Nonmetallic Organic Sulfur Containing Patents (Class 502/122)
-
Patent number: 10734666Abstract: Active materials for flow batteries can include various coordination compounds formed from transition metals. Some compositions containing coordination compounds can include a substituted catecholate ligand having a structure of in a neutral form or a salt form, in which Z is a heteroatom functional group bound to the substituted catecholate ligand at an open aromatic ring position and n is an integer ranging between 1 and 4. When more than one Z is present, each Z can be the same or different. Electrolyte solutions can include such coordination compounds, and such electrolyte solutions can be incorporated within a flow battery.Type: GrantFiled: November 2, 2017Date of Patent: August 4, 2020Assignee: Lockheed Martin Energy, LLCInventor: Steven Y. Reece
-
Patent number: 10320023Abstract: Titanium catecholate complexes can be desirable active materials for flow batteries and other electrochemical energy storage systems, particularly when incorporated in aqueous electrolyte solutions. It can be desirable to avoid introducing even traces of certain organic solvents into aqueous electrolyte solutions. Neat methods for synthesizing titanium catecholate complexes can help avoid the unwanted introduction of trace organic solvents into aqueous electrolyte solutions and also provide further advantages. Methods for synthesizing titanium catecholate complexes can include: combining a catechol compound and a titanium reagent in an absence of solvent to produce a reaction mixture, and reacting the titanium reagent with the catechol compound in a neat state to form a titanium catecholate complex containing at least one catecholate ligand. The titanium catecholate complex can be further reacted with a base to produce a salt form titanium catecholate complex, which can be present in an aqueous phase.Type: GrantFiled: February 16, 2017Date of Patent: June 11, 2019Assignee: Lockheed Martin Energy, LLCInventors: Matthew Millard, Emily Grace Nelson
-
Patent number: 9006127Abstract: The present invention relates to a support for silver catalyst used in the ethylene oxide production, a preparation method for the same, a silver catalyst prepared from the same, and its use in the ethylene oxide production. The silver catalyst produced from the silver catalyst support has an improved activity, stability and/or selectivity in the production of ethylene oxide by epoxidation of ethylene.Type: GrantFiled: September 13, 2011Date of Patent: April 14, 2015Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical CorporationInventors: Jun Jiang, Jianshe Chen, Jinbing Li, Shuyun Li, Zhixiang Zhang, Wei Lin, Qian Xue
-
Publication number: 20140275456Abstract: Non-phthalate compounds having a structure represented by the general formula and a method for using same are provided as electron donors in the Ziegler-Natta type catalyst system for the homopolymerization or copolymerization of alpha olefins. The non-phthalate compounds may be used in the preparation of the solid catalyst component, thus serving as “internal electron donors”, or employed during or prior to polymerization as “external electron donors,” and therefore they can be used to prepare phthalate-free polyolefins.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Applicant: Formosa Plastics Corporation, USAInventors: Demin Xu, Lei Zhang
-
Patent number: 8653316Abstract: The present invention relates to a process for the preparation of linear low molecular weight alpha-olefins having 4 to 24 carbon atoms, comprising oligomerizing ethylene in an inert solvent in the presence of a catalyst system comprising: (i) zirconium carboxylate of the formula (R1COO)mZrCl4-m, wherein R1 is saturated or unsaturated aliphatic C1-C10 hydrocarbon or aromatic C6-C14 hydrocarbon and m fulfills 1?m?4, (ii) at least one aluminum compound selected from organoaluminum compounds of the formula R2nAlX3-n, wherein R2 is C1-C20 alkyl, X is chlorine, bromine or iodine, and n fulfills 1?n?2, and/or aluminoxanes, and (iii) at least two different additives selected from the group consisting of hydrogen, esters, ketones, ethers, amines, anhydrides, phosphines and sulfur compounds; as well as to a catalyst used therein.Type: GrantFiled: August 10, 2006Date of Patent: February 18, 2014Assignee: Saudi Basic Industries CorporationInventors: Vugar O. Aliyev, Atieh Abu-Raqabah, Mohammad Zahoor
