Frit Plus Material Other Than Glass (e.g., Color, Opacifier, Mill Additions, Etc.) Patents (Class 501/17)
  • Patent number: 11844351
    Abstract: A method of treating a glazed ceramic article comprises applying an antimicrobial composition on top of an outermost surface of a glazed ceramic article. The antimicrobial composition comprises an antimicrobial additive. The antimicrobial composition further comprises a carrier medium. The antimicrobial additive is selected from the group consisting of Bi2O3, ZnO, Ag2CO3, Ag2O, Zn, Bi, Ag, and a combination thereof.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 19, 2023
    Assignee: MICROBAN PRODUCTS COMPANY
    Inventor: Nathan Lee Fields
  • Patent number: 11768013
    Abstract: Ceramic particles for use in a solar power tower and methods for making and using the ceramic particles are disclosed. The ceramic particle can include a sintered ceramic material formed from a mixture of a raw material and MnO. The sintered ceramic material can include about 0.01 wt % to about 10 wt % MnO, about 0.1 wt % to about 20 wt % Fe2O3, and about 0.01 wt % to about 10 wt % Mn2O3. The ceramic particle can have a size from about 8 mesh to about 170 mesh.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: September 26, 2023
    Assignee: CARBO CERAMICS INC.
    Inventors: Claude Krause, Benjamin Eldred, Steve Canova
  • Patent number: 11524923
    Abstract: Provided is a dielectric ceramic composition including a first component and a second component, wherein the first component comprises an oxide of Ca of 0.00 mol % to 35.85 mol % an oxide of Sr of 0.00 mol % to 47.12 mol %, an oxide of Ba of 0.00 mol % to 51.22 mol %, an oxide of Ti of 0.00 mol % to 17.36 mol %, an oxide of Zr of 0.00 mol % to 17.36 mol %, an oxide of Sn of 0.00 mol % to 2.60 mol %, an oxide of Nb of 0.00 mol % to 35.32 mol %, an oxide of Ta of 0.00 mol % to 35.32 mol %, and an oxide of V of 0.00 mol % to 2.65 mol %, and the second component includes at least (a) an oxide of Mn of 0.005% by mass to 3.500% by mass and (b) an oxide of Cu and/or an oxide of Ru.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 13, 2022
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Takeshi Nomura, Yukari Sasaki
  • Patent number: 10991898
    Abstract: A flexible display supporting substrate of the present disclosure includes: a glass base (11); a plastic film (12) which has a surface (12s), the surface having a polish recess (12c), the plastic film being supported by the glass base (11); and an oxide layer (20) overlying a part of the surface (12s) of the plastic film (12) and covering at least part of the polish recess (12c).
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 27, 2021
    Assignee: SAKAI DISPLAY PRODUCTS CORPORATION
    Inventors: Kohichi Tanaka, Katsuhiko Kishimoto
  • Patent number: 10856549
    Abstract: An antimicrobial ceramic glazing composition contains one or more antimicrobial agents disposed therein. Methods for making and using the glazing composition are disclosed, as well as substrates having a fired antimicrobial glaze thereon. The antimicrobial agents comprise metallic oxides, with a subset of the disclosed combinations exhibiting synergistic effect in fired glazes.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 8, 2020
    Assignee: Microban Products Company
    Inventor: Alvin Lamar Campbell, Jr.
