Utilizing Hydrocarbon Containing Unsaturation Not Part Of Benzene Ring Patents (Class 502/108)
-
Patent number: 12084529Abstract: Provided is a hydrogenation catalyst solution comprising a solid catalyst precursor and an activator mixed in a solvent solution where propylene or another alpha-olefin or combination thereof is then added to this solution to prevent the formation of solids and stabilize the solution. The hydrogenation catalyst solution can then be combined with a polymerization catalyst such as Ziegler-Natta catalyst in a polymerization reactor so as to remove excess hydrogen from the reactor during a polymerization process. Hydrogen is eliminated by converting a portion of the olefins (propylene and ethylene) present into alkanes (propane and ethane).Type: GrantFiled: September 25, 2019Date of Patent: September 10, 2024Assignee: ExxonMobil Chemical Patents Inc.Inventor: Christopher G. Bauch
-
Patent number: 11331655Abstract: A method for preparing a homogenous catalyst for the production of linear alpha olefins includes: preparing a first pre-catalyst solution comprising a modifier and an organoaluminum compound in a first solvent wherein the first pre-catalyst solution is reacted and stored in a first vessel for a period of time of 1 hour to 90 days; preparing a second pre-catalyst solution comprising a second solvent, a ligand, and a chromium containing compound, wherein the second pre-catalyst solution is stored in a second vessel for a period of time of 1 hour to 90 days; and after a period of time, adding the first pre-catalyst solution to a catalyst pre-formation unit; after the same period of time, adding the second pre-catalyst solution to the catalyst pre-formation unit; forming a homogenous catalyst by mixing the first pre-catalyst solution and the second pre-catalyst solution; adding the homogeneous catalyst to a reaction vessel, wherein the reaction vessel comprises an alpha olefin; and forming the linear alpha olefinType: GrantFiled: December 21, 2017Date of Patent: May 17, 2022Assignee: SABIC GLOBAL TECHNOLOGIES B.V.Inventors: Abdullah Saad Al-Dughaither, Shahid Azam, Abdulmajeed Mohammed Al-Hamdan, Dafer Mubarak Alshahrani, Sebastiano Licciulli, Anina Wohl, Wolfgang Muller, Heinz Bolt, Andreas Meiswinkel, Tobias Meier, Ralf Noack
-
Patent number: 11285469Abstract: A method for preparing a homogenous catalyst for use in preparing a linear alpha olefin includes: preparing a first pre-catalyst solution by mixing a chromium source and a ligand in a first solvent, wherein the first pre-catalyst solution is stored in a first vessel; preparing a second pre-catalyst solution by mixing an organoaluminum compound and a modifier in a second solvent, wherein the second pre-catalyst solution is stored in a second vessel; and simultaneously feeding the first pre-catalyst solution and the second pre-catalyst solution directly into a reaction vessel, wherein the reaction vessel includes a third solvent.Type: GrantFiled: December 28, 2017Date of Patent: March 29, 2022Assignee: SABIC GLOBAL TECHNOLOGIES B.V.Inventors: Abdullah Saad Al-Dughaither, Shahid Azam, Abdulmajeed Mohammed Al-Hamdan, Dafer Mubarak Alshahrani, Sebastiano Licciulli, Andreas Meiswinkel, Heinz Bolt, Wolfgang Muller, Anina Wohl
-
Patent number: 10883197Abstract: Disclosed herein are high melt flow polypropylene homopolymers generally characterized by a melt flow rate ranging from 200 g/10 min to 3000 g/10 min, a ratio of Mw/Mn ranging from 2 to 5, and a peak melting point ranging from 138° C. to 151° C. These polypropylene homopolymers can be produced by catalyst systems containing a racemic ansa-bis(indenyl)zirconocene compound, an activator-support, and an organoaluminum co-catalyst.Type: GrantFiled: January 12, 2016Date of Patent: January 5, 2021Assignee: Chevron Phillips Chemical Company LPInventors: Graham R. Lief, Eric J. Haschke
-
Patent number: 10351641Abstract: The present technology relates to a pre-polymerized catalyst component for the polymerization of olefins, characterized by a non-stereospecific solid catalyst component comprising Ti, Mg and a halogen and an amount of a (co)polymer of an alpha-olefin CH2?CHR1, where R1 is a C1-C12 hydrocarbon group ranging from 0.1 to 500 g per g of said solid catalyst component. In some embodiments, the (co)polymer is characterized by an isotacticity, expressed in terms isotactic pentads, of higher than 60 molar % and an intrinsic viscosity, measured in tetraline at 135° C., of at least 1.0 dL/g.Type: GrantFiled: June 10, 2014Date of Patent: July 16, 2019Assignee: Basell Poliolefine Italia S.r.l.Inventors: Diego Brita, Gianni Collina, Giampiero Morini
-
