is formed in the region of 7.5 to 12 until the end of the reaction.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: August 29, 2000
    Inventor: Wolfgang Wiedemann
  • Patent number: 6093366
    Abstract: The present invention provides a ceramic sintered body excellent in oxidation resistance under high temperatures and markedly superior to the conventional ceramic sintered body in the mechanical strength over a wide temperature range of between room temperature and 1,500.degree. C. The ceramic sintered body of the present invention comprises at least one ceramic crystal grain selected from the group consisting essentially of a monosilicate represented by the general formula RE.sub.2 SiO.sub.5, where RE denotes a IIIa group element including yttrium, and a disilicate represented by the general formula RE.sub.2 Si.sub.2 O.sub.7, where RE denotes a IIIa group element including yttrium, and at least one additional element selected from the group consisting of Al, Cr, Hf, Nb, Zr, Ti, V, Ta, Ca and Mg which is segregated in the boundaries of the ceramic crystal grains in an amount of 0.1 to 15% by weight of the sintered body in terms of the oxide thereof.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: July 25, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kato, Yasuhiro Goto, Takayuki Fukasawa, Toshiaki Mizutani
  • Patent number: 6090732
    Abstract: A tricalcium-phosphate-based prosthetic material is disclosed, which is a sintered ceramic body mainly consisting of tricalcium phosphate containing a limited amount of zinc, which is a known element having an osteogenesis-promoting effect, in the form of a solid solution. By virtue of the limited content of zinc and the form of solid solution in which zinc is contained, the inventive material exhibits an osteogenesis-promoting effect without toxicity. The ceramic body is prepared, preferably, by a process in which a tricalcium phosphate powder containing 0.015-8.00% by weight of zinc is diluted by the addition of hydroxyapatite and/or tricalcium phosphate free from zinc in such a proportion as to give a (Ca+Zn)/P molar ratio of 1.55 to 1.65 and the powder blend is shaped and subjected to sintering.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: July 18, 2000
    Assignees: Japan as Represented by Director General of Agency of Industrial Science and Technology, Atsuo Ito
    Inventors: Atsuo Ito, Noboru Ichinose, Kenji Ojima, Pierre Layrolle, Haruo Kawamura
  • Patent number: 6090500
    Abstract: An oxide ion mixed conductive substance has the formula of A.sub.1-x Ca.sub.x Ga.sub.1-y B.sub.y oxide, wherein A is at least one lanthanoid element having a trivalent octacoordinated ion radius of 1.05 to 1.15 .ANG., B is at least one element selected from the group consisting of Co, Fe, Ni and Cu, x is 0.05 to 0.3, y is 0.05 to 0.3. The oxide ion mixed conductive substance has the perovskite structure.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: July 18, 2000
    Assignees: Mitsubishi Materials Corporation, Tatsumi Ishihara, Yusaka Takita
    Inventors: Tatsumi Ishihara, Yusaku Takita
  • Patent number: 6040275
    Abstract: A novel ceramic substrate useful for the preparation of superconducting films, said substrate having the formula REBa.sub.2 MO.sub.6 where RE represents rare earth metals--Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and M represents metals Nb, Sb, Sn, Hf, Zr; and a process for the preparation of superconducting YBa.sub.2 Cu.sub.3 O.sub.7-.delta. thick films on new ceramic substrate.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: March 21, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jacob Koshy, Jijimon Kumpukkattu Thomas, Jose Kurian, Yogendra Prasad Yadava, Alathoor Damodaran Damodaran
  • Patent number: 6039865
    Abstract: Phosphates can be removed from a hydrocarbon stream by contacting said stream with a ceramic formed of a basic material which is insoluble in the hydrocarbon stream. A ceramic as used in this patent document is a solid solution formed by calcination of a compound. The removal of the organic acid is accomplished at temperatures ranging from 20.degree. C. to 400.degree. C., a preferred temperature is between 200.degree. C. and 370.degree. C. A hydrocarbon stream consists of C.sub.5 + hydrocarbons. The basic material can be made up of one or more alkaline earth oxides, alkaline earth compounds, alkaline metal compounds, group IIIA element compounds, group IVA element compounds, group VIA element compounds. Preferred alkaline earth oxides are sodium, magnesium, potassium, calcium, aluminum and silicon. The support for the basic material can be made from any inorganic oxide.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: March 21, 2000
    Assignee: Trisol Inc.