  • Patent number: 10829406
    Abstract: Provided is a glass material that can satisfy both a high Faraday effect and a high light transmittance in a short wavelength range. A glass material contains, in % by mole, 30 to 50% Pr2O3 and 0.1 to 70% B2O3+P2O5.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 10, 2020
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Futoshi Suzuki
  • Patent number: 10696582
    Abstract: To provide a vehicle window glass which is not susceptible to cracks, and a method for manufacturing the vehicle window glass. A vehicle window glass 1 of the present invention is provided with: a glass plate 11; a color ceramic layer 12, which is formed on the surface of the glass plate 11, and has a thickness more than 10 ?m but equal to or less than 25 ?m; and an electrically conductive layer 13, which is formed on the surface of the color ceramic layer 12, and has silver as a main component. The electrically conductive layer 13 and a terminal electrically connected to the electrically conductive layer 13 are connected to each other using a lead-free solder 14. In the vehicle window glass 1 of the present invention, since the thickness of the color ceramic layer 12 is more than 10 ?m, the glass plate 1 is not susceptible to cracks.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: June 30, 2020
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Kazunori Furuhashi, Takao Niitsu
  • Patent number: 10600549
    Abstract: A glass-ceramic-ferrite composition containing a glass, a ferrite, and a ceramic filler, in which the glass contains, by weight, about 0.5% to about 5.0% R2O (R represents at least one selected from the group consisting of Li, Na, and K), about 5.0% or less Al2O3, about 10.0% to about 25.0% B2O3, and about 70.0% to 85.0% SiO2 with respect to the total weight of the glass, the percentage by weight of the ferrite is about 10% to 80% with respect to the total weight of the composition, the ceramic filler contains at least forsterite selected from forsterite and quartz, the percentage by weight of the forsterite is about 1% to about 10% with respect to the total weight of the composition, and the percentage by weight of the quartz is about 40% or less with respect to the total weight of the composition.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: March 24, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshito Soda
  • Patent number: 10584057
    Abstract: A glass-ceramic-ferrite composition contains glass, a ceramic filler, and Ni—Zn—Cu ferrite. The glass contains about 0.5% by weight or more of R2O, where R is at least one selected from the group consisting of Li, Na, and K; about 5.0% by weight or less of Al2O3; about 10.0% by weight or more of B2O3; and about 85.0% by weight or less of SiO2 on the basis of the weight of the glass. The Ni—Zn—Cu ferrite accounts for about 58% to 64% by weight of the glass-ceramic-ferrite composition. The ceramic filler contains quartz and, in some cases, forsterite. The quartz accounts for about 4% to 13% by weight of the glass-ceramic-ferrite composition. The forsterite accounts for about 6% by weight or less of the glass-ceramic-ferrite composition.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 10, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Kazuhiro Kaneko
  • Patent number: 10280086
    Abstract: The present application provides a negative thermal expansion material having excellent dispersibility and packing properties in a positive thermal expansion material. The negative thermal expansion material of the present invention comprises spherical zirconium tungsten phosphate having a BET specific surface area, of 2 m2/g or smaller. The degree of sphericity is preferably 0.90 or more and 1 or less. Also preferably, the negative thermal expansion material further contains at least Mg and/or V as a subcomponent element. Also preferably, the content of the subcomponent element is 0.1% by mass or more and 3% by mass or less. Also preferably, the average particle size is 1 ?m or larger and 50 ?m smaller.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: May 7, 2019
    Assignee: NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Junya Fukazawa, Toru Hata
  • Patent number: 10011519
    Abstract: A bismuth-based glass composition includes as a glass composition, in terms of mass %, 55% to 80% of Bi2O3, 15% to 35% of SiO2, 0% to less than 3% of ZrO2, 0% to 5% of B2O3, and 0% to less than 8% of ZnO, and has a mass ratio SiO2/ZrO2 of more than 6.7.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: July 3, 2018
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Kumiko Himei, Kunihiko Kano
  • Patent number: 9988302
    Abstract: Certain example embodiments of this invention relate to vacuum insulating glass (VIG) units having improved seals made using two different frit-based edge seal materials, and/or methods of making the same. In certain example embodiments, a first frit material is applied around peripheral edges of first and second glass substrates. The first frit material, which may be bismuth-based in certain example embodiments, is fired with a heat treatment (e.g., thermal tempering) process. A second frit material, which may be VBZ-based in certain example embodiments, is applied and at least partially overlaps with the fired first frit material. The first frit material acts as a primer, and the second frit material helps seal together the VIG unit. The second frit material is fired at a significantly lower temperature that enables the glass to retain the temper or other strength imparted by the heat treatment.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 5, 2018
