Resin, Natural Or Synthetic, Polysaccharide Or Polypeptide Patents (Class 502/159)
  • Patent number: 8889583
    Abstract: The present disclosure utilizes an emulsion aggregation (EA) process to produce ceramic catalysts of controlled surface area, in particular, extremely high surface area powders. In embodiments, resins are utilized to form resin catalysts including the active catalysts. These resin catalysts may be in powder form, having a high surface area. The particle size, particle size distribution, and shape of the produced powders can be controlled to a great degree. In embodiments, the powders can also be made porous.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 18, 2014
    Assignee: Xerox Corporation
    Inventor: Christopher David Blair
  • Publication number: 20140336040
    Abstract: Methods of preparing monodispersed polydopamine nano- or microspheres are provided. The methods comprise providing a solvent system comprising water and at least one alcohol having the formula R—OH, wherein R is selected from the group consisting of optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted C3-C6 cycloalkyl, optionally substituted C3-C6 cycloalkenyl, and optionally substituted C6-C7 aryl; adding dopamine to said solvent system to form a reaction mixture; and agitating said reaction mixture for a time period of 1 to 10 days to form said monodispersed polydopamine nano- or microspheres. Methods of preparing carbon and hollow metal or metal oxide nano- or microspheres using the polydopamine nano- or microspheres are also provided.
    Type: Application
    Filed: January 4, 2013
    Publication date: November 13, 2014
    Inventors: Jian Yan, Liping Yang, Xuehong Lu, Pooi See Lee
  • Publication number: 20140336039
    Abstract: Titania-based porous nanoparticle coatings are mechanically robust, with low haze, which exhibit short time scales for decomposition of fingerprint oils under ultraviolet light. The mechanism by which a typical dactylogram is consumed combines wicking of the sebum into the nanoporous titania structure followed by photocatalytic degradation. These TiO2 nanostructured surfaces are also anti-fogging, anti-bacterial, and compatible with flexible glass substrates and remain photocatalytically active in natural sunlight.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Robert E. COHEN, Michael F. RUBNER, Gareth H. MCKINLEY, George BARBASTATHIS, Hyungryul Johnny CHOI, Kyoo Chul PARK, Hyomin LEE
  • Publication number: 20140336287
    Abstract: The invention relates to a process for producing a protected reduced supported metal catalyst powder, in particular catalysts used in a variety of chemical reactions, such as the hydrogenation of hydrocarbon compounds in petrochemical and oleo-chemical processes; the hydrogenation of unsaturated fats and oils, and unsaturated hydrocarbon resins; and in the Fischer Tropsch process. This invention also relates to a composition comprising said catalyst and a liquid. In accordance with the invention there is provided a process for preparing a protected, reduced metal catalyst on a support, wherein said supported catalyst is in the form of a powder, which process comprises contacting and mixing said supported catalyst with a liquid in an inert atmosphere and wherein the amount of liquid corresponds to up to five times the amount required for incipient wetness.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 13, 2014
    Applicant: BASF Corporation
    Inventors: Robert Terörde, Albertus Jacobus Sandee
  • Patent number: 8884087
    Abstract: The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 11, 2014
    Assignees: UOP LLC, The Regents of the University of Michigan
    Inventors: Kyoung Moo Koh, Antek G. Wong-Foy, Adam J. Matzger, Annabelle I. Benin, Richard R. Willis
  • Publication number: 20140318980
    Abstract: The present invention discloses the use of a metal nanoparticle which comprises at least one semiconductor attached to it, wherein the at least one semiconductor is an atomic quantum cluster (AQC) consisting of between 2 and 55 zero-valent transition metal atoms, as photocatalysts in photocatalytic processes and applications thereof.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 30, 2014
    Inventors: Manuel Arturo Lopez Quintela, Jose Rivas Rey
  • Publication number: 20140323589
    Abstract: The invention relates to a method for the preparation of composite silica alcogels, aerogels and xerogels, comprising i) providing a reaction mixture comprising at least the following: silane reagent, base catalyst, gelation retarding additive, aqueous/organic solvent mixture, guest particle, ii) agitating the reaction mixture as necessary and sufficient until achieving the viscosity where the spontaneous movement of the guest particles does not occur anymore; and iii) shaping the material obtained to a desired shape during or after step ii); then iv) drying, if desired The method according to the invention is also useful in continuous manufacturing technology, and the invention provides an apparatus for applying the method. The invention further provides novel composite silica alcogels, aerogels or xerogels obtainable by the method according to the invention.