-
Patent number: 8648000Abstract: Process for producing homopolymers or copolymers of conjugated dienes by contacting monomeric material including at least one conjugated diene with a catalyst system comprising (A) a first transition metal compound selected from Cr, Mo and W compounds, and a second transition metal compound selected from Fe, Co and Ni compounds, (B) a catalyst modifier and, optionally, (C) one or more catalyst activators.Type: GrantFiled: October 26, 2007Date of Patent: February 11, 2014Assignee: Ineos Commercial Services UK LimitedInventors: Juan Jose Chirinos-Colina, Vernon Charles Gibson, Grant Berent Jacobsen
-
Patent number: 8647599Abstract: The present invention relates to a process for preparing TiO2/SiO2 mixed oxides or the hydrates and/or oxide hydrates thereof comprised of 0.5 to 95 wt % SiO2 and the balance as TiO2, each referring to the completely calcined product, by using titanium alcoholates and aqueous silica sol. Moreover, the invention relates to the use of these mixed oxides as catalyst carriers.Type: GrantFiled: September 2, 2010Date of Patent: February 11, 2014Assignee: Sasol Germany GmbHInventors: Jurgen Schimanski, Kai Dallmann, Sohnke Rolfs, Kai Dolling, Andrea Brasch, Ute Freese
-
Patent number: 8541332Abstract: Disclosed is a catalyst for the polymerization of olefins comprising thienyl-substituted silanes, which comprises a solid titanium catalyst component containing titanium, magnesium and a halogen as the main components, an alkylaluminum compound, and a component of organosiloxane compound comprising two thienyl as substituents represented by general formula (I). The molar ratio of each catalyst component is 1:50-150:5-50 based on titanium:aluminum:silicon. When the catalyst is used in the polymerization of propylene, the polymerisate obtained has a very high degree of isotacticity, and the yield is high.Type: GrantFiled: June 3, 2011Date of Patent: September 24, 2013Assignee: PetroChina Company LimitedInventors: Zhifei Li, Kuilong Tan, Hao Wang, Jianjun Yi, Qinghong Xu, Weisong Cui, Wei Bai, Xinyuan Liu, Pu Xu, Wanqing Ju
-
Publication number: 20130131292Abstract: Disclosed is a catalyst for the polymerization of olefins comprising thienyl-substituted silanes, which comprises a solid titanium catalyst component containing titanium, magnesium and a halogen as the main components, an alkylaluminum compound, and a component of organosiloxane compound comprising two thienyl as substituents represented by general formula (I). The molar ratio of each catalyst component is 1:50-150:5-50 based on titanium:aluminum:silicon. When the catalyst is used in the polymerization of propylene, the polymerisate obtained has very high degree of isotacticity, and the yield is high.Type: ApplicationFiled: June 3, 2011Publication date: May 23, 2013Applicant: PetroChina Company LimitedInventors: Zhifei Li, Kuilong Tan, Hao Wang, Jianjun Yi, Qinghong Xu, Weisong Cui, Wei Bai, Xinyuan Liu, Pu Xu, Wanqing Ju
-
Patent number: 8298978Abstract: Single site reactor/catalyst continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation may be improved by treating the support with a metal salt. The activator and catalyst are then deposited on the treated support. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.Type: GrantFiled: October 14, 2010Date of Patent: October 30, 2012Assignee: Nova Chemicals (International) S.A.Inventors: Xiaoliang Gao, Billy Gaspar Santos, Peter Phung Minh Hoang, Amy Marie Jones, Benjamin Milton Shaw, Ian Ronald Jobe
-
Publication number: 20120226004Abstract: A catalyst component for olefin polymerization is disclosed, which comprises at least one diol ester type electron donor compound (a) and at least one diether type electron donor compound (b) among others, wherein the molar ratio of a to b is 0.55-50. A preparation method of the catalyst component, a catalyst comprising the catalyst component, and an olefin polymerization method using the catalyst which can especially be used for preparation of polypropylenes of low ash contents are also disclosed.Type: ApplicationFiled: April 19, 2010Publication date: September 6, 2012Inventors: Xianzhi Xia, Jin Zhao, Yuexiang Liu, Jigui Zhang, Weili Li, Yang Tan, Suzhen Qiao, Renqi Peng, Ping Gao, Maoping Yin, Tianyi Zhang