    Assignee: Guardian Glass, LLC
    Inventors: John P. Hogan, Timothy Alan Dennis, Rudolph Hugo Petrmichl, Greg Kemenah
  • Patent number: 9806338
    Abstract: Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb2-x TaxOy (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti2Nb10-vTavOw (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 31, 2017
    Assignee: UT-BATTELE, LLC
    Inventors: Sheng Dai, Bingkun Guo, Xiao-Guang Sun, Zhenan Qiao
  • Patent number: 9713912
    Abstract: An article may include a substrate comprising a matrix material and a reinforcement material, a layer formed on the substrate, an array of features formed on the layer, and a coating formed on the layer and the array of features. The article may have improved thermal and/or mechanical stress tolerance compared to an article not including the array of features formed on the layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: July 25, 2017
    Assignee: Rolls-Royce Corporation
    Inventor: Kang N. Lee
  • Patent number: 9573837
    Abstract: A glass ceramic composition of the present invention includes a main component composed of a first glass, a second glass, Al2O3, and SiO2. The first glass is SiO2—K2O—B2O3 based glass. The second glass is MO—SiO2—Al2O3—B2O3 based glass (“M” is an alkaline-earth metal) and/or CaO—SiO2—Al2O3—ZnO—ZrO2—B2O3 based glass. In case that the total amount of the main component is 100 wt %, the main component contains the second glass of 12 to 30 wt %, the first and second glass of 40 to 56 wt % in total, and further Al2O3 of 7 to 18 wt %.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: February 21, 2017
    Assignee: TDK CORPORATION
    Inventors: Shusaku Umemoto, Takashi Suzuki, Masaki Takahashi, Hidekazu Sato, Yukari Akita, Kazuya Tobita, Shinichi Kondo
  • Patent number: 9499428
    Abstract: Broadband infrared radiation is used to heat and fuse an enamel paste to form an enamel seal between at least two solid substrates such as glass, ceramic or metal.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: November 22, 2016
    Assignee: Ferro Corporation
    Inventors: John J. Maloney, Andrew M. Rohn, Jr., Chandrashekhar S. Khadilkar, Srinivasan Sridharan, Robert P. Blonski, George E. Sakoske
  • Patent number: 9482946
    Abstract: The present invention provides a photosensitive resin composition which can form an excellently light-resistant partition wall of an image display device and has excellent patterning properties. One embodiment of the present invention is a photosensitive resin composition for forming a partition wall of an image display device, comprising: (A) a binder polymer; (B) a photopolymerizable compound; (C) a photopolymerization initiator; (D) an inorganic black pigment; (E) a surfactant; and (F) a mercapto group-containing compound, wherein the (B) photopolymerizable compound contains a photopolymerizable compound having at least one unsaturated group and an isocyanuric ring structure in a molecule.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 1, 2016
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Yasuhiro Seri, Mayumi Sato
  • Patent number: 9236181
    Abstract: A laminated coil component includes a magnetic material part containing a metal magnetic material and a first glass component, and a nonmagnetic material part containing a ceramic material and a second glass component, and a coil conductor is formed so that at least the main surface of a coil pattern is in contact with the nonmagnetic material part. The magnetic material part is formed with the volume content of the first glass component based on the total amount of the metal magnetic material and the first glass component is 46 to 60 vol %. The nonmagnetic material part is formed with the volume content of the second glass component based on the total amount of the ceramic material and the second glass component is 69 to 79 vol %. A laminated coil component having good high-frequency characteristics and magnetic characteristics is obtained and a method for producing the laminated coil component.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 12, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Eiichi Maeda
  • Patent number: 9230742
    Abstract: A capacitor includes a dielectric layer having a first plane, a second plane opposite to the first plane, and first and second through-holes communicated with the first plane and the second plane; a first external conductor layer disposed on the first plane; a second external conductor layer disposed on the second plane; a first internal electrode formed in the first through-hole, connected to the first external electrode layer, disposed in the second hole diameter part at a tip and separated from the second external electrode layer; and a second internal electrode formed in the second through-hole, connected to the second external electrode layer, and separated from the first external electrode layer.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: January 5, 2016