    Type: Application
    Filed: October 26, 2012
    Publication date: October 30, 2014
    Applicant: Debreceni Egyetem
    Inventors: István Lázár, István Fábián
  • Publication number: 20140311905
    Abstract: A printed gas sensor is disclosed. The sensor may include a partially porous substrate, an electrode layer, an electrolyte layer, and an encapsulation layer. The electrode layer comprises one or more electrodes that are formed on one side of the porous substrate. The electrolyte layer is in electrolytic contact with the one or more electrodes. The encapsulation layer encapsulates the electrode layer and electrolyte layer thereby forming an integrated structure with the partially porous substrate.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Applicant: KWJ ENGINEERING, INC.
    Inventors: Joseph R. Stetter, Vinay Patel, Melvin W. Findlay, Michael T. Carter
  • Publication number: 20140308600
    Abstract: New polymeric networks bearing benzimidazole units have been prepared. These polymeric networks will combine high proton conductivity, superior mechanical properties and thermal and oxidative stability due to the existence of polar benzimidazole groups and the presence of the unique polymeric architecture. The prepared polymer networks can be used in the catalyst ink of the electrodes in high temperature PEM fuel cells.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 16, 2014
    Applicant: Advent Technologies Inc.
    Inventors: Christos L. Chochos, Vasilis G. Gregoriou
  • Publication number: 20140309101
    Abstract: The present application is directed to a novel composition which acts as a barrier to noxious agents while adding self-detoxifying catalytic treatments to neutralize the noxious and harmful warfare agents when applied for example on a fabric, or other solid support.
    Type: Application
    Filed: January 2, 2014
    Publication date: October 16, 2014
    Applicants: Stedfast, Inc., U.S. Army Natick Soldier Research, Development and Engineering Center, Chemical Technology Team
    Inventors: Hamid Benaddi, Heidi Schreuder-Gibson
  • Publication number: 20140296060
    Abstract: The invention provides a photocatalytic structure comprising a carrier and a photocatalytic film formed on the carrier, in which the photocatalytic film comprises titanium dioxide with shape of rhombus particles. The titanium dioxide particle has anatase structure. The titanium dioxide particle is rhombus with a major axis 10-15 nm and minor axis 3-6 nm. The photocatalytic film which is formed by titanium dioxide with shape of rhombus particles has a high overall photocatalytic activity so that the effects of stainproofing and self-cleaning can be improved. The invention also relates to a method for manufacturing photocatalytic sol-gels.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: JM MATERIAL TECHNOLOGY INC.
    Inventor: Yu-Wen CHEN
  • Publication number: 20140287235
    Abstract: The present invention relates to a complex and a method for manufacturing same, the complex comprising: at least one crystalline hybrid nanoporous material powder, in which a metal ion, or a metal ion cluster to which oxygen is bound, and an organic ligand, or the organic ligand and a negative ion ligand are in a coordinate covalent bond; and at least one organic polymer additive, or at least one organic polymer additive and an inorganic additive, wherein the shape of the complex is spherical or pseudo-spherical, the size of the complex is 0.1 to 100 mm, a total volume of pores is 5 or more volume % based on the sum of a total volume of nanoporous material having a size of at most 10 nm and a total volume of pores having a size of at least 0.1 ?m, and wherein a non-surface value per weight (m2/g) of the complex as at least 83% of a non-surface value per weight (m2/g) of the nanoporous material powder.