-
Patent number: 8202669Abstract: A precursor electro-catalyst composition for producing a fuel cell electrode. The precursor composition comprises (a) a molecular metal precursor dissolved or dispersed in a liquid medium and (b) a polymer dissolved or dispersed in the liquid medium, wherein the polymer is both ion-conductive and electron-conductive with an electronic conductivity no less than 10?4 S/cm (preferably greater than 10?2 S/cm) and ionic conductivity no less than 10?5 S/cm (preferably greater than 10?3 S/cm). Also disclosed is an electro-catalyst composition derived from this precursor composition, wherein the molecular metal precursor is converted by heat and/or energy beam to form nanometer-scaled catalyst particles and the polymer forms a matrix that is in physical contact with the catalyst particles, coated on the catalyst particles, and/or surrounding the catalyst particles as a dispersing matrix with the catalyst particles dispersed therein when the liquid is removed.Type: GrantFiled: October 19, 2006Date of Patent: June 19, 2012Assignee: Nanotek Instruments, Inc.Inventors: Bor Z. Jang, Aruna Zhamu, Jiusheng Guo
-
Patent number: 8193288Abstract: This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.Type: GrantFiled: October 15, 2008Date of Patent: June 5, 2012Assignee: Sinopec Yangzi Petro-Chemical Ltd.Inventors: Yuefeng Gu, Chuanfeng Li, Xiaoli Yao, Zhonglin Ma, Bo Liu, Feng Guo, Yaming Wang, Jiye Bai, Shaohui Chen, Xiaoqiang Li
-
Patent number: 8119553Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.Type: GrantFiled: September 28, 2007Date of Patent: February 21, 2012Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
-
Patent number: 8097149Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.Type: GrantFiled: June 17, 2008Date of Patent: January 17, 2012Assignee: Headwaters Technology Innovation, LLCInventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou
-
Publication number: 20110237764Abstract: The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.Type: ApplicationFiled: October 15, 2008Publication date: September 29, 2011Inventors: Yuefeng Gu, Xiaoli Yao, Chuanfeng Li, Zhonglin Ma, Feng Guo, Bo Liu, Yaming Wang, Shaohui Chen, Xiaoqiang Li, Jiye Bai
-
Publication number: 20110152486Abstract: This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.Type: ApplicationFiled: October 15, 2008Publication date: June 23, 2011Inventors: Yuefeng Gu, Chuanfeng Li, Xiaoli Yao, Zhonglin Ma, Bo Liu, Feng Guo, Yaming Wang, Jiye Bai, Shaohui Chen, Xiaoqiang Li
-
Patent number: 7795166Abstract: A functional group-selective hydrogenation catalyst is provided, which is capable of selectively hydrogenating an aliphatic carbon-carbon double bond, aliphatic carbon-carbon triple bond, aromatic formyl group or aromatic nitro group contained in an organic compound. The catalyst includes a carrier, and palladium and an organic sulfur compound supported jointly thereon.Type: GrantFiled: December 1, 2006Date of Patent: September 14, 2010Assignee: N.E. Chemcat CorporationInventors: Hironao Sajiki, Tomohiro Maegawa, Kosaku Hirota
-
Patent number: 7790819Abstract: Cyclic organosilicon compounds that may be employed as an electron donor for polymerization catalyst systems, polymerization catalyst systems employing the cyclic organosilicon compounds as an electron donor, methods of making the polymerization catalyst systems, and polymerization processes to produce polyolefin are disclosed. The organosilicon compounds, which are useful as electron donors in polymerization catalyst systems for the production of polyolefins, are represented by the formula: where Q1, Q2, Q3, and Q4 may be identical or different and are each hetero-atoms selected from the group consisting of N, O, S, Si, B, and P. R1, R2, R3, and R4 may be identical or different and are each hydrocarbon-based substituents to Q1, Q2, Q3, and Q4, respectively. The subscripts i, j, m, and n are independently 0 to 3 R5 and R6 may be identical or different and are each a bridging group with a backbone chain length between the two hetero-atoms Q1 and Q3, and Q2 and Q4, respectively, 1-8 atoms.Type: GrantFiled: April 13, 2009Date of Patent: September 7, 2010Assignee: Formosa Plastics Corporation, U.S.A.Inventors: Yiqun Fang, Honglan Lu