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Hidetoshi Masuda
  • Patent number: 9011720
    Abstract: Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 21, 2015
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Michael Edward Badding, Nicholas Francis Borrelli, Nadja Teresia Lonnroth, Mark Alejandro Quesada
  • Patent number: 8980776
    Abstract: Disclosed is a lead-free, low melting point glass composition, which is characterized by being substantially free from a lead component and comprising 0-8 mass % of SiO2, 2-12 mass % of B2O3, 2-7 mass % of ZnO, 0.5-3 mass % of RO (MgO+CaO+SrO+BaO), 0.5-5 mass % of CuO, 80-90 mass % of Bi2O3, 0.1-3 mass % of Fe2O3, and 0.1-3 mass % of Al2O3. This glass composition is not easily crystallized at high temperatures and is stable. Therefore, it is useful as an insulating coating material and a sealing material for electronic material substrates.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 17, 2015
    Assignee: Central Glass Company, Limited
    Inventor: Jun Hamada
  • Publication number: 20150064478
    Abstract: An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
    Type: Application
    Filed: August 13, 2014
    Publication date: March 5, 2015
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Patent number: 8955508
    Abstract: A cooker and methods of manufacturing and controlling the same. The cooker including a first coating layer that is a general ceramic enamel layer and a second coating layer that includes phosphorus oxide-based components are coated on a surface of a cavity corresponding to the inner surface of the cooking chamber. Therefore, the inside of the cooking chamber can be more easily cleaned.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 17, 2015
    Assignee: LG Electronics Inc.
    Inventors: Chae Hyun Baek, Jeong Ho Lee, Yong Soo Lee, Seung Chan Lee, Yang Kyeong Kim, Seung Jo Beak, Yong Seok Kim
  • Publication number: 20150013390
    Abstract: This invention relates to glass and enamel compositions. The glass compositions include SiO2, Nb2O5, Na2O, B2O3, ZnO, Bi2O3, TiO2, MoO3, ZrO2, Y2O3, Al2O3, Li2O, and K2O. The glass compositions can be used to form an enamel on a substrate, for example, to decorate and/or protect the substrate.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep K. Singh, George E. Sakoske, David A. Klimas
  • Patent number: 8932967
    Abstract: The present invention relates to a coloring composition free of nickel oxide. In particular, the coloring composition for glass comprises manganese dioxide (MnO2), chromium oxide (III) (Cr2O3), cobalt oxide (Co3O4) and a glass medium. Furthermore, the present invention relates to the process for producing the coloring composition and the use thereof for the purpose of imparting a dark color (black), in particular a blue-violet-black color, to the glass.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 13, 2015
    Assignee: Vetriceramici S.p.A.
    Inventor: Michele Bettoli
  • Patent number: 8901018
    Abstract: The present invention is a composite encapsulating material which consists of silicon dioxide, aluminum oxide, yttrium oxide and zinc oxide and has glass transition temperature between 694° C. and 833° C. as well as expansion coefficient between 7.0 and 8.5×10?6/° C. The ratio of the number of moles of silicon dioxide plus aluminum oxide (yttrium oxide or zinc oxide) to the total number of moles is 41.88˜62.22% (10.48˜26.67% or 11.11˜47.64%); the ratio of the number of moles of aluminum oxide to the total number of moles is 5.23˜17.78%. The ratios of aluminum oxide to silicon dioxide, yttrium oxide to silicon dioxide, and zinc oxide to silicon dioxide are 0.14˜0.40, 0.29˜0.60, and 0.25˜1.30, respectively.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 2, 2014
    Assignee: National Taipei University of Technology
    Inventors: Sea-Fue Wang, Chieh-Sheng Cheng, Yung-Fu Hsu
  • Patent number: 8871661
    Abstract: Provided is a bonding material which can bond base materials or substrates having different linear thermal expansion coefficients, and can have heat resistance against temperatures of 300° C. or higher, vacuum airtightness and bonding strength, further which has excellent handleability and workability. The bonding material is produced by mixing, in a content ratio of 0.01 to 60 mass % (to the whole), a metal Ga, and/or at least one metal or alloy powder selected from the group consisting of a metal powder mixture of a combination of Bi and Sn or an alloy powder thereof, and a metal powder mixture of a combination of Bi, Sn and Mg or an alloy powder thereof with a Bi2O3-based glass frit powder having an average particle diameter of 200 ?m or less. The bonding material may be formed in a paste form by adding a solvent thereto. This feature makes it possible to bond together substrates having different thermal expansion coefficients without causing a crack or unsticking.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 28, 2014
    Assignee: Sophia Product Co.