    Type: Application
    Filed: August 14, 2012
    Publication date: September 25, 2014
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Jong-San Chang, U-Hwang Lee, Young Kyu Hwang, Dong Won Hwang, You-Kyong Seo, Ji Sun Lee, Ji Woong Yoon, Kyu Eun Shim
  • Patent number: 8840769
    Abstract: A catalyst precursor resin composition includes an organic polymer resin; a fluorinated-organic complex of silver ion; a monomer having multifunctional ethylene-unsaturated bonds; a photoinitiator; and an organic solvent. The metallic pattern is formed by forming catalyst pattern on a base using the catalyst precursor resin composition reducing the formed catalyst pattern, and electroless plating the reduced catalyst pattern. In the case of forming metallic pattern using the catalyst precursor resin composition, a compatibility of catalyst is good enough not to make precipitation, chemical resistance and adhesive force of the formed catalyst layer are good, catalyst loss is reduced during wet process such as development or plating process, depositing speed is improved, and thus a metallic pattern having good homogeneous and micro pattern property may be formed after electroless plating.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 23, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Min Kyoun Kim, Min Jin Ko, Sang Chul Lee, Jeong Im Roh
  • Publication number: 20140275632
    Abstract: This invention relates to novel double metal cyanide catalysts and to a process for the production of these double metal cyanide catalysts. These DMC catalysts can be used to prepare polyoxyalkylene polyols which have low amounts of high molecular weight tail compared polyoxyalkylene polyols prepared from DMC catalysts of the prior art.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Bayer MaterialScience, LLC
    Inventors: Kenneth G. McDaniel, George G. Combs
  • Patent number: 8835345
    Abstract: There is provided a catalyst comprising metal nanoparticles supported on nanocrystalline cellulose and a homogeneous catalyst system comprising this catalyst colloidally suspended in a fluid. There is also provided a method of producing this catalyst and various uses thereof.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: September 16, 2014
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Audrey Moores, Ciprian M. Cirtiu
  • Publication number: 20140256534
    Abstract: A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 11, 2014
    Applicant: University of Connecticut
    Inventors: Pu-Xian Gao, Yanbing Guo, Zhonghua Zhang, Zheng Ren
  • Patent number: 8828902
    Abstract: A microencapsulated catalyst is prepared by dissolving or dispersing a catalyst in a first phase (for example an organic phase), dispersing the first phase in a second, continuous phase (for example an aqueous phase) to form an emulsion, reacting one or more microcapsule wall-forming materials at the interface between the dispersed first phase and the continuous second phase to form a microcapsule polymer shell encapsulating the dispersed first phase core and optionally recovering the microcapsules from the continuous phase. The catalyst is preferably a transition metal catalyst and the encapsulated catalyst may be used for conventional catalysed reactions. The encapsulated catalyst may recovered from the reaction medium and re-cycled.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: September 9, 2014
    Assignee: Reaxa Limited
    Inventors: Chandrashekar Ramarao, David Joszef Tapolczay, Ian Malcolm Shirley, Stephen Christopher Smith, Steven Victor Ley
  • Publication number: 20140242287
    Abstract: A solution including a precious metal nanoparticle and a polymer polymerized from at least two monomers, (1) a monomer having two or more carboxyl groups or carboxyl acid salt groups and (2) a monomer which has ? electron-available features. The solution is useful for a catalyst of a process for electroless plating a metal on non-conductive surface.