Patent number: 10029226Abstract: Methods and systems for controlling a polymerization reactor in a non-sticking regime are disclosed. An exemplary method includes measuring parameters for the polymerization reaction including a reactor temperature and a concentration of an induced condensing agent (ICA) in a polymerization reactor. An equivalent partial pressure ((PICA)equiv) of the ICA is calculated. The polymerization reactor operation is located in a two dimension space defined by a reactor temperature dimension and a ((PICA)equiv) dimension. The location in the two dimensional space is compared to an non-sticking regime, defined as the space between an upper temperature limit (UTL) curve and a lower temperature limit (LTL) curve. Parameters of the polymerization reactor are adjusted to keep the reactor within the non-sticking regime.Type: GrantFiled: September 4, 2013Date of Patent: July 24, 2018Assignee: Univation Technologies, LLCInventors: Abarajith S. Hari, Bruce J. Savatsky, David M. Glowczwski, Xianyi Cao
-
Patent number: 9707549Abstract: Disclosed herein are catalyst compositions containing a heteroatomic ligand transition metal compound complex, a chemically-treated solid oxide, and an organoaluminum compound. These catalyst compositions can be used in an ethylene oligomerization process to produce a liquid oligomer product containing hexene and octene, as well as a solid polymer product with a molecular weight sufficiently high to permit easy separation of the liquid oligomer product from the solid polymer product.Type: GrantFiled: May 26, 2016Date of Patent: July 18, 2017Assignee: Chevron Phillips Chemical Company LPInventors: Uriah J. Kilgore, Steven R. Hutchison, Orson L. Sydora, Steven M. Bischof, Jared T. Fern, Max P. McDaniel
-
Patent number: 9605093Abstract: A biaxially stretched polypropylene film for a capacitor containing an isotactic polypropylene. The weight average molecular weight (Mw) of the isotactic polypropylene as measured by gel permeation chromatography (GPC) is 250,000 to 450,000, the molecular weight distribution Mw/Mn is 7 to 12 and Mz/Mn is 20 to 40, and the value of a difference obtained by subtracting a differential distribution value when the logarithmic molecular weight Log(M)=6 from a differential distribution value when Log(M)=4.5 on a molecular weight distribution curve thereof is 8% to 20%. The ultrathin biaxially stretched polypropylene film for a capacitor has superior heat resistance performance and withstands voltage performance.Type: GrantFiled: January 8, 2013Date of Patent: March 28, 2017Assignee: OJI HOLDINGS CORPORATIONInventors: Tadakazu Ishiwata, Yuichi Shishido
-
Patent number: 9593178Abstract: A pre-polymerized catalyst component for the polymerization of olefins endowed with high activity and morphological stability comprises a non-stereospecific solid catalyst component containing Ti, Mg and a halogen, and an amount of an ethylene/alpha-olefin block (co)polymer ranging from 0.1 up to 5 g per g of said solid catalyst component, said prepolymerized catalyst component being characterized by a mercury porosity, due to pores having radius up to 1 ?m, ranging from 0.15 to 0.5 cm3/g and by the fact that at least 55% of said porosity is due to pores having pore radius up to 0.2 ?m.Type: GrantFiled: December 11, 2012Date of Patent: March 14, 2017Assignee: Basell Poliolefine Italia S.r.l.Inventors: Diego Brita, Gianni Collina, Giampiero Morini
-
Patent number: 8975202Abstract: The invention provides a polymerization catalyst produced by bringing components (A) to (D) into contact with one another in a hydrocarbon solvent at 30 to 60° C., wherein the component (A) is a transition metal compound, the component (B) is a solid boron compound capable of forming an ion pair with component (A), the component (C) is an organoaluminum compound, and the component (D) is one or more unsaturated hydrocarbon compounds selected from among an ?-olefin, an internal olefin, and a polyene; and the amounts of component (B) and component (C) are 1.2 to 4.0 mol and 5.0 to 50.0 mol, respectively, on the basis of 1 mol of component (A), which catalyst exhibits high activity and can be readily supplied to a polymerization reaction system. The invention also provides a method of storing the polymerization catalyst at 0 to 35° C.Type: GrantFiled: June 10, 2010Date of Patent: March 10, 2015Assignee: Idemitsu Kosan Co., Ltd.Inventors: Masami Kanamaru, Takenori Fujimura, Minoru Yabukami
-
Publication number: 20140005034Abstract: The present invention relates to a method for preparing a catalyst composition for the oligomerization of ethylene and a respective catalyst composition pre-formation unit.Type: ApplicationFiled: January 11, 2012Publication date: January 2, 2014Applicant: Saudi Basic Industries CorporationInventors: Anina Wöhl, Wolfgang Müller, Heinz Bölt, Andreas Meiswinkel, Uwe Rosenthal, Bernd Müller, Normen Peulecke, Christian Thaller, Marco Harff, Stephan Peitz, Fuad Mosa, Mohammed H. Al-Hazmi, Shahid Azam
-
Patent number: 8431659Abstract: A method of producing a prepolymerized catalyst for olefin polymerization comprising a fine powder removal step of removing fine particles from olefin-prepolymerized catalyst particles for olefin polymerization. The prepolymerized catalyst having a low fine particle content is applicable suitably to the field of continuous polymerization of olefins.Type: GrantFiled: December 6, 2011Date of Patent: April 30, 2013Assignee: Sumitomo Chemical Company, LimitedInventors: Tomoaki Goto, Yoshimitsu Onodera
-
Patent number: 8101537Abstract: A method of producing a prepolymerized catalyst for olefin polymerization comprising a fine powder removal step of removing fine particles from olefin-prepolymerized catalyst particles for olefin polymerization. The prepolymerized catalyst having a low fine particle content is applicable suitably to the field of continuous polymerization of olefins.Type: GrantFiled: February 25, 2010Date of Patent: January 24, 2012Assignee: Sumitomo Chemical Company, LimitedInventors: Tomoaki Goto, Yoshimitsu Onodera
-
Publication number: 20110098428Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.Type: ApplicationFiled: June 22, 2009Publication date: April 28, 2011Applicant: Borealis AGInventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
-
Patent number: 7842638Abstract: A polymerisation catalyst comprising (1) a transition metal compound of Formula (A), and optionally (2) an activator, wherein Z is 5-membered heterocyclic containing carbon, nitrogen and at least one other selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being nitrogen and carbon; M is a metal from Group 3 to 11 or a lanthanide metal; E1 and E2 are divalent hydrocarbon, heterocyclic or heterosubstituted derivatives of these; D1 and D2 are donor atoms or groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integers so that X and L satisfy the valency/oxidation state of M, characterized in that the complex contains at least one polymerisable olefinic double bond which is present in, or substituent to, at least one of the atoms, groups or ligands represented by Z, E, D and L. The catalyst binds to the forming polymer providing product with good particle morphology.Type: GrantFiled: June 23, 2005Date of Patent: November 30, 2010Assignee: Ineos Europe LimitedInventors: Vernon Charles Gibson, Atanas Kostadinov Tomov, Grant Berent Jacobsen
-
Patent number: 7790820Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, typically using a supported catalyst composition. In one aspect, this invention encompasses precontacting a metallocene with an olefin or alkyne monomer and an organoaluminum compound, prior to contacting this mixture with the acidic activator-support.Type: GrantFiled: October 15, 2009Date of Patent: September 7, 2010Assignee: Chevron Phillips Chemical Company LPInventors: Michael D. Jensen, Gil R. Hawley, Max P. McDaniel, Tony Crain, Elizabeth A. Benham, Joel L. Martin, Qing Yang
-
Patent number: 7754647Abstract: The present invention provides a process for preparing a supported catalyst (catalyst C) having a support (support S) selected from among oxides, phosphates, silicates, carbides, borides and nitrides of main group elements and elements of transition groups VI and II and mixtures of the abovementioned compounds and an active component (activator A) comprising one or more compounds containing one or more elements of transition groups V, VI and VII customary for the catalysis of metathesis reactions.Type: GrantFiled: April 4, 2008Date of Patent: July 13, 2010Assignee: Basf AktiengesellschaftInventors: Markus Schubert, Michael Hesse, Juergen Stephan, Volker Boehm, Andreas Brodhagen, Frank Poplow, Martina Sinner-Lang, Uwe Diehlmann, Gerhard Cox, Jochen Pfeifer
-
Patent number: 7678726Abstract: A supported polymerization catalyst system is prepared by a method comprising the following steps: (i) addition of a cocatalyst to a porous support, (ii) mixing a polymerisation catalyst with a polymerisable monomer, and (iii) contacting together the components resulting from steps (i) and (ii). The porous support is preferably silica and the polymerisation catalyst is preferably a metallocene. The polymerisable monomer is typically 1-hexene and the supported catalyst system provides advantages a slowly decaying activity profile particularly when operating in the gas phase.Type: GrantFiled: August 4, 2004Date of Patent: March 16, 2010Assignee: Innovene Europe LimitedInventors: Grant B. Jacobsen, Brian S. Kimberley, Sergio Mastroianni
-
Patent number: 7629284Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, typically using a supported catalyst composition. In one aspect, this invention encompasses precontacting a metallocene with an olefin or alkyne monomer and an organoaluminum compound, prior to contacting this mixture with the acidic activator-support.Type: GrantFiled: August 27, 2007Date of Patent: December 8, 2009Assignee: Chevron Phillips Chemical Company, LPInventors: Michael D. Jensen, Gil R. Hawley, Max P. McDaniel, Tony Crain, Elizabeth A. Benham, Joel L. Martin, Qing Yang
-
Patent number: 7524789Abstract: A process for producing a modified particle, a carrier or a catalyst component for addition polymerization, which comprises the steps of (1) contacting a compound (a) represented by the defined formula M1L13 with a compound (b) represented by the defined formula R1t-1TH, thereby producing a contact product, and (2) contacting the contact product with a porous particle (d) and then with a compound (c) represented by the defined formula R2t-2TH2; a process for producing a pre-polymerized catalyst component or a catalyst for addition polymerization, which comprises the steps of (1) contacting the above modified particle with a transition metal compound and optionally an organoaluminum compound, thereby producing a primary catalyst, and (2) pre-polymerizing an olefin in the presence of the primary catalyst; a process for producing a catalyst for addition polymerization, which comprises the step of contacting the above catalyst component with a transition metal compound and optionally an organoaluminum compound; aType: GrantFiled: September 7, 2004Date of Patent: April 28, 2009Assignee: Sumitomo Chemical Company, LimitedInventors: Hideki Oshima, Makoto Satoh
-
Patent number: 7294599Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, typically using a supported catalyst composition. In one aspect, this invention encompasses precontacting a metallocene with an olefin or alkyne monomer and an organoaluminum compound, prior to contacting this mixture with the acidic activator-support.Type: GrantFiled: June 25, 2004Date of Patent: November 13, 2007Assignee: Chevron Phillips Chemical Co.Inventors: Michael D. Jensen, Gil R. Hawley, Max P. McDaniel, Tony Crain, Elizabeth A. Benham, Joel L. Martin, Qing Yang
-
Patent number: 7288611Abstract: Disclosed herein are a method for preparing a cis-1,4-polybutadiene with a controlled molecular weight distribution, comprising polymerizing butadiene monomers using a rare-earth catalyst system comprising: (a) at least one aliphatic hydrocarbon-soluble organometallic compound comprising at least one metal element chosen from the elements of atomic numbers 51-71 in the periodic table; (b) at least one organoaluminum compound of the formula: AlR1R22, (c) at least one aliphatic hydrocarbon-soluble halogen-containing compound; (d) optionally at least one alkylaluminum alkoxide; and (e) at least one conjugated double bond-containing organic compound, and methods of preparing the rare-earth catalyst system.Type: GrantFiled: September 27, 2004Date of Patent: October 30, 2007Assignee: Changchun Institute of Applied Chemistry Chinese Academy of SciencesInventors: Liansheng Jiang, Xuequan Zhang, Weimin Dong, Xichun Liu, Jifu Bi
-
Patent number: 7176266Abstract: A catalyst for polymerizing vinyl compounds or ?-olefins according to the present invention includes (A) a transition metal complex, (B) a clay, clay mineral or ion-exchangeable layered compound, modified with at least one organic compound selected from the group consisting of quaternary ammonium salts, amine compounds, and adducts of amine and Brönsted acid, and (C) at least one aluminoxy compound. The transition metal in (A) is selected from Groups 4 to 10 or Groups 8 to 10 of the Periodic Table for catalysts for vinyl compounds or ?-olefins, respectively. The aluminoxy compound is represented by the general Formula wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and z is an integer of 2 or more for catalyst for vinyl compounds and 2 to 4 for catalysts for ?-olefins.Type: GrantFiled: July 13, 2004Date of Patent: February 13, 2007Assignee: Idemitsu Kosan Co. Ltd.Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
-
Patent number: 7098164Abstract: A process for the (co) polymerization of olefins of formula CH2?CHR wherein R is a hydrogen atom, a methyl or an ethyl radical, carried out in the presence of a system comprising (a) solid catalyst component comprising a compound of Ti or V not containing Metal-? bonds, Mg, halogen and optionally an electron donor compound; (b) an Al-alkyl compound; and (c) one or more non-polymerizing olefins in an amount up to 1.2% by mol with respect to the total olefins present in the reactor.Type: GrantFiled: February 28, 2003Date of Patent: August 29, 2006Assignee: Basell Poliolefine Italia S.p.A.Inventors: Giampiero Morini, Giulio Balbontin, Tiziano Dall'Occo
-
Patent number: 7077977Abstract: A discrete polyolefin catalyst activator is disclosed. A salient feature of invention borate-based activators is that at least one of the ligands on the borate non-coordinating anion (NCA) comprises a fluorinated aryl group linked to the boron atom through an acetylenic group appropriate pairing of invention activators with olefin polymerization. Catalyst precursors yield increased catalytic activity. Polymerization results are disclosed.Type: GrantFiled: December 3, 2002Date of Patent: July 18, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: George Rodriguez, Francis C. Rix, Matthew C. Kuchta, John F. Walzer, Jr.
-
Patent number: 7074736Abstract: A hydrozirconated matrix for the production of polyolefins is disclosed. The hydrozirconated matrix is prepared from the reaction of an organozirconium composition and an olefin based material. A process is described for using the hydrozirconated matrix to prepare a range of polyolefin products.Type: GrantFiled: October 9, 2001Date of Patent: July 11, 2006Assignee: Rohm and Haas CompanyInventors: Eric Gustave Lundquist, Jennifer Annette Reichl, James Charles Bohling
-
Patent number: 7022793Abstract: A process for the preparation of heterophasic elastomeric polymer comprising the step of polymerizing ethylene, an alpha-olefin CH2?CHL, where L is an alkyl, cycloalkyl or aryl radical with 1–10 carbon atoms and a non-conjugated diene in the presence of a catalyst system comprising a transition metal catalyst component supported on a porous alpha-olefin polymer, characterized in that at least part of the diene is impregnated on the porous alpha-olefin polymer.Type: GrantFiled: November 22, 2002Date of Patent: April 4, 2006Assignee: Basell Polyolefine GmbHInventors: Maurizio Galimberti, Angelo Ferraro, Giovanni Baruzzi, Ofelia Fusco
-
Patent number: 7019090Abstract: The present invention relates to a catalytic component for the polymerization of olefins combining a number of catalytic components for the polymerization of olefins and to a process for preparing it. The catalytic component according to the invention is obtained by impregnation of a prepolymer with a solution of a catalytic component for the polymerization of olefins. The invention brings about control of the combination of different catalytic components and provides for improvement in the control of the quality of the polymers manufactured by virtue of the catalytic action of the combined catalytic components. Another advantage of the invention is to be able to control the morphology and the particle size distribution of the polymers by choosing the morphology of a single catalytic component. The prepolymer and the polymer obtained from the catalytic component according to the invention are also subjects of the present invention.Type: GrantFiled: March 6, 2003Date of Patent: March 28, 2006Assignee: Total Petrochemicals FranceInventor: Jean Malinge
-
Patent number: 6972271Abstract: Disclosed are methods of producing supported organic catalyst systems which find particular use in polymerization reactions. The methods comprise generally, the steps of (a) providing an organic catalyst solution comprising an organic catalyst dissolved in a solvent; (b) contacting the organic catalyst solution with a solid support material; and (c) removing the solvent from the support material by using one or more supercritical-like solvents.Type: GrantFiled: October 14, 2004Date of Patent: December 6, 2005Assignee: Honeywell International Inc.Inventors: Raymond H. P. Thomas, Roy Robinson, David Nalewajek, Kane D. Cook
-
Patent number: 6867160Abstract: By controlling the hold up times and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced at higher reaction temperatures.Type: GrantFiled: November 1, 2000Date of Patent: March 15, 2005Assignee: Nova Chemicals (International) S.A.Inventors: Jesus Vela Estrada, Vaclav George Zboril
-
Patent number: 6852660Abstract: A solid metallocene-containing catalyst system of an organoaluminoxane, at least one metallocene having at least one olefinically unsaturated substituent and a polyolefin is disclosed. The polyolefin is formed from at least one olefin polymerized in the presence of a combination of a solution of the organoluminoxane in an aromatic liquid, the at least one metallocene, and an aliphatic liquid. The solid metallocene-containing catalyst system may also include one or more the particulate solids.Type: GrantFiled: January 21, 2003Date of Patent: February 8, 2005Assignee: Chevron Phillips Chemical Company, LPInventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
-
Patent number: 6838534Abstract: The present invention provides a catalytic system that can be used to prepare by polymerization diene elastomers comprising polyisoprenes and polybutadienes. The invention also provides a process for the preparation of the catalytic system and to a process using the catalytic system to prepare diene elastomers comprising polyisoprenes having a high cis-1,4 linkage content and polybutadienes. The catalytic system according to the invention is based on (a) a conjugated diene monomer, (b) an organic phosphoric acid salt of a rare earth metal, (c) an alkylating agent consisting of an alkylaluminium of the formula AlR3 or HAlR2, and (d) a halogen donor consisting of an alkylaluminium halide, and is such that said salt is suspended in at least one inert and saturated aliphatic or alicyclic hydrocarbon solvent and, the “alkylating agent:rare earth salt” molar ratio ranges from 1 to 5.Type: GrantFiled: May 9, 2003Date of Patent: January 4, 2005Assignee: Michelin Recherche et Technique S.A.Inventor: Philippe Laubry
-
Patent number: 6835788Abstract: The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and x is an integer of 2 or more. By using the Group 4 to 10 transition metal complex and the clay, clay mineral or ion-exchangeable layered compound in combination with the specific aluminoxy compound, vinyl polymers are produced at a high efficiency.Type: GrantFiled: August 20, 2002Date of Patent: December 28, 2004Assignee: Idemitsu Petrochemical Co., Ltd.Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
-
Publication number: 20040259721Abstract: Disclosed is a catalyst for olefin polymerization comprising [I] a solid titanium catalyst component [S] comprising titanium, magnesium, halogen and an electron donor (b), which is obtained by bringing a solid adduct consisting of a magnesium compound and an electron donor (a) into contact with an electron donor (b) and a liquid titanium compound by at least one method selected from (A) a method of contacting the materials in a suspended state in the coexistence of an inert hydrocarbon solvent and (B) a method of contacting the material plural times individed portions and [II] an organometallic compound catalyst component [M] containing a metal selected from the groups I to III in the periodic table. By olefin polymerization with this polymerization catalyst, an olefinic (co)polymer having high stereospecificity can be obtained with high activity.Type: ApplicationFiled: July 20, 2004Publication date: December 23, 2004Inventors: Kazuhisa Matsunaga, Masao Nakano, Masaaki Ohgizawa, Toshiyuki Tsutsui
-
Patent number: 6803339Abstract: A metallocene catalyst may be temporarily and reversibly passivated by contact with an effective amount of an unsaturated hydrocarbon passivating compound.Type: GrantFiled: September 12, 2002Date of Patent: October 12, 2004Assignee: BP Corporation North America Inc.Inventors: Richard A. Hall, Jerome A. Streeky, Roger Uhrhammer
-
Patent number: 6780948Abstract: The neodymium catalyst system prepared by the technique of this invention can be used in the polymerization of isoprene monomer into polyisoprene rubber that is clear (transparent) and of high purity. This invention more specifically discloses a process for the synthesis of polyisoprene rubber which comprises polymerizing isoprene monomer in the presence of a neodymium catalyst system, wherein the neodymium catalyst system is prepared by (1) reacting a neodymium carboxylate with an organoaluminum compound in the presence of isoprene for a period of about 10 minutes to about 30 minutes to produce neodymium-aluminum catalyst component, and (2) subsequently reacting the neodymium-aluminum catalyst component with a dialkyl aluminum chloride for a period of at least 30 minutes to produce the neodymium catalyst system.Type: GrantFiled: February 18, 2003Date of Patent: August 24, 2004Assignee: The Goodyear Tire & Rubber CompanyInventors: Michael Joseph Rachita, Zhengfang Xu, Tang Wong
-
Publication number: 20040162401Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.Type: ApplicationFiled: February 18, 2003Publication date: August 19, 2004Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
-
Publication number: 20040157728Abstract: Copolymerization of Fe(II) or Co(II) pyridine diimine complexes containing olefinic substituents on aryl groups with styrene in the presence of a radical initiator results in polymerized late transition metal catalysts which can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.Type: ApplicationFiled: October 24, 2003Publication date: August 12, 2004Inventors: Guo-Xin Jin, Zerong Lin, Robert J. Wittenbrink, Chang-Kun Liu
-
Publication number: 20040152591Abstract: Free-radical-initiated copolymerization of metallocene complexes containing olefinic substituents on aryl groups with styrene results in polymerized late transition metal catalysts that can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.Type: ApplicationFiled: October 24, 2003Publication date: August 5, 2004Inventors: Guo-Xin Jin, William M. Chien, Zerong Lin, Robert J. Wittenbrink, Guangyuan Zhou
-
Patent number: 6746981Abstract: Described are solid olefin polymerization catalysts that have, inter alia, very high productivities (at least 18,000 grams of polyethylene per gram of catalyst in one hour) as shown by a standard test procedure for measuring this property or characteristic. Such particulate catalysts can be prepared by prepolymerizing vinylolefin with a Group 4 metallocene-aluminoxane solution, using proportions of vinylolefin (most preferably, ethylene) in the range of about 150 to about 1500, and preferably in the range of about 175 to about 1000, moles per mole of Group 4 metallocene used in forming the solution. The atom ratio of aluminum to Group 4 metal in the solution is in the range of about 150:1 to about 1500:1, and preferably in the range of about 175:1 to about 1000:1. In addition, the Group 4 metallocene ingredient used in forming these highly productive catalysts has in its molecular structure at least one polymerizable olefinic substituent.Type: GrantFiled: December 18, 2002Date of Patent: June 8, 2004Assignee: Albemarle CorporationInventor: Steven P. Diefenbach
-
Patent number: 6743873Abstract: A catalyst composition useful for catalyzing the polymerization of olefinic monomers is disclosed, along with a polymerization method using those catalyst compositions to prepare a variety of polyolefins from olefinic monomers. A method for preparation of the catalyst composition by combining an epoxy functional porous organic polymer, a catalytic component, and an activator component is also disclosed.Type: GrantFiled: May 7, 2003Date of Patent: June 1, 2004Assignee: Rohm and Haas CompanyInventors: Thomas Cleveland Kirk, Eric Gustave Lundquist, Timothy Roger Lynn
-
Patent number: 6730758Abstract: Described are solid olefin polymerization catalysts that have, inter alia, very high productivities as shown by a standard test procedure for measuring this property or characteristic, and excellent morphology. Such particulate catalysts can be prepared by prepolymerizing a controlled amount of vinylolefin with a Group 4 metallocene-alurinnoxane solution, in which the original metallocene ingredient used in the process has in its molecular structure at least one polymerizable olefinic substituent. These particulate catalysts do not contain, and thus are not produced in the presence of, a preformed support such as an inorganic compound (silica or etc.) or a preformed particulate polymeric support.Type: GrantFiled: March 28, 2003Date of Patent: May 4, 2004Assignee: Albemarle CorporationInventor: Steven P. Diefenbach
-
Publication number: 20040077806Abstract: A method of lowering MFR response of a high melt flow rate polymer producing metallocene catalyst is provided. The method includes contacting the metallocene catalyst with a sufficient quantity of &agr;,&ohgr;-diene monomer such that when the catalyst composition is contacted with polymerizable reactants under suitable polymerization conditions, the resulting polymer has an MFR rate in the range of 0.1 to 19. Hydrogen and ethylene may also be present in the polymerization. Additionally a catalyst composition is provided which includes a high melt flow rate polymer producing metallocene catalyst and a sufficient quantity of &agr;,&ohgr;-diene monomers such that when the catalyst composition is contacted with a monomer under polymerization conditions, the resulting polymer has an MFR rate in the range of 0.1 to 19.Type: ApplicationFiled: June 24, 2003Publication date: April 22, 2004Inventors: Weiqing Weng, Eric J. Markel, Main Chang, Armenag H. Dekmezian, Palanisamy Arjunan, Olivier J. Georjon
-
Catalyst obtained by prepolymerization of polyolefin and olefin polymerization method using the same
Publication number: 20040063862Abstract: The present invention provides a prepolymerized olefin polymerization catalyst and olefin polymerization method using the same. More particularly, the present invention provides a prepolymerized catalyst that is encapsulated with macromonomers produced by polymerizing olefin monomers with a vinyl-terminated polysiloxane compound in the presence of a solid titanium catalyst for olefin polymerization having been previously surface treated with silane compounds containing two or more vinyl groups, and a method for producing polyolefin having a high melt strength using the catalyst.Type: ApplicationFiled: November 3, 2003Publication date: April 1, 2004Inventors: Young-Soo Koo, Yong Chun, Young-Jun Lee, Ho-Sang Son, Ki-Su Ro -
Publication number: 20040063571Abstract: The present invention relates to a method for the prepolymerization of &agr;-olefin in the presence of a catalyst system which comprises (a) a magnesium supported solid complex titanium catalyst and (b) an organometallic compound of metal of Group I or III of the Periodic Table, characterized in that an inert solvent having high viscosity with molecular weight of 300 g/mole or more is used as a reaction medium.Type: ApplicationFiled: October 16, 2003Publication date: April 1, 2004Inventors: Yoo-Kyoung Kim, Kun Lo, Il-Seop Kim
-
Publication number: 20040054102Abstract: A catalyst is used which comprises a cocatalyst component wherein a non-coordinating ion-containing compound is chemically bonded to a fine particulate carrier, together with a metallocene compound and a specific hydrocarbon. There are provided an olefin polymerization catalyst which produces olefin polymers containing few solvent-soluble components without a wider molecular weight distribution, and which exhibits no significant reduction in activity even after storage, as well as olefin polymerization catalyst components and a method for their storage, and a process for production of propylene polymers using them.Type: ApplicationFiled: June 18, 2003Publication date: March 18, 2004Inventors: Satoru Ishigaki, Shinji Hinokuma
-
Publication number: 20040033890Abstract: Catalyst system for olefin polymerization comprisingType: ApplicationFiled: June 6, 2003Publication date: February 19, 2004Inventors: Shahram Mihan, Markus Schopf, Jiachim Wulff-Doring, Wolfgang Bidell, Volker Fraaije, Nicola Paczkowski, Markus Oberhoff
-
Publication number: 20040033887Abstract: A method for making a solid catalyst component for use in a Ziegler-Natta catalyst includes combining a porous particulate support with a magnesium source in a hydrocarbon solvent to form a mixture, the magnesium source including a hydrocarbon soluble organomagnesium compound and a hydrocarbon insoluble anhydrous inorganic magnesium-halogen compound. The organomagnesium compound is halogenated and the mixture is reacted with a titanium compound or vanadium compound to form the solid catalyst component. The solid catalyst component is then recovered and combined with an organoaluminum cocatalyst to form a Ziegler-Natta catalyst which is advantageously used for the polymerization of olefins, particularly alk-1-enes such as ethylene, propylene, 1-butene, and the like. The catalyst can optionally include internal and external electron donors.Type: ApplicationFiled: August 19, 2002Publication date: February 19, 2004Inventor: Wolf Spaether
-
Publication number: 20040014594Abstract: Described herein is a prepolymerized catalyst encapsulated with macromolecular monomers which is prepared by adding olefin mononers and diene compounds to a solid complex titanium catalyst for olefin polymerization and then polymerizing, and also relates to a method for polymerization or copolymerization capable of preparing polyolefins with high melt strength by polymerizing the olefin by using said catalyst.Type: ApplicationFiled: August 13, 2003Publication date: January 22, 2004Inventors: Young-Soo Ko, Ki-Su Ro, Young-Jun Lee, Yong Chun
-
Patent number: 6677265Abstract: The process features concurrent feeds into the liquid phase of a prepolymerization reaction mixture. These feeds are: a) separate continuous or substantially continuous feeds of (i) a polymerizable vinylolefin, and (ii) a solution in an organic liquid solvent of a metallocene and an aluminoxane and/or metallocene-aluminoxane reaction product; or b) separate continuous or substantially continuous feeds of (i) a polymerizable vinylolefin, (iii) a metallocene optionally in an organic liquid solvent or diluent, and (iv) an aluminoxane optionally in an organic liquid solvent or diluent; or c) separate continuous or substantially continuous feeds of (i) and (ii) and at least one of (iii) and (iv). Particles of catalytically-active, prepolymerized, self-supported olefin polymerization catalyst composition are formed in the reaction medium. The metallocene used as the feed or in making up the feed has at least one polymerizable olefinic substituent in the molecule.Type: GrantFiled: June 16, 2000Date of Patent: January 13, 2004Assignee: Albemarle CorporationInventors: Brian Kneale, James E. Boone, Steven P. Diefenbach, Cecil P. Loechelt, John C. Prindle, Jr.