-
Publication number: 20100184930Abstract: An olefin polymerization catalyst and preparation method and use thereof are provided. The catalyst component comprises (1) an active magnesium halide, (2) a titanium compound containing at least one Ti-halide bond supported thereon, and (3) an electron donor selected from the group consisting of one or more sulfonyl-containing compounds having the following formula. There are two methods for preparing such solid catalyst component: I) treating the active magnesium halide (1) particles with alkylaluminum, subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times; II) adding spherical magnesium chloride alcoholate particles to the solution of titanium compound (2), subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times. The catalyst system comprises such solid catalyst component, a co-catalyst (alkylaluminum compound) and an external electron donor.Type: ApplicationFiled: May 15, 2008Publication date: July 22, 2010Applicant: Petrochina Company LimitedInventors: Jianjun Yi, Chunming Cui, Huashu Li, Baozuo Yin, Jianying Zhang, Xiaomei Lang, Linmei Wu
-
Patent number: 7674741Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from y-butyrolactone derivatives of a particular formula. Said catalyst components, when used in the polymerization of olefins and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.Type: GrantFiled: May 27, 2005Date of Patent: March 9, 2010Assignee: Basell Poliolefine Italia s.r.l.Inventors: Yuri Gulevich, Giulio Balbontin, Remco Kelder, Giampiero Morini, Jan Dirk Van Loon
-
Patent number: 7534842Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.Type: GrantFiled: November 16, 2005Date of Patent: May 19, 2009Assignee: Chevron Phillips Chemical Company, LPInventors: Kumudini C. Jayaratne, Michael D. Jensen, Matthew G. Thorn, Max P. McDaniel, Qing Yang
-
Patent number: 7511183Abstract: The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.Type: GrantFiled: December 19, 2003Date of Patent: March 31, 2009Assignee: Sasol Technology (PTY) LimitedInventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Lana Pepler, Hamdani Ahmed Mahomed, Matthew James Overett
-
Patent number: 7371802Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from thiophene dicarboxylate derivatives of a particular formula. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.Type: GrantFiled: October 13, 2004Date of Patent: May 13, 2008Assignee: Basell Poliolefine Italia s.r.l.Inventors: Yuri Gulevich, Giampiero Morini, Maria Fusto
-
Patent number: 7285607Abstract: This invention relates to a process for producing a polymeric product by the polymerisation of at least one olefinic compound in the form of an olefin or a compound including an olefinic moiety by contacting the at least one olefinic compound with a polymerisation catalyst. The catalyst comprises the combination of a source of a Group IV to VI transition metal; and a ligating compound of the formula (R1)mX1(Y)X2(R2)n. The process is characterised therein that when R1 and R2 are independently a hydrocarbyl group or a heterohydrocarbyl group which contains at least one non-polar substituent, the olefinic compound is contacted with the polymerisation catalyst at a reaction temperature from and above 70° C.; and where R1 and R2 are independently a hydrocarbyl group or a heterohydrocarbyl group which contains no substituent, the olefinic compound is contacted with the polymerisation catalyst at a reaction temperature from and above 90° C.Type: GrantFiled: May 17, 2005Date of Patent: October 23, 2007Assignee: Sasol, Chemical Industries, LimitedInventors: Kevin Blann, Deon De Wet-Roos, Dawid Johannes Joubert, Esna Killian, John Thomas Dixon, Nonhlanhla Jillian Phelembe, Aletta Du Toit
-