    Type: Application
    Filed: February 24, 2013
    Publication date: August 28, 2014
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Suk Kwan KWONG, Weijuan ZHOU, Wenjia ZHOU, Dennis Chit Yiu CHAN, Dennis Kwok-Wai YEE
  • Publication number: 20140235428
    Abstract: A highly active supported bimetallic nanocatalyst and its preparation method is disclosed. During the preparation, using an ion exchange or absorption resin bearing basic functional groups as the support of the said catalyst, successively introducing the first metal precursor FeCl4? and the second metal precursor (PdCl42?, NiCl42? or CuCl42?) onto the resin through ion exchange process; then under the protection of nitrogen gas, simultaneously reducing the two metals with either NaBH4 or KBH4; washing the material with deoxygenated water and drying it, and the said catalyst is therefore obtained. The supported bimetallic material is characteristic of independent distribution of the two metals within the support. The independently distributed structure of the two metals enhances the catalytic efficiency of the second metal and the catalytic stability.
    Type: Application
    Filed: November 7, 2011
    Publication date: August 21, 2014
    Applicants: NANJING UNIVERSITY, JIANGSU YONGTAI ENVIRONMENTAL PROTECTION TECHNOLOGY CO., LTD
    Inventors: Bingcai Pan, Lei Yang, Shujuan Zhang, Weiming Zhang, LU Lv
  • Publication number: 20140221193
    Abstract: The present invention relates to an aqueous gas-converting catalyst composition comprising: an active component; a support; an inorganic binder; at least one accelerator selected from the group consisting of cobalt oxide, molybdenum oxide, nickel oxide, calcium oxide, barium oxide, strontium oxide, magnesium oxide, zirconium oxide, manganese oxide and barium titania; and at least one stabilizer selected from the group consisting of magnesium oxide, zirconium oxide, stabilized zirconia, and hydrotalcite. The catalyst according to the present invention can effectively capture and separate carbon dioxide due to the excellent physical properties thereof such as packing density and abrasion resistance, and high CO conversion. Also, according to the present invention, mass production is facilitated by applying a spraying technique, and overall costs are lowered because of high yield.
    Type: Application
    Filed: June 11, 2012
    Publication date: August 7, 2014
    Applicant: KOREA ELECTRIC POWER CORPORATION
    Inventors: Joong Beom Lee, Chong Kul Ryu, Tae Hyoung Eom, Dong Hyeok Choi, Jeom In Baek, Seong Jeagarl, Seok Ran Yang
  • Publication number: 20140213434
    Abstract: Provided is a resin-supported catalyst including a cured body of a thermosetting resin and fine particles having catalytic activity supported onto the surface of the cured body, in which the thermosetting resin has a phenolic hydroxyl group.
    Type: Application
    Filed: August 28, 2012
    Publication date: July 31, 2014
    Applicants: KOCHI UNIVERSITY OF TECHNOLOGY, SUMITOMO BAKELITE CO., LTD.
    Inventors: Masahiko Funabashi, Toru Kamata, Nagatoshi Nishiwaki
  • Patent number: 8791280
    Abstract: This invention relates to catalyst carriers to be used as supports for metal and metal oxide catalyst components of use in a variety of chemical reactions. More specifically, the invention provides a process of formulating an alpha alumina carrier that is suitable as a support for silver and the use of such catalyst in chemical reactions, especially the epoxidation of ethylene to ethylene oxide. The composition comprises at least one hydrated precursor of alpha alumina; an optional alpha alumina; and a binder. The composition is substantially free of seeding particles.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: July 29, 2014
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventor: Nabil Rizkalla
  • Patent number: 8784769
    Abstract: Disclosed herein is a catalyst, including, in one example: a carrier, a polymer electrolyte multilayer film formed on the carrier, and metal particles dispersed in the polymer electrolyte multilayer film. The catalyst can be easily prepared, and can be used to produce hydrogen peroxide in high yield in the presence of a reaction solvent including no acid promoter.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: July 22, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seung Hoon Oh, Chang Soo Lee, Bo Yeol Kim
  • Publication number: 20140193310
    Abstract: Some embodiments in the present disclosure generally relate to catalytic silica-polyvinyl alcohol composites, silica structures therefrom, and/or microreactors therefrom. Some embodiments in the present disclosure generally relate to porous substrates that can have at least one pore with a catalyst associated with the inside of the pore.
