Plural Component System Comprising A - Group I To Iv Metal Hydride Or Organometallic Compound - And B - Group Iv To Viii Metal, Lanthanide Or Actinde Compound - (i.e., Alkali Metal, Ag, Au, Cu, Alkaline Earth Metal, Be, Mg, Zn, Cd, Hg, Sc, Y, Al, Ga, In, Tl, Ti, Zn, Hf, Ge, Sn Or Pb Hydride Or Organometallic Compound And Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, As, Sb, Bi, Cr, Mo, W, Po, Mn, Tc, Re, Iron Group, Platinum Group, Atomic Number 57 To 71 Inclusive Or Atomic Number 89 Or Higher Compound) Patents (Class 502/102)
  • Patent number: 10471409
    Abstract: Provided are compositions for and methods of producing hydrogen. For example, the compositions comprise nanocrystals, a catalyst, a source of electrons, and an aqueous medium. The nanocrystals, catalyst, aqueous medium, and, optionally, the source of electrons are present as a mixture. The methods produce hydrogen by exposing the compositions to electromagnetic radiation (e.g., solar flux).
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: November 12, 2019
    Assignee: University of Rochester
    Inventors: Todd D. Krauss, Richard Eisenberg, Patrick Holland, Fen Qiu, Zhiji Han
  • Patent number: 10336663
    Abstract: The present invention discloses processes for oligomerizing an olefin feedstock containing C4 to C20 alpha olefins using a catalyst system containing a metallocene compound, an organoaluminum compound, and a suspension of a chemically-treated solid oxide. The liquid medium for the suspension of the chemically-treated solid oxide can be an alpha-olefin oligomer product formed by the oligomerization process.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 2, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Eric J. Haschke, Pasquale Iacono
  • Patent number: 10266624
    Abstract: The present invention relates to an olefin polymerization process, wherein propylene and 1-butene and optionally ethylene are reacted in the presence of a Ziegler-Natta catalyst system so as to obtain a polypropylene, wherein the polypropylene comprises 1-butene-derived comonomer units in an amount of from 0.5 to 15 wt % and optionally ethylene-derived comonomer units in an amount of up to 3 wt %, and the Ziegler-Natta catalyst system comprises an external donor of the formula (I) (R3)z(R2O)YSi(R1)X??(I).
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: April 23, 2019
    Assignee: BOREALIS AG
    Inventors: Wilfried Toltsch, Luigi Resconi
  • Patent number: 10119096
    Abstract: Spearmint flavor enhancers and methods for the production thereof. The spearmint flavor enhancers may include l-carvone, l-carveol isomers, and d-dihydrocarveol isomers. The spearmint flavor enhancers may further include l-isocarveol isomers, l-carvyl acetate isomers, d-dihydrocarvyl acetate isomers, and l-isocarvyl acetate isomers.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: November 6, 2018
    Assignee: Symrise Inc.
    Inventors: Gennadiy G. Kolomeyer, Douglas Ferone
  • Patent number: 10113103
    Abstract: A polymer material for proppant in the form of a metathesis-radically cross-linked mixture of oligocyclopentadienes and methylcarboxy norbornene esters is obtained by mixing dicyclopentadiene with methacrylic esters and polymer stabilizers, heating the mixture to a temperature of 150-220° C., holding at said temperature for 15-360 minutes, and then cooling down to 20-50° C. A radical initiator and a catalyst are added successively to the resultant mixture of oligocyclopentadienes and methylcarboxy norbornene esters. The polymer matrix is heated to a temperature of 50-340° C., is held at this temperature for 1-360 minutes and then is cooled to room temperature. A technical result achieved by implementation of the present invention is an increase in thermal strength of the proppant material, providing a compressive strength of at least 150 MPa at a temperature of not less than 100° C.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: October 30, 2018
    Assignee: OTKRYTOE AKTSYONERNOE OBSCHESTVO “ROSNEFT OIL COMPANY”
    Inventors: Vladimir Vladimirovich Afanasiev, Sergey Anatolievich Alkhimov, Nataliya Borisovna Bespalova, Egor Vladimirovich Shutko, Tatyana Modestovna Yumasheva, Igor Alekseevich Kiselev, Olga Vasilievna Masloboyschikova
  • Patent number: 10077228