    Inventor: Shaun T. E. Mesher
  • Patent number: 6017839
    Abstract: The present invention is ceramic article of stabilized zirconia wherein the stabilized zirconia has a molar ratio of rare earth oxide:zirconia of from 1:99 to 15:85, at a weight percent of from about 97 to 75. The ceramic article includes smectite clay from about 3 to 25 weight percent wherein the article is a mass of sintered particles having a continuous tetragonal phase having dispersed therein monoclinic phase particles having size of less than 100 nm.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: January 25, 2000
    Assignee: Eastman Kodak Company
    Inventors: Debasis Majumdar, Dilip K. Chatterjee, Syamal K. Ghosh
  • Patent number: 5998523
    Abstract: Disclosed is a composition of an essentially solid phase state having as components, a liquid hydrophilic organic polymer, an aqueous salt solution containing at least one metallic or metalloid element, and a coagulating agent. The composition on calcination provides a metal-containing powder having an average particle size of 1 micrometer or less. Such metal-containing powders are of value in the preparation of industrial catalysts, ceramics, electronic components, or as fillers in plastics, paints or cosmetics.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: December 7, 1999
    Assignee: The Dow Chemical Company
    Inventors: Henri J. M. Grunbauer, Jacobus A. Broos, Frederik R. van Buren
  • Patent number: 5981415
    Abstract: A ceramic composite material consisting of two or more crystal phases of different components, each crystal phase having a non-regular shape, said crystal phases having three dimensional continuous structures intertwined with each other, at least one crystal phase thereof being a single crystal. Further, by removing at least one crystal phase from this ceramic composite material, there is provided a porous ceramic material consisting of at least one crystal phase and pores, said crystal phase and pores having non-regular shapes and being three dimensionally continuous and intertwined with each other.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 9, 1999
    Assignee: UBE Industries, Ltd.
    Inventors: Yoshiharu Waku, Narihito Nakagawa, Kazutoshi Shimizu, Hideki Ohtsubo, Takumi Wakamoto, Yasuhiko Kohtoku
  • Patent number: 5955387
    Abstract: A ceramic composite is provided comprising ceramic fibers, glass microballoons and/or diatoms, bound together with a ceramic reinforcing cloth with a sol-gel ceramic binder. The composite is particularly useful as a high strength, high temperature insulation material.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: September 21, 1999
    Assignee: The Boeing Company
    Inventor: Darryl F. Garrigus
  • Patent number: 5942453
    Abstract: A powdered mixture of chemicals for forming a refractory composition, including a filler consisting of refractory particles, metal particles and metal peroxide containing particles, wherein the metal peroxide containing particles have a calcium peroxide content of at most 75 wt %, a magnesium peroxide content of at most 30 wt %, a barium peroxide content of at most 92 wt %, and/or a strontium peroxide content of at most 90 wt %. A refractory composition prepared from said mixture, a method for forming said composition and a method for using same are also disclosed.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: August 24, 1999
    Assignee: FIB-Services
    Inventor: Oswaldo Di Loreto
  • Patent number: 5880046
    Abstract: This moldable refractory composition is intended to be used in the production of cast refractory pieces resistant to molten metals, especially molten aluminum. It comprises 8 to 25% by weight of an aqueous phosphoric acid solution having a concentration of phosphoric acid ranging from 40 to 85% by weight, with up to 50% of the primary acidic function of the acid phosphoric acid neutralized by reaction with vermiculite. It also comprises from 75 to 92% by weight of a mixture containing wollastonite and an aqueous suspension containing from 20 to 40% by weight of colloidal silica. The weight ratio of the aqueous suspension to the wollastonite within the mixture ranges from 0.5 to 1.2. The composition according to the invention is particularly interesting in that it can be unmolded within a very short period of time that is less than 2 hours and can be as small as 10 minutes.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: March 9, 1999
    Assignee: Cerminco Inc.
    Inventors: Pierre Delvaux, Luc Desrosiers, Marcel Gouin, Louis Campagna
  • Patent number: 5880048
    Abstract: A ceramic and method of producing the same are disclosed, the ceramic having as principal ingredients natural zeolite and shells, wherein silver nitrate, magnesium oxide, potassium oxide, sodium oxide selenium oxide and ferric oxide are added thereto, and the resultant mixture fired to produce a granular ceramic. The granular ceramic enables the production of deoxidized water having an appropriately low oxidation reduction potential, for use as drinking water and the like.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: March 9, 1999
    Assignee: Tohoku Bankin Toso Kogyo Kabushiki Kaisha
    Inventors: Kazuo Sato, Kazutomo Kikuchi
  • Patent number: 5880047