    Type: Application
    Filed: August 16, 2012
    Publication date: July 10, 2014
    Inventor: Shigeru Fujino
  • Publication number: 20140186253
    Abstract: Provided is a composite, including a metal nanoparticle inside a porous coordination polymer (PCP), in which the PCP is formed of a metal ion and an organic ligand.
    Type: Application
    Filed: August 3, 2012
    Publication date: July 3, 2014
    Applicant: Kyoto University
    Inventors: Hiroshi Kitagawa, Hirokazu Kobayashi
  • Publication number: 20140187412
    Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicants: TOSHIBA MATERIALS CO., LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
  • Patent number: 8765627
    Abstract: The present invention relates to a catalyst system, to a method of manufacturing this system, and also to uses of this system. The catalyst system of the invention is characterized in that it comprises molecules of a polymer having, at one of its ends or along the chain, one or more polar functional groups; a solvent, said solvent, due to the fact of said polar functional group of said polymer, provoking and maintaining, when said molecules of the polymer are introduced thereinto, an organization of said molecules of the polymer into aggregates, micelles or vesicles so that the polar functional groups of said polymer are located inside the aggregates, micelles or vesicles formed; and a catalyst activator and a catalyst trapped in said aggregates, micelles or vesicles of said polymer. The catalyst system of the present invention may be used, for example, for catalyzing a (co)polymerization of olefins.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Centre National de la Recherche Scientifique—CNRS
    Inventors: Henri Cramail, Cécile Bouilhac, Eric Cloutet, Daniel Taton, Alain Deffieux
  • Publication number: 20140179513
    Abstract: The invention relates to a catalytic material which is used as an optofluidic reactor, and also a method for production thereof. In this case, first a reticulated plastic foam can be fabricated which then is coated with at least one first metal or metal alloy layer. Subsequently, a photocatalytic substrate is then applied to the metal or metal alloy layer. The photocatalytic substrate eliminates bacteria, viruses and other harmful substances, as well as fine dust or fungal spores, when the optofluidic reactor is used.
    Type: Application
    Filed: May 25, 2012
    Publication date: June 26, 2014
    Inventor: Wolfgang Kollmann
  • Publication number: 20140159181
    Abstract: A graphene-nanoparticle structure includes a substrate, a graphene layer disposed on the substrate and a nanoparticle layer disposed on the graphene layer. The graphene-nanoparticle structure may be formed by alternately laminating the graphene layer and the nanoparticle layer and may play the role of a multifunctional film capable of realizing various functions according to the number of laminated layers and the selected material of the nanoparticles.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-min KIM, Dae-Jun KANG, Seung-nam CHA, Muhammad Imran SHAKIR, Young-jun PARK
  • Publication number: 20140155301
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 5, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Kimberly NELSON, Theodora RETSINA, Vesa PYLKKANEN, Ryan O'CONNOR
  • Patent number: 8741156
    Abstract: The subject of the invention is a hybrid photocatalyst which is a layered aluminosilicate, possibly organically modified, containing compounds introduced into the aluminosilicate galleries bearing groups such as porphyrin, rose bengal, anthracene, pyrene, perylene, tetracene, rubrene, naphthalene, phthalocyanines, coumarins, and methylene blue, which are organic chromophores able to absorb visible and/or ultraviolet light and sensitize photochemical reactions. The invention includes also the methods of synthesis and application of the photocatalysts for the photocatalytical degradation of water pollutants.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 3, 2014
    Assignee: Uniwersytet Jagiellonski
    Inventors: Maria Nowakowska, Krzysztof Szczubialka, Dominik Drozd
  • Publication number: 20140148330
    Abstract: Semi-permeable particle can be used to facilitate chemical reactions. The semi-permeable particles are permeable to molecules having a molar mass of 1000 Daltons or less, have a mode particle size of at least 1 ?m, and comprise nanoparticles of catalytically active metallic materials disposed within at least some of multiple discrete cavities in the continuous polymeric phase. The nanoparticles of catalytically active metallic materials (a) comprise one or more elements selected from Groups 8, 9, 10, and 11 of the Periodic Table, and (b) have an effective diameter of at least 1 nm and up to and including 200 nm.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Douglas R. Robello, Mridula Nair, Mark R. Mis, Matthew Dirmyer