Patent number: 7220805Abstract: There are provided (1) a process for producing a contact product, which comprises the step of contacting at least a phthalocyanine complex, a porphyrin complex, or their combination with a surfactant; (2) a catalyst component for addition polymerization, which comprises said contact product; (3) a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component, a compound of a metal atom of Groups 3 to 12 or the lanthanide series, and an optional organoaluminum compound with one another; and (4) a process for producing an addition polymer, which comprises the step of polymerizing an addition polymerizable monomer in the presence of said catalyst.Type: GrantFiled: January 12, 2005Date of Patent: May 22, 2007Assignee: Sumitomo Chemical Company, LimitedInventor: Kazuo Takaoki
-
Patent number: 7160833Abstract: A spray-dried composition comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from about 1 ?m to about 12 ?m, and a polymerization process using the same.Type: GrantFiled: July 13, 2004Date of Patent: January 9, 2007Assignee: Dow Global Technologies Inc.Inventors: Burkhard Eric Wagner, Mark Wilton Smale, Robert James Jorgensen
-
Patent number: 7148302Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.Type: GrantFiled: October 3, 2005Date of Patent: December 12, 2006Assignee: The Goodyear Tire & Rubber CompanyInventor: John-Henry Lipian
-
Patent number: 6969747Abstract: An olefin polymerization titanium catalyst. It comprises a titanium compound and an organoaluminium compound cocatalyst supported on a soluble polysulfone comprising free reactive sulfone groups. The molar ratio of titanium of aluminum is 1–10:200 and the weight ratio of titanium to polysulfone is 0.01–0.1:0.3–2.5. The process for preparing the catalyst comprises preparing a supported titanium compound by contacting a solution of a polysulfone in a halogenated or polar solvent with a titanium compound or a solution thereof in a halogenated or polar solvent in an inert atmosphere at a temperature between 10° C. and the boiling point of the solvent such that the weight ratio of titanium to polysulfone is 0.01–0.1:0.3–2.5. The supported titanium compound is mixed with an organoaluminium cocatalyst such that the molar ratio of titanium to aluminum is 1–10:200.Type: GrantFiled: January 25, 2002Date of Patent: November 29, 2005Assignee: Reliance Industries LimitedInventors: Sumit Bhaduri, Virendra Kumar Gupta
-
Patent number: 6916761Abstract: In order to provide a novel Lewis acid catalyst, which shows high reaction activity in aqueous medium, is easily recovered, and is excellent in reusability, a Lewis acid group expressed by the general formula (I): MXn??(I) (wherein M represents a polyvalent element, X represents an anionic group, and n is an integer representing the valence of M) is linked and supported on a polymer membrane via an SO3 or SO4 group.Type: GrantFiled: October 23, 2000Date of Patent: July 12, 2005Assignee: Japan Science and Technology CorporationInventor: Shu Kobayashi
-
Patent number: 6887817Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.Type: GrantFiled: August 27, 2003Date of Patent: May 3, 2005Assignee: Formosa Plastics Corporation, U.S.A.Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
-
Patent number: 6878659Abstract: A solid catalyst component for olefin polymerization characterized by being formed from (a) a magnesium compound, (b) titanium tetrachloride, (c) a phthalic diester and a derivative thereof, and either (d1) a hydroxylated hydrocarbon compound (phenol, etc.) represented by a specific formula or (d2) a mercapto-containing hydrocarbon compound (thiophenol, etc.) represented by a specific formula. With a catalyst obtained from this solid catalyst component, an olefin polymer can be obtained in extremely high yield. In particular, a propylene polymer which retains high stereoregularity can be obtained in extremely high yield.Type: GrantFiled: May 24, 2001Date of Patent: April 12, 2005Assignee: Toho Titanium Co., Ltd.Inventors: Kunihiko Tashino, Isa Nishiyama, Takuma Yoshida, Yukihiro Suzuki, Hayashi Ogawa, Maki Sato
-
Patent number: 6841502Abstract: New ligands and compositions with bridged bis-aromatic ligands are disclosed that catalyze the polymerization of monomers into polymers. These catalysts with metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, propylene or styrene. The catalysts also polymerize propylene into isotactic polypropylene.Type: GrantFiled: April 23, 2003Date of Patent: January 11, 2005Assignee: Symyx Technologies, Inc.Inventors: Thomas R. Boussie, Oliver Brümmer, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, James A. W. Shoemaker
-
Patent number: 6800580Abstract: The present invention relates to a solid complex titanium catalyst for homo-polymerization and co-polymerization of &agr;-olefin, obtained by (i) producing a solution of a magnesium compound by dissolving a magnesium compound and a compound of IIIA Group of the Periodic Table in a solvent mixed with cyclic ether, one or more types of alcohol, a phosphorous compound, and an organosilane, (ii) precipitating the solid particles by reacting said magnesium solution with a compound of a transition metal, a silicon compound, or the mixture thereof, and (iii) reacting said precipitated solid particles with a titanium compound and an electron donor. The catalyst of the present invention is of large particle size, narrow particle distribution, and high catalytic activity, while the polymers obtained with the use of this catalyst are of excellent stereoregularity.Type: GrantFiled: September 3, 2002Date of Patent: October 5, 2004Assignee: Samsung General Chemicals Co., Ltd.Inventors: Chun Byung Yang, Mie Ock Kim
-
Patent number: 6730626Abstract: Useful as a catalyst component for polymerizing olefin is the transition metal compound of the present invention represented by Formula (I): wherein M represents a transition metal compound of the fourth group in the periodic table; X represents a &sgr; bonding ligand; Y represents a Lewis base; T represents a group containing a &sgr; bonding atom; E is a specific group containing an atom which can coordinate with M via a lone pair; q is 1 or 2 and represents [(valency of M)−2]; r represents an integer of 0 to 3; R1 to R4 represent a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a silicon-containing group or a hetero atom-containing group.Type: GrantFiled: May 31, 2002Date of Patent: May 4, 2004Assignee: Idemitsu Petrochemical Co., Ltd.Inventors: Takashi Kashiwamura, Takuji Okamoto
-
Publication number: 20040054101Abstract: This process for preparing a catalyst support for the homopolymerization or copolymerization of ethylene and &agr;-olefins is characterized in that at least one organochlorine compound and a premix of at least one alkylmagnesium and of at least one organoaluminum compound chosen from aluminoxanes, aluminosiloxanes and alkylaluminums are reacted together, in the presence of at least one aliphatic diether as electron donor.Type: ApplicationFiled: September 9, 2003Publication date: March 18, 2004Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe
-
Publication number: 20040048991Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.Type: ApplicationFiled: September 10, 2003Publication date: March 11, 2004Applicant: Fina Technology, Inc.Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
-
Patent number: 6683018Abstract: A process for the preparation of a supported catalyst system, an inorganic carrier material being reacted with a metal compound of the formula M1(R1)r(R2)5(R3)t(R4)u I in the presence of an inert solvent in a first step and, in a subsequent step, the suspension thus obtained being reacted with a metallocene complex and a compound forming metallocenium ions, in which process the solvent is not removed after the first step and the subsequent step is carried out without isolation of the pretreated carrier material thus obtained.Type: GrantFiled: August 14, 2000Date of Patent: January 27, 2004Assignee: BASF AktiengesellschaftInventors: Marc Oliver Kristen, Laurent Deloux, Peter Kölle, Ulrich Moll, Ursula Rief
-
Publication number: 20030199388Abstract: The present invention relates to catalyst components for the polymerization of olefins, and to the catalyst obtained therefrom, particularly suitable for the stereospecific polymerization of olefins, comprising Ti, Mg, halogen and an electron donor compound selected from heteroatom containing esters of malonic acids (hereroatom containing malonates). Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.Type: ApplicationFiled: June 6, 2003Publication date: October 23, 2003Inventors: Giampiero Morini, Giulio Balbontin, Yuri V. Gulevich
-
Patent number: 6596891Abstract: An organometallic composition of a reaction product of a fluorinated organic compound of formula (I): wherein R1 to R8 are as described in the specification, m is 0 or 1; and an organometallic compound of formula (II): M′RnX(p−n) (II) wherein M′, R, X, n and p are as described in the specification; a polymerization catalyst composition using the above organometallic composition and a metallocene complex a method of making the catalyst composition and using the catalyst composition to polymerize &agr;-olefins.Type: GrantFiled: December 16, 1999Date of Patent: July 22, 2003Assignee: Enichem S.p.A.Inventors: Anna Sommazzi, Francesco Masi, Giampietro Borsotti, Antonio Proto, Roberto Santi
-
Publication number: 20020193244Abstract: An olefin polymerization catalyst comprising: (A) a solid catalyst component prepared by contacting (a) a dialkoxyl magnesium, (b) a tetra-valent titanium halide, and (c) a phthalic acid diester in (d) an aromatic hydrocarbon having a boiling point in the range of 50 to 150° C., (B) an organoaluminum compound of the formula R1pAlQ3-p, one or more compounds selected from the group consisting of (C) one or more halogen-containing organosilicon compounds selected from (C1) a halogen-containing organosilicon compound of the formula R21Si(OR3)4-l-mXm and(C2) a halogen-containing organosilicon compound of the formula R4qSi(OR5)4-q, and (D) an organosilicon compound of the formula R6sSi(OR7)4-s. The catalyst exhibits excellent activity to hydrogen and the same catalytic activity and yield performance as conventional catalysts, and possesses the capability of producing polymers with stereoregularity equivalent to conventional catalysts.Type: ApplicationFiled: May 31, 2002Publication date: December 19, 2002Inventor: Motoki Hosaka
-
Patent number: 6444603Abstract: The invention relates to a catalyst component which can provide, in combination with a transition metal compound, a catalyst for ethylenically unsaturated monomer polymerization, a catalyst comprising the catalyst component and a transition metal compound, and a process for ethylenically unsaturated monomer polymerization using the catalyst. The catalyst component comprises a compound obtained by the reaction of, in any order, (i) a compound comprising a metal of Group 13 of the periodic table; (ii) a compound capable of reacting with the compound (i) to be bonded to two or more of the Group 13 metal; (iii) a compound capable of reacting the compound (i); and optionally (iv) a hydrocarbon compound or the like.Type: GrantFiled: December 21, 1998Date of Patent: September 3, 2002Assignee: Mitsui Chemicals, Inc.Inventors: Yasushi Tohi, Haruyuki Makio, Terunori Fujita, Toshiyuki Tsutsui
-
Patent number: 6444604Abstract: Supported catalysts for the polymerization of olefins comprise the following components: (A) a porous organic support functionalised with groups having active hydrogen atoms; (B) an organo-metallic compound of aluminium containing heteroatoms selected from oxygen, nitrogen and sulphur; and (C) a compound of a transition metal selected from those of groups IVb, Vb or VIb of the Periodic Table of the Elements, containing ligands of the cyclopentadienyl type. These supported catalysts, obtainable in the form of spherical particles, can be used in the polymerization reaction of olefins either in liquid or in gas phase, thus producing polymers endowed with a controlled morphology and with a high bulk density.Type: GrantFiled: June 8, 2000Date of Patent: September 3, 2002Assignee: Basell Technology Company BVInventors: Enrico Albizzati, Tiziano Dall'Occo, Luigi Resconi, Fabrizio Piemontesi
-
Publication number: 20020119888Abstract: The present invention provides a catalyst system that exhibits unexpected control of desired properties in polyolefin products. The catalyst system includes a Ziegler-Natta or Ziegler-Natta-type catalyst in combination with a mixture of silane electron donors. This catalyst system has been found to be effective in making polypropylene and polypropylene copolymers having relatively low melting points and high decalin solubles.Type: ApplicationFiled: December 21, 2000Publication date: August 29, 2002Inventor: Nemesio D. Miro