    Inventor: Minoru Yamada
  • Patent number: 8859105
    Abstract: A coating for a reinforcing material, such as metal rebar, that increases the adhesion between the reinforcing material and a matrix, such as a cement-based mortar or concrete, in which the reinforcing material is embedded. The coating may comprise a glass frit mixed with a refractory material, such as dry Type I-II portland cement. The coating is bonded, typically by heat, to the surface of the reinforcing material. The reaction of the refractory component, e.g., portland cement, when the reinforcement, e.g., metal re-bar, is embedded in a matrix, e.g., fresh mortar or concrete, prevents the formation of soft precipitates at the interface of the matrix and its reinforcement. One coating comprises portland cement Type I-II combined with a commercial alkali-resistant glass frit. This coating is applied to a steel rebar and fired to bond to the rebar.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 14, 2014
    Inventors: Donna C. Day, Melvin C. Sykes, Charles A. Weiss, Jr., Philip G. Malone, Earl H. Baugher, Jr.
  • Patent number: 8853111
    Abstract: Provided is a refractory filler powder, comprising particles, each of which has precipitates of willemite and gahnite.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 7, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Tomoko Yamada
  • Publication number: 20140295313
    Abstract: A glass-ceramic seal for ionic transport devices such as solid oxide fuel cell stacks or oxygen transport membrane applications. Preferred embodiments of the present invention comprise glass-ceramic sealant material based on a Barium-Aluminum-Silica system, which exhibits a high enough coefficient of thermal expansion to closely match the overall CTE of a SOFC cell/stack (preferably from about 11 to 12.8 ppm/° C.), good sintering behavior, and a very low residual glass phase (which contributes to the stability of the seal).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Signo Tadeu Reis, Matthieu Schwartz, Morteza Zandi, Yeshwanth Narendar
  • Publication number: 20140249015
    Abstract: A bismuth-based glass composition according to the present invention contains Bi2O3, B2O3 and ZnO, wherein the bismuth-based glass composition has a Bi2O3 content of 55 to 80 mass % and further contains 0.1 to 5 mass % of at least one of SrO and BaO as an RO component. Preferably, the bismuth-based glass composition according to the present invention has a linear expansion coefficient of (65 to 95)×10?7/° C. at 30 to 300° C. and a softening point of 450 to 530° C. There is a problem that bismuth-based glasses are often structurally unstable, are crystalized during firing and lose their flowability due to such crystallization so that it is difficult for the bismuth-based glasses to secure good adhesion strength and airtightness. By contrast, the bismuth-based glass composition according to the present invention is transparent and is less likely to be crystallized during firing.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 4, 2014
    Applicant: Central Glass Company, Limited
    Inventor: Kouji Tominaga
  • Patent number: 8823163
    Abstract: An antimony-free glass comprising TeO2 and/or Bi2O3 suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs disposed therein. The antimony-free glass has excellent aqueous durability, good flow, and low glass transition temperature.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: September 2, 2014
    Assignee: Corning Incorporated
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Patent number: 8822032