  • Patent number: 8735315
    Abstract: A composition comprising a base component and a polymer, and a method of making said composition, are disclosed. The composition thereby obtained is then used as a catalyst for isoparaffin-olefin alkylation.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 27, 2014
    Assignee: UOP LLC
    Inventors: Bruce B. Randolph, Marvin M. Johnson, Glenn W. Dodwell
  • Patent number: 8722562
    Abstract: There is provided a metal fine particle dispersant containing a branched polymer compound having an ammonium group. The metal fine particle dispersant of the present invention comprises a branched polymer compound having an ammonium group and having a weight average molecular weight of 500 to 5,000,000. The metal fine particle dispersant has the structure of Formula (1): The present invention also relates to a composition comprising the metal fine particle dispersant and a metal fine particle.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 13, 2014
    Assignees: Nissan Chemical Industries, Ltd., Kyushu University
    Inventors: Keisuke Kojima, Akihiro Tanaka, Keisuke Odoi, Hideo Nagashima, Takashi Sue
  • Publication number: 20140127309
    Abstract: The present invention meets one or more of the above needs and is a composition comprising plurality of capsules wherein the capsules comprise: a core of one or more highly polar liquids; one or more polar active materials dissolved in or dispersed in one or more highly polar liquids; a mixture of one or more polymers and one of more highly polar liquids; or a mixture of one or more polymers, one or more highly polar liquids and one or more polar active materials, and a shell comprising, particles in a polymer matrix or particles; wherein the thickness of the shell is sufficient to prevent passage of the highly polar liquid or the active material through the shell or to control the rate passage of the highly polar liquid or the active material through the shell with the proviso that the one or more polymers may be located in the core, in the polymer matrix of the shell or both.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 8, 2014
    Applicants: ROHM and HAAS COMPANY, Dow Global Technologies LLC
    Inventors: Ian J. Drake, Andrew Hughes, Christopher J. Tucker, Thomas H. Kalantar, Joshua S Katz
  • Publication number: 20140128251
    Abstract: Catalytic materials with high activity in various chemical reactions as well as high durability are described. The catalytic materials are composed of specific, hybrid combinations of inorganic/polymeric compounds containing metal nano-particles therein, and can be easily reused with negligible catalysts leaching. They are particularly useful, but not limited to, the hydrogenation of subsituted ?,? unsaturated acids or esters.
    Type: Application
    Filed: June 24, 2011
    Publication date: May 8, 2014
    Applicant: NIPPON KODOSHI CORPORATION
    Inventors: Haruo Sawa, Pierluigi Barbaro, Claudio Bianchini, Francesca Liguori
  • Publication number: 20140121096
    Abstract: A method of rendering a substrate catalytic to electroless metal deposition comprising the steps of: (a) depositing a ligating chemical agent on the substrate, which is capable of both binding to the substrate and ligating to an electroless plating catalyst; and (b) ligating the electroless plating catalyst to the ligating chemical agent, wherein the ligating chemical agent has the chemical structure: wherein n and m are each between about 1 and about 100.
    Type: Application
    Filed: August 14, 2013
    Publication date: May 1, 2014
    Applicant: International Business Machines Corporation
    Inventors: Tricia Breen CARMICHAEL, Sarah Jane VELLA, Ali AFZALI-ARDAKANI, Mahmoud Mostafa KHOJASTEH
  • Publication number: 20140113803
    Abstract: A modified ion exchange resin catalyst having an attached dimethyl thiazolidine promoter is disclosed. Also disclosed is a process for catalyzing condensation reactions between phenols and ketones, wherein reactants are contacted with a modified ion exchange resin catalyst having an attached dimethyl thiazolidine promoter. Also disclosed is a process for catalyzing condensation reactions between phenols and ketones that does not utilize a bulk promoter.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Applicant: SABIC Innovative Plastics IP B.V.
    Inventors: Umesh Krishna Hasyagar, Rathinam Jothi Mahalingam, Kishan Gurram, Paul Eijsbouts
  • Patent number: 8703076
    Abstract: A catalyst unit suitable for loading into a tube in a reactor includes a plurality of catalyst particles incorporated within a removable solid matrix, said unit in the form of an elongate body in which the particles are packed together such that the volume shrinkage upon removal of the removable matrix is ?20%. The catalyst particles preferably comprise one or more metals selected from the group consisting of Fe and Co in oxidic or reduced form. The units are particularly suitable for loading catalyst into tubes in a Fischer-Tropsch reactor.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 22, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Mark McKenna, Alejandro Martin Antonini
  • Patent number: 8703884
    Abstract: A polymerization process is disclosed comprising polymerizing an olefin to form an olefin-based polymer in a polymerization reactor; and introducing a polyetheramine additive to the polymerization reactor. The process may further comprise monitoring static in the polymerization reactor; maintaining the static at a desired level by use of a polyetheramine additive, where the polyetheramine additive is present in the reactor in the range from about 0.1 to about 500 ppmw, based on the weight of polymer produced by the process.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 22, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, F. David Hussein
  • Publication number: 20140104753
    Abstract: Provided is a method of preparing a porous metal material. The method includes: obtaining a composite of a DNA hydrogel and a metal precursor by mixing the DNA hydrogel and the metal precursor; and reducing the composite of the DNA hydrogel and the metal precursor.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: No-kyoung PARK, Jae-hyun HUR, Kyu-hyun IM
  • Publication number: 20140106961
    Abstract: Provided is a photocatalytic coating film that can develop excellent photocatalytic activity and exhibit superior adhesion to an adherend surface. The photocatalytic coating film is obtained by applying and drying a photocatalytic coating composition containing at least rod-like or needle-like titanium oxide particles and a binder component so that the photocatalytic coating film contains the titanium oxide particles in a content of 0.5 g/m2 or more. The photocatalytic coating film contains the titanium oxide particle in a content per unit volume (1 m2 by 1 ?m thick) of less than 3.0 g. The titanium oxide particles preferably have an aspect ratio of 1.5 or more, the aspect ratio specified as the ratio of a long side length to a short side length of particle. The compositional ratio (by weight) of the titanium oxide particles to the binder component in the photocatalytic coating film is preferably from 1:6 to 30:1.
    Type: Application
    Filed: June 6, 2012
    Publication date: April 17, 2014
    Applicant: DAICEL CORPORATION
    Inventors: Toru Nakai, Yoshinori Funaki, Toshikazu Nakamura
  • Patent number: 8697597
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 15, 2014
    Assignee: University of Miami
    Inventor: Xiangyang Zhou
  • Publication number: 20140081059
    Abstract: Disclosed herein is an external, fixed bed, agglomerated nano catalyst of the general formula; AxByOz.Qn.(OH)m where, ‘A’ represents transition element ‘B’ represents rare earth elements including the lanthanide series, and actinide series either alone or mixture thereof in metallic or oxide or as hydroxides; ‘Q’ represents montmorillonate clay or its derivatives; and optionally along with an organic binder; for conversion of various homogeneous and heterogeneous waste material into useful hydrocarbon fuel as oil, gas and as solid carbon.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Inventor: Raghavendra Rao TURLAPATI
  • Patent number: 8674142
    Abstract: The invention relates to the use of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and its alkyl, aryl, or heteroatom substituted analogs, that act as catalysts in the presence of an alkali metal (Li, K, Na) for the reduction of electron-deficient and electron-rich triaryl phosphines to their corresponding alkali metal diaryl phosphide salts. The process is also useful for the catalysis of triaryl phosphine chalcogen adducts such as the sulfides, oxides, and selenides, diaryl(halo)phosphines, triaryl phosphine-borane adducts, and tetra-aryl bis(phosphines) that can also be reduced to their corresponding alkali metal diaryl phosphide salts. The invention also relates to small molecule PAHs and polymer tethered PAHs naphthenics.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: March 18, 2014
    Assignee: PMC Organometallix, Inc.
    Inventors: Nicholas J. Rodak, Gary S. Silverman, Stephen W. Carson
  • Publication number: 20140072901
    Abstract: A membrane electrode assembly for fuel cells includes a proton conducting membrane having a first side and a second side. The membrane electrode assembly further includes an anode disposed over the first side of the proton conducting layer and a cathode catalyst layer disposed over the second side of the proton conducting layer. One or both of the anode catalyst layer and the cathode catalyst layer includes a first polymer which has cyclic polyether groups. An ink composition for forming a fuel cell catalyst layer is also provided.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Fuller, Lijun Zou, James Mitchell, Michael R. Schoeneweiss
  • Publication number: 20140066289
    Abstract: A composite article includes a core layer and an upper layer overlying the core layer. The upper layer is made of perfluoroalkoxy polymer (PFA) and a photocatalytic material (PM), wherein the PM defines at least about 25% of a total area of an exterior surface of the upper layer.
    Type: Application
    Filed: September 2, 2012
    Publication date: March 6, 2014
    Applicant: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Katherine M. Sahlin, James R. Greno, Michael P. Cushman, Robert C. Hobbs, James M. McMartin
  • Publication number: 20140066290
    Abstract: The present invention provides a cathode catalyst for an air secondary cell having both excellent oxygen reduction activity and excellent water oxidation activity, and an air secondary cell that uses the catalyst. The present invention relates to a cathode catalyst for an air secondary cell in which the catalyst contains a polynuclear metal complex.
    Type: Application
    Filed: April 27, 2012
    Publication date: March 6, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Nobuyoshi Koshino, Hideyuki Higashimura
  • Publication number: 20140056992
    Abstract: A method for preparing suspension of inorganic nanoparticles is described herein. The method includes mixing a dispersing medium (102) with a dispersant (104) and a metal oxide powder (106) to form a primary mixture (110), the dispersant (104) being selected based on interaction energy of the dispersant (104) with respect to the dispersing medium (102) and the metal oxide powder (106). The method further includes grinding the primary mixture (110) to obtain a suspension (116), wherein at least the dispersant (104) is added to the primary mixture (110) during the grinding after predetermined time intervals.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 27, 2014
    Applicant: TATA CONSULTANCY SERVICES LIMITED
    Inventors: Beena Rai, Pradip .
  • Patent number: H2290
    Abstract: High strength presulfided catalyst for hydrogenating hydrocarbon resins without an in situ sulfiding step. The catalyst particles have a supported metal catalyst structure with presulfided interstitial surfaces with about 20 weight percent of a low molecular weight hydrocarbon resin, based on the weight of the porous supported metal catalyst structure, filling from 90 to 95 percent of the pore volume to improve a crush strength of the catalyst particles. The presulfided catalyst can be stored and/or shipped in an airtight container with an inert atmosphere. The catalyst particles are made by preparing the oxidized catalyst, presulfiding the catalyst, contacting the catalyst with the low molecular weight hydrocarbon resin in an inert atmosphere, sealing the catalyst in a storage/shipping container, loading the reactor with the presulfided, filled catalyst, and contacting the catalyst with an unsaturated hydrocarbon resin under hydrogenation conditions.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: April 1, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jose M. Vargas, Thomas R. Barbee, Yuan-Ju Chen