-
Patent number: 6436864Abstract: Unsaturated nitrogenous compounds are used as electron donors in conjunction with catalytic polymerization of addition polymerizable monomers such as olefins, using supported Ziegler-Natta catalysts. The electron donors may be used in the preparation of catalyst systems, thus serving as “internal” electron donors, or they may be added during or just prior to polymerization, as an “external” electron donor.Type: GrantFiled: October 6, 1999Date of Patent: August 20, 2002Assignee: SRI InternationalInventor: Christopher D. Tagge
-
Patent number: 6423660Abstract: Supported catalysts for the polymerization of olefins comprise the following components: (A) a porous organic support functionalised with groups having active hydrogen atoms; (B) an organo-metallic compound of aluminium containing heteroatoms selected from oxygen, nitrogen and sulphur; and (C) a compound of a transition metal selected from those of groups IVb, Vb or VIb of the Periodic Table of the Elements, containing ligands of the cyclopentadienyl type. These supported catalysts, obtainable in the form of spherical particles, can be used in the polymerization reaction of olefins either in liquid or in gas phase, thus producing polymers endowed with a controlled morphology and with a high bulk density.Type: GrantFiled: January 9, 1998Date of Patent: July 23, 2002Assignee: Basell Technology Company BVInventors: Enrico Albizzati, Tiziano Dall'Occo, Luigi Resconi, Fabrizio Piemontesi
-
Publication number: 20020058768Abstract: Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.Type: ApplicationFiled: October 30, 2001Publication date: May 16, 2002Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
-
Patent number: 6388029Abstract: Catalytic systems particularly suitable for the polymerization of &agr;-olefins containing from two to 20 carbon atoms, as well as for the copolymerization of ethylene with &agr;-olefins containing from three to 20 carbon atoms, dienes, and cycloalkenes in processes wherein the catalyst is suspended in a solvent, in processes in gas phase, as well as in mass polymerization processes at high temperatures and pressures, are disclosed. The catalytic system is a mixture of a catalyst component A and a co-catalyst component B. The catalyst component A is formed by a functionalized inorganic porous oxide, by an organoaluminium compound and by an organometallic compound of a metal of the groups 3, 4, 5, or 6 of the periodic table. Functionalization of the inorganic oxide is by introduction of functional groups to be used to strongly fix the organoaluminium compound and the organometallic compound.Type: GrantFiled: May 31, 2000Date of Patent: May 14, 2002Assignee: Repsol Quimica S.A.Inventors: Gerardo Hidalgo Llinas, Bego{overscore (n)}a Pe{overscore (n)}a Garcia, Antonio Mu{overscore (n)}oz-Escalona, Jose Sancho Royo
-
Patent number: 6384159Abstract: The present invention relates to a process to produce polyethylene through homopolymerization or copolymerization of ethylene with alpha-olefins in the presence of a titanium amide catalyst supported by an organic polymer material, for the production of moldings, such as through extrusion, injection molding, film blowing, sintering under pressure or ram extrusion. The catalyst according to the present invention contains a partially chloromethylated styrene divinyl benzene copolymer as the organic polymer material, a complex compound supported by it, which contains Mg, Al and Ti.Type: GrantFiled: April 21, 2000Date of Patent: May 7, 2002Assignee: Buna Sow Leuna Olefinverbund GmbHInventors: Jürgen Schellenberg, Heinz-Jürgen Kerrinnes, Gerd Fritzsche, Gerd Lohse
-
Publication number: 20020035029Abstract: A catalyst used for trimerization of ethylene into 1-hexene is descrobed, which comprises (i) a specific organometallic complex having a neutral multidentate ligand having a tripod structure, (ii) an alkylaluminoxane, and an optional ingredient selected from:Type: ApplicationFiled: September 28, 2001Publication date: March 21, 2002Applicant: TOSOH CORPORATIONInventors: Toru Yoshida, Toshihide Yamamoto, Hisanori Okada, Hideyuki Murakita