    Abstract: The disclosure is directed to glass frits materials containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing frit materials. Suitable non-lead glasses have a composition, in mol %, in the range of 20-24% K2O, 8-12% ZnO, 2-6% Al2O3, 35-41% B2O3 and 22-28 SiO2. Suitable leaded glasses have a composition, in wt %, in range of 72-79% PbO, 8-13% Al2O3, 8-13% B2O3, 2-5% SiO2 and 0-0.3% Sb2O3. Commercial high-lead glass can be used in practicing the disclosure. Among the unique advantages are the ability to blend two or more phosphors within the same frit layer which will yield a multi-phosphor-containing glass after firing; the ability to deposit the phosphor onto a substrate into a desired geometric pattern; and the fluorescing layer can be applied to the active plane, with the glass serving as protective substrate.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 2, 2014
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Lisa Ann Lamberson, Robert Michael Morena, William R Trutna
  • Patent number: 8815347
    Abstract: There is provided an antioxidant agent excellent in anti-dripping property and anti-peeling property. The antioxidant agent in accordance with the present invention contains a plurality of glass frits having different softening points, potter's clay, and bentonite and/or sepiolite. On account of the potter's clay, the antioxidant agent applied to the surface of a metallic starting material is less liable to drip down. Further, on account of the bentonite and/or sepiolite, the antioxidant agent is less liable to peel off the surface of the metallic starting material.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 26, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kazuhiro Shimoda, Keishi Matsumoto, Yasuyoshi Hidaka, Tomio Yamakawa, Shuichi Akiyama, Takahisa Kato
  • Patent number: 8766524
    Abstract: A lead-free glass material for sealing organic EL elements is provided with which satisfactory sealing quality is obtained through laser sealing without requiring the addition of a metallic powder. The lead-free glass material for sealing organic EL elements has a glass composition which comprises, in terms of mol %, 30-60% V2O5, 5-20% ZnO, 5-20% BaO, 15-40% TeO2, 0-7% Nb2O5, 0-7% Al2O3, 0-5% SiO2, 0-5% MgO, 0-5% Sb2O3, 0-4% CuO, and 0-4% SnO and in which Nb2O5+Al2O3 is 0.5-10%, SiO2+MgO+Sb2O3 is 0-5%, and CuO+SnO is 0-4%. The glass material has low-temperature softening properties, melt stability, and a low coefficient of thermal expansion and is inhibited from thermally adversely affecting organic EL elements The glass material can attain high sealing properties and high sealing strength in high yield.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 1, 2014
    Assignees: Yamato Electronic Co., Ltd., Ambro Co., Ltd.
    Inventors: Yoshihiro Kohara, Akihiro Ota, Seungwoo Lee
  • Patent number: 8741792
    Abstract: Provided is a glass composition that has a low reactivity with the constituent materials forming a solid oxide fuel cell while having a thermal expansion coefficient suitable for sealing a solid oxide fuel cell, and a glass composition and sealing material that are suitable for sealing a solid oxide fuel cell. The present invention, which relates to a sealing glass composition, is a sealing glass composition used for sealing a solid oxide fuel cell, characterized by having a composition ratio of, expressed in terms of oxide, 40 to 55% by mass of SiO2, 0 to 5.0% by mass of Al2O3, 0 to 8.0% by mass of B2O3, 20 to 30% by mass of MgO, and 10 to 24% by mass of CaO, wherein a total of the MgO and the CaO is 40 to 54% by mass.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Nihon Yamamura Glass Co., Ltd.