    Abstract: The invention relates to a compound of formula (I) where R1, R2, R3, R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl; at least one of the R1, R2, R3, R4 radicals is a —(C6-C20)-heteroaryl radical having at least six ring atoms; and R1, R2, R3, R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl or —(C6-C20)-heteroaryl, may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cycloalkyl, —S—(C1-C12)-alkyl, —S—(C3-C12)-cycloalkyl, —COO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —CONH—(C1-C12)-alkyl, —CONH—(C3-C12)-cycloalkyl, —CO—(C1-C12)-alkyl, —CO—(C3-C12)-cycloalkyl, —N—[(C1-C12)-alkyl]2, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C3-C20)-heteroaryl, —(
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: September 18, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Helfried Neumann, Ralf Jackstell, Matthias Beller, Robert Franke, Dieter Hess, Katrin Marie Dyballa, Dirk Fridag, Frank Geilen
  • Patent number: 10047443
    Abstract: Methods for producing hydrogen using nanoparticles, a catalyst, and a source of electrons, such as bacteria and their nutrient source in a biological system, are carried out in an aqueous medium. The nanoparticles may be doped with a plurality of isovalent and/or non-isovalent dopants.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: August 14, 2018
    Assignee: University of Rochester
    Inventors: Todd Krauss, Kara L. Bren
  • Patent number: 9969672
    Abstract: A process for the preparation of MMA via oxidative esterification in the presence of a catalyst comprising palladium, bismuth, and antimony.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: May 15, 2018
    Assignee: Rohm and Haas Company
    Inventors: Kirk W. Limbach, Dmitri A. Kraptchetov, Christopher D. Frick
  • Patent number: 9868801
    Abstract: Disclosed herein are solution polymerization processes for producing a high-cis polydiene. The processes include polymerizing at least one conjugated diene monomer in an organic solvent in the presence of at least one thiol compound and a lanthanide-based catalyst composition to produce a polydiene having a cis-1,4-linkage content of 90-99%. The at least one thiol compound is represented by the general formula R—S—H, where R is a hydrocarbyl group or a substituted hydrocarbyl group. The lanthanide-based catalyst composition comprises (a) a lanthanide compound, (b) an alkylating agent, and (c) a halogen source, where (c) may optionally be provided by (a), (b), or both (a) and (b). The molar ratio of the at least one thiol compound to the lanthanide compound used in the polymerization process ranges from 0.01:1 to 100:1. Improved solution polymerization processes regarding the same are also disclosed herein.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: January 16, 2018
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Kevin M. McCauley, Steven Luo
  • Patent number: 9856189
    Abstract: Methods and compositions are provided for refining natural oils and for producing high-weight esters, high-weight acids, and/or high-weight derivatives thereof, wherein the compositions are made by cross-metathesizing low-weight unsaturated esters or low-weight unsaturated acids having hydrocarbon chain lengths less than or equal to C24 with an olefin feedstock, thereby forming a metathesized product composition including high-weight esters or high-weight acids having hydrocarbon chain lengths greater than C18, wherein at least a portion of the hydrocarbon chain lengths in the metathesized product are larger than the hydrocarbon chain lengths in the starting feedstock.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 2, 2018
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Bruce Firth, Brian M. Pease, Alexander D. Ilseman, Garrett Zopp, Timothy A. Murphy, Robin Weitkamp, Michelle Morie-Bebel
  • Patent number: 9837181
    Abstract: The disclosure generally relates to a dispersion of nanoparticles in a liquid medium. The liquid medium is suitably water-based and further includes an ionic liquid-based stabilizer in the liquid medium to stabilize the dispersion of nanoparticles therein. The stabilizer can be polymeric or monomeric and generally includes a moiety with at least one quaternary ammonium cation from a corresponding ionic liquid. The dispersion suitably can be formed by shearing or otherwise mixing a mixture/combination of its components. The dispersions can be used to form nanoparticle composite films upon drying or otherwise removing the liquid medium carrier, with the stabilizer providing a nanoparticle binder in the composite film. The films can be formed on essentially any desired substrate and can impart improved electrical conductivity and/or thermal conductivity properties to the substrate.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: December 5, 2017
    Assignee: EASTERN MICHIGAN UNIVERSITY