    Abstract: A granular ceramic is prepared by firing a powder of a natural zeolite mineral, a pre-fired powder composed of shell fragments, a pre-fired powder of a silica-alumina mineral, and a copper oxide powder. When used as a fuel additive, the ceramic makes it possible to improve the combustion efficiency of hydrocarbon oils, especially of petroleum products such as gasoline, gas oil kerosene, and heavy oil, as well as to reduce CO.sub.2 and NO.sub.x emissions in exhaust gases discharged during combustion.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: March 9, 1999
    Assignee: Tohoku Bankin Toso Kogyo Kabushiki Kaisha
    Inventor: Kazuo Sato
  • Patent number: 5854157
    Abstract: An object of the present invention is to provide a novel ceramic composite that has not only excellent dynamic characteristics, but also good electromagnetic characteristics, typified by dielectric characteristics, and the present invention relates to a ceramic composite, characterized in that an oxide having a perovskite structure which includes as raw materials lead and/or an alkaline earth metal is dispersed in a ceramic matrix, and in the above-mentioned ceramic composite, preferably the ceramic matrix is MgO, MgAl.sub.2 O.sub.4, or ZrO.sub.2, and also, preferably in the above-mentioned ceramic composite, the perovskite structure oxide particles are covered with MgO, MgAl.sub.2 O.sub.4, or ZrO.sub.2, and the ceramic matrix is Al.sub.2 O.sub.3.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: December 29, 1998
    Assignees: Agency of Industrial Science and Technology, Fine Ceramics Research Association
    Inventors: Hae Jin Hwang, Masaki Yasuoka, Mutsuo Sando, Toru Nagai, Koichi Niihara
  • Patent number: 5811071
    Abstract: A precursor, in gel form, of an oxide having the formula (I), BaO.n(Al.sub.2x Cr.sub.2y O.sub.3), where 1.ltoreq.n.ltoreq.6.6, (x+y)=1, and 0.ltoreq.y.ltoreq.0.5, said oxide being derivable from the precursor gel by the application of heat, is prepared by mixing a solution of a barium salt with a solution of an aluminium salt or a solution of an aluminium salt and a solution of a chromium salt, and polymerising the mixture to produce said precursor gel. A mixture suitable for firing to an oxide of the formula (II), BaO.m(Al.sub.2x Cr.sub.2y O.sub.3), where 4.6.ltoreq.m.ltoreq.6.6; (x+y)=1; and 0.ltoreq.y.ltoreq.0.5, comprises at least one of:(a) barium oxide;(b) a clean thermal precursor of barium oxide; and(c) barium mono-aluminate, BaO.Al.sub.2 O.sub.3 ; with at least one of:(A) alumina, Al.sub.2 O.sub.3 ;(B) hydrated forms of alumina, such as boehmite, Al.sub.2 O.sub.3.H.sub.2 O; and(C) a clean thermal precursor of aluminium oxide; and, where y is not zero, with at least one of(D) chromium(III) oxide, Cr.
    Type: Grant
    Filed: December 14, 1995
    Date of Patent: September 22, 1998
    Assignee: Alcan International Limited
    Inventors: Harold Garton Emblem, Thomas James Davies
  • Patent number: 5764403
    Abstract: A real-time, multi-color image ?36! is displayed in a flat screen ?20! composed of a low-phonon, optically transparent, non-pixelated host material doped with active ions. The display uses intersecting infrared laser beams ?22, 24! of different wavelengths to induce a two-frequency upconversion process in the active ions at a point ?28! in the screen. When the ions relax, visible fluorescence is produced. Different points in the display are activated by directing the laser beams ?22, 24! to intersect at different locations within the screen. In one embodiment, beams from two lasers ?28, 30! are controlled by single axis mirrors ?32, 34!. In other embodiments, laser arrays or slab lasers are used to activate points within the screen. Through the use of additional lasers and dopants, multi-color images may be displayed.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: June 9, 1998
    Inventor: Elizabeth A. Downing
  • Patent number: 5746991
    Abstract: A composition for growing a laser crystal is represented by the formula of Li ?R.sub.n .alpha..sub.1-n! ?(Ga.sub.p In.sub.q) .beta..sub.1-p-q ! F.sub.6+n where n is within a range from 10.sup.-5 to 0.1, each of p and q is within a range from 0 to 0.6, a total of p and q is within a range from 0.001 to 0.6, .alpha. is at least one member selected from the group consisting of Ca, Sr, Ba and Na, .beta. is at least one member selected from the group consisting of Al, Cr, Ni, Co and Fe, and R is a rare-earth element. The composition enables the distribution coefficient of rare-earth element to get closer to 1 and thus enables the laser crystal to have a high and uniform concentration of rare-earth element and to have a large size.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: May 5, 1998
    Assignee: Central Glass Company, Limited
    Inventor: Yoshinori Kubota
  • Patent number: 5744015
    Abstract: An electrochemical process for producing unsaturated hydrocarbon compounds from unsaturated hydrocarbon compounds and for extracting oxygen from a gas containing N.sub.2 O, NO, NO.sub.2, SO.sub.2, or SO.sub.3 is described. The process is characterized by the use of mixed metal oxide materials having a perovskite structure represented by the formula:A.sub.s A'.sub.t B.sub.u B'.sub.v B".sub.w O.sub.xwherein A represents a lanthanide or Y, or a mixture thereof; A' represents an alkaline earth metal or a mixture thereof; B represents Fe; B' represents Cr or Ti, or a mixture thereof; and B" represents Mn, Co, V, Ni, or Cu, or a mixture thereof.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 28, 1998
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer