Diverse Metals Bonded To Carbon Patents (Class 502/153)
  • Patent number: 6656869
    Abstract: A composition comprising a boron or aluminum containing neutral Lewis acid and a compound of formula I or Ia: wherein R1 and R2 are each independently hydrocarbyl, substituted hydrocarbyl, or silyl; Q is (i) C—R4, where R4 is hydrocarbyl, substituted hydrocarbyl, heteroatom connected hydrocarbyl, or heteroatom connected substituted hydrocarbyl, (ii) P(NH2)2, or (iii) S(NH)(NH2) or S(O)(OH); L is a monoolefin or a neutral Lewis base that can be displaced by a monoolefin; T is hydrogen, hydrocarbyl or substituted hydrocarbyl, or with L forms a &pgr;-allyl group; and M is Ni(II), Pd(II), Co(II) or Fe(II). The composition is useful as an olefin polymerization catalyst. Also described is a process for preparing a supported catalyst.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 2, 2003
    Assignee: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Christopher Moore Killian, Leslie Shane Moody, Jason Patrick McDevitt
  • Publication number: 20030203808
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a Lewis acid support-activator agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 30, 2003
    Inventor: Keng-Yu Shih
  • Publication number: 20030204032
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a chromium immobilized Lewis acid support-agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 30, 2003
    Applicant: W.R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Publication number: 20030191012
    Abstract: A family of novel imino-amide catalyst precursors and catalysts useful for the polymerization of olefins, such as ethylene, higher alpha-olefins, dienes, and mixtures thereof.
    Type: Application
    Filed: November 1, 2002
    Publication date: October 9, 2003
    Inventor: Rex Eugene Murray
  • Patent number: 6627712
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an iron-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: September 30, 2003
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6620758
    Abstract: A catalyst having high activity independent of the hydrogen concentration and low gel productivity in the polymerization of ethylene has been prepared.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: September 16, 2003
    Assignee: Borealis Technology Oy
    Inventors: Jarmo Lindroos, Solveig Johansson, Päivi Waldvogel
  • Patent number: 6620760
    Abstract: A catalyst composition comprising (a) an iron-containing compound, (b) a dihydrocarbyl hydrogen phosphite, and (c) an organoaluminum compound is disclosed for polymerizing 1,3-butadiene into syndiotactic 1,2-polybutadiene. The use of the catalyst composition of this disclosure avoids the use of environmentally detrimental components such as carbon disulfide and halogenated solvents. The melting temperature of the syndiotactic 1,2-polybutadiene can be varied from about 100 to about 200° C. by variations in the catalyst components and the component ratios. The ability to vary the melting temperature over such a broad range with a single catalyst composition is very desirable. The syndiotactic 1,2-polybutadiene can be used as a plastic or as an additive for rubber compositions wherein it can crosslink with conventional rubbers using conventional crosslinking agents.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: September 16, 2003
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Publication number: 20030171206
    Abstract: A family of novel imino-amide catalyst precursors and catalysts useful for the polymerization of olefins, such as ethylene, higher alpha-olefins, dienes, and mixtures thereof.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 11, 2003
    Inventor: Rex Eugene Murray
  • Publication number: 20030166454
    Abstract: A family of novel hetrocyclic-amide type catalyst precursors useful for the polymerization of olefins, such as ethylene, higher alpha-olefins, dienes, and mixtures thereof.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 4, 2003
    Inventor: Rex Eugene Murray
  • Publication number: 20030162922
    Abstract: A catalyst composition and process for preparing norbornene-type homopolymers or copolymers. The norbornene-type homopolymers or copolymers can be prepared using an in-situ catalyst composition including: (a) a transition metal compound of ML4, wherein M is a Group 10 metal and L is a neutral electron donor ligand; (b) a hydrocarbyl halogen containing a double bond or a triple bond; and (c) a salt of a non or weakly coordinative anion that can replace a halogen bonded to a metal. The catalyst composition is in a mixing state of components (a), (b), and (c), or in a mixing state of a reaction product of components (a) and (b) together with component (c).
    Type: Application
    Filed: July 2, 2002
    Publication date: August 28, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ting-Yu Lee, Meei-Yu Hsu, Mei-Hua Wang
  • Publication number: 20030158033
    Abstract: Novel catalyst monoamide precursor compositions and the corresponding single site-like catalysts for olefin polymerization.
    Type: Application
    Filed: December 18, 2001
    Publication date: August 21, 2003
    Inventor: Rex Eugene Murray
  • Patent number: 6608231
    Abstract: The invention relates to novel double metal cyanide (DMC) catalysts for the preparation of polyether polyols by polyaddition of alkylene oxides to starter compounds containing active hydrogen atoms, wherein the catalyst contains a) double metal cyanide compounds, b) organic complex ligands other than c), and c) carboxylic acid ester of polyhydric alcohols. The catalysts according to the invention have greatly increased activity in the preparation of polyether polyols.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: August 19, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Pieter Ooms, Jörg Hofmann, Pramod Gupta
  • Patent number: 6608000
    Abstract: The invention generally relates to a metallocene-based, olefin polymerization catalyst system. The easily processible polymer product has a broad molecular weight distribution, a high molecular weight, and a narrow composition distribution. The catalyst system comprises a first component with a Group-4-6 metal bonded to cyclopentadienyl-containing rings having at least two substituents bonded to the rings in the same position; a second component comprising a Group-4-6 metal bonded to cyclopentadienyl-containing rings having at least two substituents bonded to the rings; and a third component comprising a Group-4-6 metal bonded to cyclopentadienyl-containing rings where one of the rings is substituted identically to the first component and another is substituted identically to the second component. When the substituents of the first and second components are the same, they are bonded to the first component rings at positions different from the bonding positions of the second component rings.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: August 19, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Lee Bamberger, Moses Olukayode Jejelowo
  • Publication number: 20030149198
    Abstract: Novel metal complexes, particularly chromium complexes, which contain at least one tridentate ligand are disclosed and prepared. Olefins, particularly ethylene, can be reacted to form butene and/or other homo- or co-oligomers and/or polymers with high &agr;-olefin concentrations by contacting a metal catalyst which contains a transition metal, particularly chromium, complexes having per metal atom at least one tridentate ligand with N, O, or N and O coordinating sites.
    Type: Application
    Filed: December 10, 2001
    Publication date: August 7, 2003
    Inventors: Brooke L. Small, Angel Jose Marcucci
  • Publication number: 20030125195
    Abstract: Catalyst systems useful for the polymerization of 1-olefins are disclosed, which contain nitrogen-containing transition metal compounds comprising the skeletal unit depicted in Formula (B), wherein M is Fe[II], Fe[III], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; R1, R2, R3, R4 and R6 are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; R5 and R7 are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl.
    Type: Application
    Filed: August 19, 2002
    Publication date: July 3, 2003
    Applicant: BP Chemicals Limited
    Inventors: George Johan Peter Britovsek, Birgit Angelika Dorer, Vernon Charles Gibson, Brian Stephen Kimberley, Gregory Adam Solan
  • Publication number: 20030119661
    Abstract: A phosphinimine catalyst for olefin polymerization is supported on a directly fluorided metal oxide with an aluminoxane. This catalyst is highly active for olefin polymerization in comparison to prior art catalysts which use non-fluorided metal oxide supports. The directly fluorided metal oxide may be conveniently prepared by contacting the precursor metal oxide with a simple alkali metal salt (such as NaF) in an aqueous slurry.
    Type: Application
    Filed: September 16, 2002
    Publication date: June 26, 2003
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, P. Scott Chisholm, Robert D. Donaldson, Ian McKay
  • Publication number: 20030109377
    Abstract: The present invention provides a catalyst composition and process for preparing olefin polymers. The catalyst composition includes a metallocene catalyst or a single-site catalyst, a mesoporous molecular sieve, and an aluminum-containing cocatalyst such as MAO. The cocatalyst is present in an amount such that the molar ratio of aluminum content in cocatalyst to the metal content in metallocene is from 0 to 200. When the catalyst composition is used for preparing polyolefins, the MAO amount can be decreased; thus, the production costs are greatly reduced.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 12, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hua Chan, Ching Ting, Chung-Yuan Mou, Hong-Ping Lin
  • Publication number: 20030104929
    Abstract: A nitrogen containing transition metal complex having Formula (I), 1
    Type: Application
    Filed: March 27, 2002
    Publication date: June 5, 2003
    Inventors: Stuart Jame McTavish, Marc John Payne
  • Patent number: 6569800
    Abstract: A metallocene compound may be used as a catalyst component for the polymerization of olefins. The compound is stable to air and moisture so that it generates no hydrogen halide by hydrolysis and is easily handled, and it has high storage stability and high catalyst activity. Specifically, the catalyst component for the polymerization of olefins comprises a transition metal composition represented by the general formula [1] and [2]: (RaCp)m(R′bCp)M(—X—Ar—Yc)4−(m+n)  [1] R″(RdCp)(R′eCp)M(—X—Ar—Yc)2  [2] wherein M is Ti, Zr or Hf; each of (RaCp), (R′b Cp), (Rd Cp) and (R″e Cp) is a radical having the cyclopentadienyl skeleton; R″ is a radical that links (Rd Cp) and (R′e Cp); (—X—Ar—Yc) is a grouping in which the aromatic ring Ar substituted by a specified radical Y bonds to M through an oxygen or sulphur atom X.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Toshifumi Takemori, Shigeharu Yamamoto, Masatoshi Tsuchitani
  • Publication number: 20030065113
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. It comprises an activator and an organometallic complex. The complex includes a Group 3-10 transition or lanthanide metal and a 1,3-bis(arylimino)isoindoline or 1,3-bis(heteroarylimino)isoindoline ligand. Activities of the Group 8-10 catalyst systems rival or exceed those of late transition metal bis(imines). The resulting polyolefins typically have high molecular weights, broad molecular weight distributions, and a high degree of crystallinity, which makes them valuable for film applications.
    Type: Application
    Filed: September 6, 2001
    Publication date: April 3, 2003
    Inventors: Jia-Chu Liu, Jonathan L. Schuchardt
  • Patent number: 6541659
    Abstract: A process for acyl substitution of an anhydride with an active-hydrogen-containing compound includes reacting the anhydride with the active-hydrogen-containing compound in the presence of a vanadyl salt catalyst to obtain a high yield of acyl substitution reaction product with high chemoselectivity.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: April 1, 2003
    Assignee: National Taiwan Normal University
    Inventor: Chien-Tien Chen
  • Publication number: 20030060357
    Abstract: The present invention relates to diimine transition metal compounds having aryl groups with one or more electron-attracting substituents, compositions containing diimine transition metal compounds having aryl groups with one or more electron-attracting substituents, which are useful as catalysts for the polymerization of olefins, such as ethene/propene or ethene/&agr;-olefin copolymerization.
    Type: Application
    Filed: August 9, 2002
    Publication date: March 27, 2003
    Inventors: Michael Arndt-Rosenau, Martin Hoch, Jorg Sundermeyer, Jennifer Kipke
  • Publication number: 20030060579
    Abstract: There are provided:
    Type: Application
    Filed: September 25, 2002
    Publication date: March 27, 2003
    Inventors: Hideki Oshima, Kazuo Takaoki
  • Publication number: 20030045660
    Abstract: A catalyst system for the polymerization of olefins is prepared by initially charging one or more compounds of the formula I a or I b, 1
    Type: Application
    Filed: September 30, 2002
    Publication date: March 6, 2003
    Inventors: Marc Oliver Kristen, Gerhard Hauck
  • Patent number: 6528449
    Abstract: Catalyst compositions useful for olefin polymerizations comprising a Group 3-10 metal complex and a compound corresponding to the formula: AlArfQ1Q2, or a dimer, adduct, or mixture thereof and further mixtures with aluminum compounds of the formula AlArf3, where: Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; Q1 is Arf or a C1-20 hydrocarbyl group, optionally substituted with one or more cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally, such substituents may be covalently linked with each other to form one or more fused rings or ring systems; and Q2 is an aryloxy, arylsulfide or di(hydrocarbyl)amido group, optionally substituted with one or more hydrocarbyl, cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsil
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: March 4, 2003
    Assignee: The Dow Chemical Comapny
    Inventors: Eugene Y. Chen, William J. Kruper, Jr., Gordon R. Roof, David J. Schwartz, Joey W. Storer
  • Publication number: 20030040589
    Abstract: A polymerization process for styrene derivatives in which a styrene monomer is placed in contact with a catalyst system in a solvent, including at least:
    Type: Application
    Filed: April 26, 2002
    Publication date: February 27, 2003
    Inventors: Jean-Marc Marechal, Bindushree Radhakrishnan, Alain Deffieux, Marianne Barbier
  • Publication number: 20030032744
    Abstract: A single-site olefin polymerization catalyst and method of making it are disclosed. The catalyst comprises an activator and an organometallic complex. The complex comprises a Group 3 to 10 transition or lanthanide metal, M, and at least one chelating N-oxide ligand that is bonded to M. Molecular modeling results indicate that single-site catalysts based on certain chelating N-oxide ligands (e.g., 2-hydroxypyridine) will rival the performance of catalysts based on cyclopentadienyl and substituted cyclopentadienyl ligands.
    Type: Application
    Filed: October 17, 2002
    Publication date: February 13, 2003
    Applicant: EQUISTAR CHEMICALS, L.P.
    Inventor: Sandor Nagy
  • Publication number: 20030027716
    Abstract: The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): 1
    Type: Application
    Filed: August 20, 2002
    Publication date: February 6, 2003
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Publication number: 20030027714
    Abstract: The invention provides a novel metal complex which, when used with an activating cocatalyst, provides a novel catalyst composition. The invention also provides a polymerization method which utilizes the catalyst composition to produce polymers and copolymers containing polar monomer groups. More specifically, the invention comprises a composition comprising the formula LMXZn wherein X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert. M is selected from the group consisting of Cu, Ag, and Au. L is a nitrogen-containing bidentate ligand having more than two nitrogen atoms. Z is a neutral coordinating ligand and n equals 0, 1, or 2.
    Type: Application
    Filed: September 17, 2002
    Publication date: February 6, 2003
    Inventors: Robert T. Stibrany, Smita Kacker
  • Publication number: 20030027956
    Abstract: The present invention relates to a composition of carboxylate metal salt and a flow improver useful in combination with a polymerization catalyst to improve the flowability and bulk density of the catalyst. The invention also relates to a polymerization process using the catalyst.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 6, 2003
    Inventors: Agapios K. Agapiou, Chi-l Kuo
  • Publication number: 20030018144
    Abstract: A catalyst composition for polymerization of a conjugated diene or copolymerization of a conjugated diene and an aromatic vinyl compound, which comprises the following components: (A) a metallocene-type complex of a rare earth metal compound (samarium complex etc.), and (B) an ionic compound composed of a non-coordinate anion and a cation (triphenylcarbonium tetrakis(pentafluorophenyl)borate etc.) and/or an aluminoxane. The catalyst composition is useful for producing a polymer having a high cis-1,4-configuration content in the microstructure and a narrow molecular weight distribution.
    Type: Application
    Filed: September 4, 2002
    Publication date: January 23, 2003
    Applicant: RIKEN
    Inventors: Shojiro Kaita, Zhaomin Hou, Yasuo Wakatsuki
  • Publication number: 20030013823
    Abstract: A single-site catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an optional activator and a complex that incorporates a Group 3 to 10 transition metal and at least one neutral or anionic chelating pyrimidine ligand. The ligands are easy to make, and they are readily incorporated into transition metal complexes, including those based on late transition metals. By modifying the chelating groups and other substituents on the pyrimidine ring, polyolefin makers can increase catalyst activity and control polymer properties.
    Type: Application
    Filed: June 6, 2001
    Publication date: January 16, 2003
    Inventor: Jonathan L. Schuchardt
  • Publication number: 20030008985
    Abstract: Disclosed are polymerization catalyst activator complexes prepared from the reaction of a carbenium salt and Lewis base containing an aromatic group. Also disclosed are polymerization catalyst activator complexes prepared via the reaction of a Group 13 element containing salt including a Lewis base containing an aromatic group and a tritylhalide compound. Also disclosed are polymerization catalyst systems including the activator complex of the invention, and processes for polymerizing olefin(s) utilizing same.
    Type: Application
    Filed: June 18, 2001
    Publication date: January 9, 2003
    Inventors: Matthew W. Holtcamp, Tan H. Pham
  • Publication number: 20030008984
    Abstract: The invention relates to a catalyst system, containing at least one metallocene, at least one co-catalyst, at least one supporting material and optionally additional organometallic compounds. The catalyst system can be used advantageously for polymerising olefins, as it obviates the use of aluminoxanes, such as methylaluminoxane (MAO), which is conventionally used in excess quantities as a co-catalyst, whilst at the same time producing strong catalyst activity and excellent polymer morphology.
    Type: Application
    Filed: June 24, 2002
    Publication date: January 9, 2003
    Inventors: Roland Kratzer, Cornelia Fritze, Jorg Schottek
  • Publication number: 20020198337
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an molybdenum-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Application
    Filed: June 8, 2001
    Publication date: December 26, 2002
    Applicant: Bridgestone Corp.
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
  • Patent number: 6489263
    Abstract: This invention relates to an olefin polymerization catalyst composition comprising the product of the combination of at least one activator and at least two different transition metal compounds each of which is represented by the formula: ((Z)XAt(YJ))qMQn  (I) where M is a metal selected from Group 3 to 13 or lanthanide and actinide series of the Periodic Table of Elements; Q is bonded to M and each Q is a monovalent, divalent or trivalent anion; X and Y are bonded to M; X and Y are independently C or a heteroatom, provided that at least one of X and Y is a heteroatom and Y is contained in a heterocyclic ring J, where J comprises from 2 to 50 non-hydrogen atoms; Z is bonded to X, where Z comprises 1 to 50 non-hydrogen atoms; t is 0 or 1; when t is 1, A is a bridging group joined to at least one of X, Y or J; q is 1 or 2; n is the oxidation state of M minus q if Q is a monovalent anion, n is (the oxidation state of M−q)/2, if Q is a bivalent anion or n is (the oxidation state of M−q)/3
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: December 3, 2002
    Assignee: Univation Technologies, LLC
    Inventors: Rex E. Murray, Simon Mawson, Clark C. Williams, D. James Schreck
  • Publication number: 20020173606
    Abstract: The invention is related to a novel compound represented by NdHA4 wherein A is a carboxylate, and to a diene polymerization catalyst using the novel compound. NdHA4 has monomeric structure and does not contain water, bases and salts. NdHA4 is mixed with a halogen compound and an organic metal compound to prepare a catalyst system. The catalyst system in the polymerization of 1,3-butadiene (BD) or isoprene produces high cis polydiene with a high activity (100 g BD/4.0×10−5 mole Nd) and without gel formation. The polydiene thus obtained is useful for tires and golf balls and as a polystyrene modifier.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 21, 2002
    Inventors: Gwang Hoon Kwag, Seung Hwon Lee, Young Chan Jang, A. Ju Kim
  • Publication number: 20020156210
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an iron-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Application
    Filed: February 19, 2001
    Publication date: October 24, 2002
    Applicant: Bridgestone Corp.
    Inventor: Steven Luo
  • Patent number: 6468940
    Abstract: The invention provides a process for an improved oxirane hydroformylation catalyst, the improved oxirane hydroformylation catalyst, and a one step process for preparing a 1,3-diol in the presence of such a catalyst. One process for preparing the hydroformylation catalyst involves: a) forming a complex (A) by contacting a ruthenium(0) compound with a ditertiary phosphine ligand; and b) forming a complex (B) by subjecting complex (A) to a redox reaction with a cobalt(0) carbonyl compound. This catalyst is used in a one step hydroformylation process for preparing a 1,3-diol, comprising the reaction of an oxirane with syngas at hydroformylation conditions in an inert solvent in the presence of the above hydroformylation catalyst where recovery of product is preferably accomplished via phase separation of a diol rich phase from the bulk reaction liquor.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: October 22, 2002
    Assignee: Shell Oil Company
    Inventors: John Frederick Knifton, Lynn Henry Slaugh, Paul Richard Weider, Talmadge Gail James, Joseph Broun Powell, Kevin Dale Allen, Timothy Scott Williams
  • Patent number: 6465585
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate, also, a process for forming conjugated diene polymers by using the catalyst composition.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6462212
    Abstract: Novel, highly effective catalyst compositions are described in which a low cost co-catalyst can be employed at very low aluminum loadings. Such compounds are composed of a cation derived from d-block or f-block metal compound, such as a metallocene, by loss of a leaving group, and an aluminoxate anion derived by transfer of a proton from a stable or metastable hydroxyaluminoxane to such leaving group. These catalyst compositions have extremely high catalytic activity and typically have high solubility in paraffinic solvents. Moreover they yield reduced levels of ash and result in improved clarity in polymers formed from such catalysts. Surprisingly, when isolated and stored, and optionally purified, under anhydrous inert conditions and surroundings, the catalyst compounds are more stable than if kept in solution. Thus these catalyst compounds can be stored, shipped, and used under inert anhydrous conditions as preformed catalysts thus simplifying the polymerization operations.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: October 8, 2002
    Assignee: Albemarle Corporation
    Inventor: Feng-Jung Wu
  • Patent number: 6444767
    Abstract: In a process for the homopolymerization of vinylaromatic monomers or the copolymerization of vinylaromatic monomers and dienes, the monomers are polymerized in the presence of at least one alkali metal organyl, at least one magnesium organyl and at least one aluminum organyl. The invention also provides an initiator composition for carrying out the process.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: September 3, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Christian Schade, Wolfgang Fischer, Hermann Gausepohl, Rainer Klostermann, Volker Warzelhan, Michel Fontanille, Alain Deffieux, Philippe Desbois
  • Publication number: 20020115558
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate. also, a process for forming conjugated diene polymers by using the catalyst composition.
    Type: Application
    Filed: February 19, 2001
    Publication date: August 22, 2002
    Applicant: Bridgestone Corp.
    Inventor: Steven Luo
  • Patent number: 6433237
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 13, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6429273
    Abstract: A process for producing a vinyl polymer which comprises carrying out anionic polymerization under the condition that the polymerization temperature is not lower than 45° C. and not higher than 250° C. and the concentration of the vinyl monomer based on the polymerization solvent is 45-100% by weight, wherein the metal of the cation forming a counterpart to the carbonic anion at the polymerization propagating species consists essentially of Mg, or Mg and M1 wherein M1 is at least one alkali metal selected from the group consisting of Li, Na and K, and the molar concentrations of the metals of Mg and M1 satisfy the relation of [Mg]/[M1]≧4, the invention also relates to a vinyl monomer polymerization initiator comprising (R2)2Mg wherein R2 is a hydrocarbon group.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: August 6, 2002
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventor: Kenji Ebara
  • Patent number: 6403518
    Abstract: The present invention is directed to a supported catalyst composition resulting from contact of at least one transition metal catalyst precursor, such as a metallocene catalyst, and a support activator composition resulting from contact of a catalyst support (formed by reaction of a carrier, for example, an inorganic oxide (e.g., silica) and an organo halide such as bromo pentaflurobenzene in the presence of base) and a catalytic activator such as dimethylanilinium tetrakis (pentafluorophenyl) borate, and methods for making the same.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: June 11, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: David George Ward
  • Patent number: 6399532
    Abstract: Catalyst composition for use in the polymerization of olefins comprise neutral metal complexes together with activators comprising non-aromatic boron compounds. Suitable activators are triisobutylboron together with trialkylaluminium compounds. Preferred complexes are metallocenes. The use of such activating systems obviates the need for expensive aluminoxanes or aromatic fluorine containing compounds.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: June 4, 2002
    Assignee: BP Chemicals Limited
    Inventors: Birgit Angelika Dorer, David Pratt, Christopher Sharp
  • Patent number: 6399536
    Abstract: A catalyst of the formula (1) for the synthesis of alkylene carbonate by reacting alkylene oxide and carbon dioxide LmMXn  (1) wherein L is selected from a group of pyridines; M is a metal atom selected from Zn, Fe, Mn, Pb and In; X is a halogen atom selected from Cl, Br and I; m is 1 or 2, and n is 2 or 3.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 4, 2002
    Assignee: Korea Institute of Science and Technology
    Inventors: Hoon Sik Kim, Byung Gwon Lee, Sang Deuk Lee, Young Soo Kwon, Hyun Joo Lee
  • Patent number: 6395847
    Abstract: The invention is directed to organometallic catalysts prepared by a process comprising a) combining nucleophilic group-containing particulate support material with an arylboron or arylaluminum Lewis acid compound in the presence of a Lewis base compound; b) contacting the product of a) with a trialkylaluminum compound before combining said product with a metal precursor compound capable of activation for olefin polymerization by said product a); and, c) combining the product of b) with said metal precursor compound. These catalyst compositions are suitable for addition reactions of ethylenically and acetylenically unsaturated monomers. The invention includes a polymerization process of combining or contacting olefinically unsaturated monomers with the invention catalyst composition. Use of the invention catalyst to polymerize &agr;-olefins is exemplified.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: May 28, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Main Chang
  • Publication number: 20020058762
    Abstract: Novel nitrogen containing transition metal complexes have general formula (I): wherein M is Fe[II], Fe[III], Ni[II], Co[I], Co[II], Co[III], V[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; Pd[II], V[III], V[IV] or V[V]. X represents an atom or group covalently or ionically bonded to the transition metal M; R is independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; Z is a bridging group comprising a donor atom of N, P or S or alternatively is a neutral group comprising a C1-C4 alkylene group, a silyl or germyl group, and n=an integer to satisfy the valency of M. The complexes are suitable for use on the polymerization and copolymerization of olefins.
    Type: Application
    Filed: August 9, 2001
    Publication date: May 16, 2002
    Inventors: Manfred Bochmann, Mark John Sarsfield