    Inventors: Takafumi Akamatsu, Yoshitaka Mayumi
  • Publication number: 20140145122
    Abstract: The present invention aims at providing a lead-free glass composition that can be soften and flowed at a firing temperature that is equal to or lower than that of conventional low melting point lead glass. Furthermore, the present invention aims at providing a lead-free glass composition having fine thermal stability and fine chemical stability in addition to that property. The lead-free glass composition according to the present invention is characterized by comprising at least Ag2O, V2O5 and TeO2 when the components are represented by oxides, wherein the total content ratio of Ag2O, V2O5 and TeO2 is 75 mass % or more. Preferably, the lead-free glass composition comprises 10 to 60 mass % of Ag2O, 5 to 65 mass % of V2O5, and 15 to 50 mass % of TeO2.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 29, 2014
    Inventors: Yuichi Sawai, Takashi Naito, Takuya Aoyagi, Tadashi Fujieda
  • Publication number: 20140113134
    Abstract: A low expansion glass filler which minimizes reflection of laser light during hermetic sealing, a method of manufacturing the same and a glass frit including the same. The low expansion glass filler includes SiO2, Al2O3, B2O3 and CaCO3, the transmittance of the low expansion glass filler being 80% or greater at a wavelength ranging from 630 to 920 nm.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: SAMSUNG CORNING PRECISION MATERIALS CO., LTD.
    Inventors: Jhee-Mann Kim, Kiyeon Lee, Jaemin Cha, Jaeho Lee
  • Publication number: 20140084223
    Abstract: The present invention pertains to solar cell technology. More specifically, the present invention relates to a conductive paste for solar cell light-receiving surface and a glass frit used for manufacture of the conductive paste. The glass frit comprises a glass network former, a glass network intermediate, a heavy metal fluxing agent, and functional agent. By controlling the ratio of the glass networking intermediate in the glass frit, the conductive paste can greatly reduce series resistance of the solar cell, and significantly increase the photovoltaic conversion efficiency. The solar cell using the present conductive paste can achieve consistently high open-circuit voltage, high short-circuit current, low series resistance, high filling factor, and high photovoltaic conversion efficiency.
    Type: Application
    Filed: December 29, 2012
    Publication date: March 27, 2014
    Inventor: Ran Guo
  • Patent number: 8664134
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 8658549
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 25, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Publication number: 20140045674
    Abstract: The invention is directed to veneer ceramics for dental restorations of framework ceramics comprising yttrium-stabilized zirconium dioxide. It is the object of the invention to make possible a translucent veneer ceramic which has high flexural strength as well as excellent adhesion to the framework ceramic of yttrium-stabilized zirconium dioxide. According to the invention, this object is met in a veneer ceramic for dental restorations made of yttrium-stabilized zirconium dioxide which is produced from the following components: a) SiO2 58.0-74.0 percent by weight b) Al2O3 4.0-19.0 percent by weight c) Li2O 5.0-17.0 percent by weight d) Na2O 4.0-12.0 percent by weight e) ZrO2 0.5-6.0 percent by weight.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: Ivoclar Vivadent AG
    Inventors: Martina Johannes, Roland Ehrt
  • Patent number: 8546281
    Abstract: A light emitting device includes: a first substrate; a second substrate; a light emitting unit interposed between the first substrate and the second substrate; and a sealing material bonding the first substrate to the second substrate and sealing the light emitting unit. The sealing material comprises V+4. In addition, a glass frit, a composition for forming a sealing material, and a method of manufacturing a light emitting device using the composition for forming a sealing material are provided to obtain the light emitting device. The sealing material of the light emitting device can be easily formed by coating and irradiation of electro-magnetic waves, so that manufacturing costs are low and deterioration of the light emitting unit occurring when sealing material is formed can be substantially prevented. The sealing material has good sealing properties and thus a light emitting device including the sealing material has a long lifetime.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 1, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung-Han Lee, Jong-Seo Choi, Jin-Hwan Jeon, Sang-Wook Sin
  • Patent number: 8507393
    Abstract: Provided is a dielectric ceramic composition comprising: 40-70 wt % of a borosilicate-based glass frit comprising 50-80 mol % of SiO2, 15-20 mol % of B2O3, 0.1-5 mol % of one or more alkali metal oxide selected from Li2O and Na2O, and 0.1-30 mol % of one or more alkaline earth metal oxide selected from MgO, CaO, SrO and ZnO; and 30-60 wt % of a ceramic filler represented by Chemical Formula 1: (Zn1-xMgx)2SiO4??(1) wherein 0?x?1. The disclosed low temperature co-fired ceramic (LTCC) composition is sinterable at low temperature, with a relative density of at least 95% in the temperature range of 800-900° C., is capable of minimizing electric loss, with a dielectric constant of 4-7 and a very low dielectric loss, and is applicable from the low-frequency band to the millimeter-wave band of 60 GHz or more.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: August 13, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Jeong Hyun Park, Jin Gu Kang, Young Jin Choi, Jae Gwan Park
  • Patent number: 8507098
    Abstract: The various embodiments of the present invention are directed to wear resistant coatings, tiles having the wear resistant coatings disposed thereon, and to methods of making the coatings and tiles. A wear resistant coating generally includes a strontium aluminosilicate glass-ceramic composition that is formed from a glaze. The glaze can include a crystallizing component, which itself can include strontium, aluminum, and silicon, but also comprises less than about 2 weight percent each of lithium, boron, barium, sodium, iron, titanium, zirconium, and carbon, based on a total weight of the crystallizing component.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 13, 2013
    Assignees: Mohawk Carpet Corporation, Intercolor S.p.A.
    Inventors: Thomas Long, Claudio Ansaloni, Massimo Sernesi, David A. Earl
  • Patent number: 8470723
    Abstract: A low softening point glass composition, which is substantially free from lead, bismuth and antimony and comprises oxides of vanadium, phosphorous, tellurium and iron, a softening point of the composition being 380° C. or lower.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Keiichi Kanazawa, Shinji Yamada, Satoru Amou, Hiroki Yamamoto, Takuya Aoyagi
  • Patent number: 8367573
    Abstract: A glass composition substantially free from lead and bismuth and containing vanadium oxide and phosphor oxide as main ingredients, wherein the sintered glass of the glass composition exhibits 109 ?cm or more at 25° C.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 5, 2013
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Hiroki Yamamoto, Hiroshi Yoshida, Shinji Yamada, Katsumi Mabuchi
  • Publication number: 20120282407
    Abstract: This invention relates to glass and enamel compositions. The glass compositions comprise SiO2, Cs2O, Na2O, ZnO, B2O3, and TiO2, and optionally Bi2O3 and F. The resulting compositions can be used to form an enamel on a substrate, for example, to decorate and/or protect the substrate.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: FERRO CORPORATION
    Inventors: Sandeep K. Singh, George E. Sakoske, David A. Klimas
  • Patent number: 8303703
    Abstract: An exhaust pipe paint for application to an exhaust pipe base includes an inorganic glass particle, an inorganic particle, and at least one of an inorganic binder and an inorganic binder precursor.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Ibiden Co., Ltd.
    Inventor: Kenzo Saiki
  • Patent number: 8304357
    Abstract: A ceramic material composition comprising from 20 to 50 mass % of a borosilicate glass powder, from 25 to 55 mass % of an alumina filler powder and from 10 to 45 mass % of a filler powder (a high refractive index filler powder) having a refractive index higher than the alumina filler powder, wherein the borosilicate glass powder comprises, as calculated as oxides, from 30 to 70 mass % of SiO2, from 5 to 28 mass % of B2O3, from 5 to 30 mass % of Al2O3, from 3 to 35 mass % of CaO, from 0 to 25 mass % of SrO, from 0 to 25 mass % of BaO, from 0 to 10 mass % of Na2O, from 0 to 10 mass % of K2O, from 0.5 to 10 mass % of Na2O+K2O and from 3 to 40 mass % of CaO+SrO+BaO, and satisfies the following conditions: in the borosilicate glass powder, as represented by mass %, the value of “three times the B2O3 content”+“twice (the CaO content+the SrO content+the BaO content)”+“ten times (the Na2O content+the K2O content)”, is within a range of from 105 to 165.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 6, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kenji Imakita, Toshihisa Okada, Kazuo Watanabe