    Inventor: John Texter
  • Patent number: 9809678
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having two or more sites that can initiate polymerization. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups and a high percentage of carbonate linkages. The compositions are further characterized in that they contain polymer chains having an embedded polyfunctional moiety linked to a plurality of individual polycarbonate chains.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: November 7, 2017
    Assignee: Saudi Aramco Technologies Company
    Inventors: Scott D. Allen, Geoffrey W. Coates, Anna E. Cherian, Chris A. Simoneau, Alexei A. Gridnev, Jay J. Farmer
  • Patent number: 9796800
    Abstract: A method for producing a polydiene, the method comprising of combining a lanthanide compound, an alkylating agent, a halogen source, and optionally conjugated diene monomer to form an active preformed catalyst; independent of step (i), introducing an amine with conjugated diene monomer to be polymerized; independent of step (i), introducing the active preformed catalyst to the conjugated diene monomer to be polymerized to form an active polymerization mixture, where the active polymerization mixture includes less than 10% by weight, based on the total weight of the active polymerization mixture, of a solvent; and allowing the monomer to be polymerized to polymerize in the presence of the amine.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 24, 2017
    Assignee: Bridgestone Corporation
    Inventors: Kevin M. McCauley, Steven Luo
  • Patent number: 9555160
    Abstract: The invention relates to a process for producing an (ultra) high molecular weight polyethylene (HMWPE) article comprising: incorporating into the HMWPE resin a Hindered Amine Light Stabilizer (HALS) and cross-link the (U)HMWPE during or after molding the (U)HMWPE resin.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: January 31, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Harold Jan Smelt, Pieter Gijsman, Martin Van Duin
  • Patent number: 9487622
    Abstract: Disclosed is an improved process for preparing a modified polyalkylene terephthalate by melt polycondensation followed optionally by solid state condensation comprising reacting an alkylene diol and polyethylene terephthalate, wherein polymerization occurs in the presence of a catalyst complex formed by reaction of tetra(alkyl) titanate and a compound selected from phosphorus-containing compounds, nitrogen-containing compounds, boroncontaining compounds, and combinations thereof.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: November 8, 2016
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Husnu Alp Alidedeoglu, Tianhua Ding, Ganesh Kannan
  • Patent number: 9440869
    Abstract: Disclosed are sol gel derived materials obtained from at least one first precursor and at least one second precursor, as well as sol gel derived compositions containing a plurality of alkylsiloxy substituents obtained from such sol-gel derived materials.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: September 13, 2016
    Assignee: ABS MATERIALS, INC.
    Inventors: Paul L. Edmiston, Stephen R. Spoonamore, Tatiana Eliseeva
  • Patent number: 9422375
    Abstract: Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadien
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 23, 2016
    Inventors: Matthew D. Christianson, Timothy S. De Vries, Robert D J Froese, Matthias S. Ober, Jasson T. Patton, Duane R. Romer, Gordon R. Roof, Lixin Sun, Endre Szuromi, Curt N. Theriault, Dean M. Welsh, Timothy T. Wenzel, Paul H. Moran
  • Patent number: 9388098
    Abstract: Methods and compositions are provided for refining natural oils and for producing high-weight esters, high-weight acids, and/or high-weight derivatives thereof, wherein the compositions are made by cross-metathesizing low-weight unsaturated esters or low-weight unsaturated acids having hydrocarbon chain lengths less than or equal to C24 with an olefin feedstock, thereby forming a metathesized product composition including high-weight esters or high-weight acids having hydrocarbon chain lengths greater than C18, wherein at least a portion of the hydrocarbon chain lengths in the metathesized product are larger than the hydrocarbon chain lengths in the starting feedstock.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: July 12, 2016
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Bruce Firth, Brian M. Pease, Alexander D. Ilseman, Garrett Zopp, Timothy A. Murphy, Robin Weitkamp, Michelle Morie-Bebel
  • Patent number: 9353205
    Abstract: Disclosed herein are solution polymerization processes for producing a high-cis polydiene. The processes include polymerizing at least one conjugated diene monomer in an organic solvent in the presence of at least one thiol compound and a lanthanide-based catalyst composition to produce a polydiene having a cis-1,4-linkage content of 90-99%. The at least one thiol compound is represented by the general formula R—S—H, where R is a hydrocarbyl group or a substituted hydrocarbyl group. The lanthanide-based catalyst composition comprises (a) a lanthanide compound, (b) an alkylating agent, and (c) a halogen source, where (c) may optionally be provided by (a), (b), or both (a) and (b). The molar ratio of the at least one thiol compound to the lanthanide compound used in the polymerization process ranges from 0.01:1 to 100:1. Improved solution polymerization processes regarding the same are also disclosed herein.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 31, 2016
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Kevin M. McCauley, Steven Luo
  • Patent number: 9315601
    Abstract: A solid catalyst component for olefin polymerization and a catalyst are disclosed that exhibit high catalytic activity when used for gas-phase polymerization, suppress rapid reactions in the initial stage of polymerization relative to the polymerization activity, and can produce a propylene polymer in high yield while maintaining high stereoregularity. The solid catalyst component for olefin polymerization includes magnesium, titanium, a halogen, and an internal electron donor, the solid catalyst component including an asymmetrical phthalic diester represented by the following general formula (1) in a molar ratio of 0.2 to 0.8 relative to the total content of the internal electron donor.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 19, 2016
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Kunihiko Tashino, Takashi Fujita, Toshiya Uozumi, Yuta Haga
  • Patent number: 9284392
    Abstract: Solid catalyst components are disclosed, which include titanium, magnesium, halogen and a combination of internal electron donor compounds containing at least one 1,8 naphthyl diester compound of Formula (II-1) and at least one 3,3-bis(methoxymethyl) alkane of Formula (II-2): wherein R1, R2, R3, R4, R5, R6, R7, R8, A, and B are described herein. Catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds are also discussed. This disclosure relates to methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha olefins using the catalyst systems.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 15, 2016
    Assignee: BASF Corporation
    Inventor: Main Chang
  • Patent number: 9206265
    Abstract: An olefin polymer that is obtained using an olefin polymerization catalyst that includes a solid catalyst component for olefin polymerization that includes titanium, magnesium, a halogen, and an ester compound (A) represented by the following formula (1): R1R2C?C(COOR3)(COOR4), an organoaluminum compound, and an optional external electron donor compound, exhibits primary properties (e.g., molecular weight distribution and stereoregularity) similar to those of an olefin polymer obtained using a solid catalyst component that includes a phthalic ester as an electron donor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 8, 2015
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Toshiya Uozumi, Shingo Yamada, Noriaki Nakamura, Koichiro Hisano, Motoki Hosaka, Toshihiko Sugano
  • Patent number: 8987505
    Abstract: An alternative method for efficiently producing lactic acids from a carbohydrate-containing raw material such as cellulose is provided. The method for producing lactic acid and/or lactic acid ester comprises performing heat treatment on a carbohydrate-containing raw material in a solvent containing a catalyst, wherein the catalyst is at least one type of compound selected from the group consisting of a tin compound, an indium compound, and a rhenium compound, and the solvent contains water and/or alcohol.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 24, 2015
    Assignees: Nippon Shokubai Co., Ltd, National Institute of Advanced Industrial Science and Technology
    Inventors: Kenichi Tominaga, Atsushi Mori, Kazuhiko Satoh, Shigeru Shimada, Hideaki Tsuneki, Yoshiaki Hirano
  • Patent number: 8987166
    Abstract: The preparation of bimetallic gold-silver cerium dioxide-supported catalysts and the process of oxidation of carbon monoxide (CO) in air to remove CO using the gold-silver cerium dioxide-supported catalysts are disclosed. The gold loading is between 0.5 and 5 wt. %. Gold and silver particle sizes are between 1 and 3 nm, and Au/Ag weight ratio is between 1 and 10. Oxidation of CO in air over these catalysts is carried out in a fixed bed reactor to remove CO.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 24, 2015
    Assignee: National Central University
    Inventors: Yu-Wen Chen, Wen-Ching Cheng
  • Publication number: 20150065669
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Errun Ding, Paul DesLauriers, Yongwoo Inn, Lili Cui, Qing Yang, Ashish Sukhadia, Guylaine St. Jean, Richard M. Buck
  • Patent number: 8956989
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 17, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8951549
    Abstract: The invention relates to a method for reducing the concentration of amines and salts thereof, wherein the amines have the general chemical formula I R1R2R3N and the salts have the formula II R1R2R3N—H, wherein the amines and salts thereof exist in aqueous solution or aqueous suspension and are brought into contact with clinoptilolitic or clinoptilolite-containing mixtures. The method itself is suitable for use in food preparation and in the manufacture of foods. The inventive idea of reducing the concentration of amines and salts thereof is also useful in the manufacture of medical products for absorbing and for removing amines from the intestinal tract or the skin area of humans and animals.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: February 10, 2015
    Assignee: Froximun AG
    Inventors: Günter Steimecke, Steffen Hoffmann, Thomas Görner
  • Patent number: 8952111
    Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 10, 2015
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Benjamin Milton Shaw, Patrick Lam, Victoria Ker, Cliff Robert Baar, Lee Douglas Henderson, Charles Ashton Garret Carter, Yan Jiang
  • Patent number: 8950392
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Patent number: 8951930
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 10, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8946109
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 3, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8940392
    Abstract: The invention relates to a titanium based polycarboxylate inorganic-organic hybrid solid material that has a pseudo-cubic crystalline structure, to a method for preparing the same using a solvo-thermal procedure, and to the uses thereof in particular for the storage of gases, the adsorption of liquids, the separation of liquids or gases, and the applications thereof in optics or catalysis, in the biomedical (controlled release drug), cosmetic fields, etc.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 27, 2015
    Assignee: Universite Pierre et Marie Curie (Paris 6)
    Inventors: Christian Serre, Gérard Ferey, Clément Sanchez, Laurence Rozes, Meenakshi Dan, Théo Frot
  • Patent number: 8940183
    Abstract: A novel composition for a photocatalyst Fe doped ZnO nano-particle photocatalyst that enables the decontamination process by degrading toxic organic material such as brilliant cresyl blue, indigo carmine and gentian blue by using solar light is described. In the current disclosure method of making a specific size of the nano photocatalyst is described. Characterization of the photocatalyst, optimal working conditions and efficient use of solar light has been described to show that this photocatalyst is unique. The process described to use the photocatalyst to degrade toxic organic material using the solar light to activate the photocatalyst is cost efficient and cheap to clean our water resources.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 27, 2015
    Assignee: King Abdulaziz University
    Inventors: Abdullah Mohamed Asiri, Sher Bahadar Khan, Khalid Ahmad Alamry, Mohammed M Rahman, Mohamed Saeed Alamoodi
  • Publication number: 20150025204
    Abstract: Provided are a hybrid supported metallocene catalyst, a method for preparing the same, and a process for preparing an olefin polymer using the same, and more particular, a hybrid supported metallocene catalyst characterized in that two kinds of metallocene compounds containing a new cyclopenta[b]fluorenyl transition metal compound are supported on an inorganic or organic porous carrier surface-treated with an ionic compound and a co-catalyst, a method for preparing the same, and a process for preparing an olefin polymer using the hybrid supported metallocene catalyst.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 22, 2015
    Applicant: SK Innovation Co., Ltd.
    Inventors: Ho Seong Lee, Dong Cheol Shin, Sung Seok Chae, Kyu Cheol Cho, Seung Yeol Han, Jong Sok Hahn
  • Patent number: 8921509
    Abstract: Provided is a composition with partially aromatic polyester polymers having an It.V. of at least 0.50 dL/g, produced in an ester exchange melt phase process, having from zero or greater than zero to less than 5 ppm titanium, from zero or greater than zero to less then 10 ppm germanium, and from zero or greater than zero to less than 20 ppm manganese.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Zhufang Liu, Jeff Scott Howell
  • Patent number: 8921628
    Abstract: A process for biomass catalytic cracking is described herein. More specifically, the process comprises heating the cellulosic biomass to a conversion temperature in presence of a mixed metal oxide catalyst represented by the formula (X1O).(X2O)a.(X3YbO4), wherein X1, X2 and X3 are alkaline earth elements selected from the group of Mg, Ca, Be, Ba , and mixture thereof, and Y is a metal selected from the group of Al, Mn, Fe, Co, Ni, Cr, Ga, B, La, P and mixture thereof.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 30, 2014
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8912110
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Patent number: 8901271
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 6 mol % comonomer, using a mixed metal catalyst system and comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form PET and EG, wherein the catalyst system substantially consists of 70-160 ppm of Sb-compound, 20-70 ppm of Zn-compound, and 0.5-20 ppm of Ti-glycolate as active components (ppm metal based on PET). With this process that applies reduced amount of metal catalyst components PET can be obtained with high productivity, which polyester shows favorable color and optical clarity, also if recycling of EG is applied within the process.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 2, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Munif Al-Munif, Mummaneni Venkateswara Rao, Zahir Bashir, Suresh Padmanabhan
  • Patent number: 8889819
    Abstract: A method for producing a polyester resin composition includes conducting polyconensation via esterification or transesterification, wherein an alkali metal phosphate in an amount of 1.3 mol/ton to 3.0 mol/ton and phosphoric acid in an amount of 0.4 to 1.5 times (by mole) that of the alkali metal phosphate are added at a stage between the point of time when the esterication or transesterification has been substantially completed and the point of time when the intrinsic viscosity reaches 0.4. A polyester resin composition obtained by the process exhibits excellent long-term hydrolysis resistance and excellent mechanical characteristics.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: November 18, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Hiroji Kojima, Jun Sakamoto, Mayumi Sunako
  • Patent number: 8859696
    Abstract: A process for producing an oligomeric product by oligomerization of at least one olefinic compound, the process including a) providing an activated oligomerization catalyst, by combining, in any order, i) a source of chromium, ii) a ligating compound, iii) a catalyst activator or combination of catalyst activators, b) providing a zinc compound, and c) contacting the at least one olefinic compound with a composition containing the activated oligomerization catalyst and the zinc compound, the zinc compound being present in a sufficient quantity such that the ratio of the molar amount of zinc in the zinc compound to the molar amount of chromium in the source of chromium is between 1 and 10,000. The invention also provides a process of activating an oligomerization catalyst to be used to produce an oligomeric product from at least one olefinic compound.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: October 14, 2014
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Martin John Hanton, David Matthew Smith, William Fullard Gabrielli, Mark William Kelly
  • Patent number: 8846811
    Abstract: A dual catalyst system comprising a phosphinimine ligand containing catalyst and phenoxide ligand (preferably a salicylaldimine) on a support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 30, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
  • Patent number: 8846188
    Abstract: A novel PE material is devised showing excellent mechanical/optical properties and process ability, e.g. for film extrusion. The polyethylene of the invention is produced in one single e.g. gas phase reactor.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: September 30, 2014
    Assignee: Basell Poliolefine GmbH
    Inventors: Fabiana Fantinel, Gerd Mannebach, Shahram Mihan, Gerhardus Meier, Iakovos Vittorias
  • Patent number: 8828903
    Abstract: Disclosed are catalytic compositions having from about 35% to about 75% of Cu by weight, from about 15% to about 35% of Al by weight, and about 5% to about 20% of Mn by weight. The catalytic compositions are bulk homogeneous compositions formed from extruding and calcinating a powder formed from a precipitation reaction of Cu(NO3)2, Mn(NO3)2, Na2Al2O3. The catalytic compositions have one or more crystalline phases of one or more of CuO and CuxMn(3-x)O4, where x is from about 1 to about 1.5, or both. The catalytic compositions are useful for the conversion of 1,4-butane-di-ol to ?-butyrolactone by a dehydrogenation reaction.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: September 9, 2014
    Assignee: BASF Corporation
    Inventor: Jianping Chen
  • Patent number: 8822714
    Abstract: The present invention relates to a more advanced preparation method of organic-transition metal hydride as a hydrogen storage material, precisely a more advanced preparation method of organic-transition metal hydride containing aryl or alkyl group that facilitates safe and reverse storage of massive amount of hydrogen. The present invention relates to a preparation method of an organic-transition metal hydride comprising the steps of preparing a complex reducing agent composition by reacting alkali metal, alkali earth metal or a mixture thereof and (C10-C20) aromatic compound in aprotic polar solvent and preparing organic-transition metal hydride by reacting the prepared complex reducing agent composition and organic transition metal halide. The method of the present invention has advantages of minimizing the numbers and the amounts of byproducts by using a complex reducing agent and producing organic-transition metal hydride safely without denaturation under more moderate reaction conditions.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 2, 2014
    Assignee: Hanwha Chemical Corporation
    Inventors: Jong Sik Kim, Dong Ok Kim, Hee Bock Yoon, Jaesung Park, Hyo Jin Jeon, Gui Ryong Ahn, Dong Wook Kim, Jisoon Ihm, Moon-Hyun Cha
  • Publication number: 20140228206
    Abstract: A bis-imine complex of lanthanides having general formula (I): Said bis-imine complex of lanthanides having general formula (I) can be advantageously used in a catalytic system for the (co)polymerization of conjugated dienes.
    Type: Application
    Filed: September 13, 2012
    Publication date: August 14, 2014
    Applicant: Versalis S.P.A.
    Inventors: Giovanni Ricci, Anna Sommazzi, Giuseppe Leone, Aldo Boglia, Francesco Masi
  • Patent number: 8796173
    Abstract: A method for producing phthalic anhydride by catalytic gas-phase oxidation of o-xylene and/or naphthalene, carried out by means of a catalyst arrangement which has a first catalyst layer at the gas inlet side and at least one second catalyst layer after the first catalyst layer in the gas flow direction with different catalytic activity, wherein when the gas-phase oxidation is being carried out a lower maximum temperature is formed in the first catalyst layer than in the second catalyst layer. Furthermore, a method for producing the catalyst arrangement, as well as the catalyst arrangement itself.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: August 5, 2014
    Assignee: Süd-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Gerhard Mestl
  • Patent number: 8785340
    Abstract: The catalyst exhibiting hydrogen spillover effect relates to the composition of a catalyst exhibiting hydrogen spillover effect and to a process for preparing the catalyst. The catalyst has a reduced transition base metal of Group VIB or Group VIIIB, such as cobalt, nickel, molybdenum or tungsten, supported on a high porous carrier, such as saponite, the base metal being ion-exchanged with at least one precious metal of Group VIIIB. The process includes the steps of loading the base metal onto the support, reducing the base metal, preferably with H2 at 600° C., and thereafter ion-exchanging the precious metal with the base metal. Preferred examples of the catalyst include a saponite support loaded with about 10-20 wt % cobalt and about 0.1-1 wt % precious metal. The catalyst is optimized for reactions that occur in commercial processes at about 360-400° C., such as in hydrocracking.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: July 22, 2014
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Takuma Kimura, Mohammad Abdullah Al-Saleh, Halim Hamid Redhwi, Mohammad Ashraf Ali, Shakeel Ahmed, Masayuki Inui
  • Patent number: 8785346
    Abstract: A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 22, 2014
    Assignees: Lawrence Livermore National Security, LLC, Universitaet Bremen
    Inventors: Juergen Biener, Alex V. Hamza, Marcus Baeumer, Christian Schulz, Birte Jürgens, Monika M. Biener
  • Publication number: 20140163181
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing three metallocene components, often resulting in polymers having a reverse comonomer distribution and a broad and non-bimodal molecular weight distribution.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu, Yongwoo Inn
  • Patent number: 8748335
    Abstract: A photodegradation catalyst or a photodegradation catalyst precursor comprises a plurality of domains of an oxide of a first metal distributed in a substrate of a halide or oxyhalide of a second metal, wherein the mole percentage of the halide or oxyhalide of the second metal is above 50%. Additionally, a method of preparing a photodegradation catalyst or a photodegradation catalyst precursor, a photodegradation catalyst or a photodegradation catalyst precursor obtained from the method and a method of treating organic pollutants or substances in air or water by using the photodegradation catalyst or the photodegradation catalyst precursor are illustrated.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 10, 2014
    Assignee: Microvast, Inc.
    Inventors: Xiao Ping Zhou, Fei Chen, Jeff Qiang Xu