With Metal Carbonyl Or Carbon Monoxide Complex Patents (Class 502/161)
  • Patent number: 10471693
    Abstract: The present invention relates to a composition comprising: a) one or more organometallic compounds; b) one or more high boiling point solvents; and c) one or more low boiling point solvents. The invention further relates to a system comprising a) one or more organometallic compounds; b) one or more high boiling point solvents; and c) one or more low boiling point solvents and an isocyanate functional adhesive. The isocyanate functional adhesive may be a one part or a two part adhesive. The invention further relates to methods of bonding substrates together using the compositions of the invention.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: November 12, 2019
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventor: Dirk Schwoeppe
  • Patent number: 10221278
    Abstract: In one aspect, the present invention provides catalysts for the carbonylation of heterocycles. The inventive catalysts feature metal-ligand complexes having cationic functional groups tethered to the ligand, wherein the tethered cationic groups are associated with anionic metal carbonyl species. The invention also provides methods of using the inventive catalysts to affect the ring opening carbonylation of epoxides.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: March 5, 2019
    Assignee: Novomer, Inc.
    Inventors: Han Lee, Scott D. Allen, Jay J. Farmer, Geoff Coates
  • Patent number: 10214550
    Abstract: Disclosed herein are compounds of formula (I): wherein: the groups R1, R2, R3, R4, R5, R6, R7, R8, R1?, R2?, R3?, R4?, R5?, R6?, R7?, R8?, R1?, R2?, R3?, R4?, R5?, R6?, R7?, R8? are defined herein; and at least one of the following conditions is satisfied: two radicals from at least one of the four following pairs of radicals are not the same radical: R1? and R8?, R2? and R7?, R3? and R6?, R4? and R5?, and two radicals from at least one of the four following pairs of radicals are not the same radical: R1? and R8?, R2? and R7?, R3? and R6?, R4? and R5?.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: February 26, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Katrin Marie Dyballa, Robert Franke, Dirk Fridag, Armin Boerner, Detlef Selent
  • Patent number: 10159960
    Abstract: A catalytic converter includes a catalyst. The catalyst includes a non-modified metal oxide support and platinum group metal (PGM) complexes atomically dispersed on the non-modified metal oxide support. The PGM complexes include a PGM species selected from the group consisting of an atom of a platinum group metal, a cluster including from 2 atoms to less than 10 atoms of the platinum group metal, and combinations thereof. An alkali metal or an alkaline earth metal is bonded to the PGM species. The alkali or alkaline earth metal is part of a structure including oxygen atoms and hydrogen atoms.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: December 25, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ming Yang, Ryan J. Day, Se H. Oh, Gongshin Qi, Wei Li
  • Patent number: 9790244
    Abstract: Bisphosphites having at least one unsymmetric outer biphenol unit are useful for the hydroformylation of an olefin.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 17, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Katrin Marie Dyballa, Robert Franke, Dirk Fridag, Armin Boerner, Detlef Selent
  • Patent number: 9550181
    Abstract: A micro-spherical iron-based catalyst and a preparation method thereof are disclosed. The catalyst contains a potassium promoter, and at least one transitional metal promoter M which is one or more kinds of metals selected from Cr, Cu, Mn and Zn. It also contains a structure promoter S, which is SiO2 and/or Al2O3, wherein both of SiO2 and Al2O3 are modified by MoO3, TiO2 and/or ZrO2. The weight ratio of components is Fe:M:K:S=100:3-50:1-8:3-50, in which the metal components are calculated based on metal elements, the structure promoter is calculated based on oxides. The catalyst is prepared by co-precipitation method.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: January 24, 2017
    Assignee: SYNFUELS CHINA TECHNOLOGY CO., LTD.
    Inventors: Yong Yang, Baoshan Wu, Yongwang Li, Hongwei Xiang
  • Patent number: 9404048
    Abstract: The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: August 2, 2016
    Assignee: Mississippi State University
    Inventor: Jacqueline Edwards-Henry
  • Patent number: 9359270
    Abstract: A method for the preparation of a modified catalyst support comprising: (a) treating a catalyst support material with an aqueous solution or dispersion comprising one or more zirconium metal sources, chromium metal sources, manganese metal sources and aluminum metal sources, and one or more polar organic compounds; and (b) drying the treated support, and (c) optionally calcining the treated support. Also provided are catalyst support materials obtainable by the methods, and catalysts prepared from such supports.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: June 7, 2016
    Assignee: Velocys Technologies Limited
    Inventors: Frank Daly, Laura Richard
  • Patent number: 9303101
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers comprising monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and an allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: April 5, 2016
    Assignees: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K.
    Inventors: Kyoko Nozaki, Brad Carrow, Yoshikuni Okumura, Junichi Kuroda
  • Patent number: 9018431
    Abstract: The present invention relates to a catalyst composition for oligomerization of ethylene, comprising a chromium compound; a ligand of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H, wherein R1, R2, R3, R4 and R5 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl; a modifier containing organic or inorganic halide; and an activator or co-catalyst; and a process for oligomerization utilizing that catalyst.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 28, 2015
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Anina Wöhl, Uwe Rosenthal, Bernd H. Müller, Normen Peulecke, Stephan Peitz, Wolfgang Müller, Heinz Bölt, Andreas Meiswinkel, Bhaskar Reddy Aluri, Mohammed Al-Hazmi, Mohammed Al-Masned, Khalid Al-Eidan, Fuad Mosa
  • Patent number: 9018126
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Patent number: 8927674
    Abstract: Disclosed herein are cobalt complexes containing terdentate pyridine di-imine ligands and their use as efficient and selective dehydrogenative silylation and crosslinking catalysts.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: January 6, 2015
    Assignees: Princeton University, Momentive Performance Materials Inc.
    Inventors: Cristia Carmen Hojilla Atienza, Paul J. Chirik, Susan Nye, Kenrick M. Lewis, Keith J. Weller, Julie L. Boyer, Johannes G. P. Delis, Aroop Roy, Eric Pohl
  • Publication number: 20140243558
    Abstract: The present invention relates to a process for producing 4-hydroxybutyraldehyde, characterized in that allyl alcohol dissolved in polar solvents is reacted with CO and H2 in the presence of a catalytic system which is formed from a rhodium complex and a cyclobutane ligand which contains at least two trans-coordinated 1,3-dialkylphenyl-phosphinomethyl groups, with the exclusion of catalysts which contain an aliphatic, araliphatic or cycloaliphatic phosphine as ligand. In which R1 is alkyl, preferably methyl, ethyl or propyl R2 is H or an alkoxy group, R3 and R4 independently of one another, are H, CH2OR1, CH2O-aralkyl, CH2OH, CH2—[P(3,5-R1,R1-4-R2-phenyl)2] or CH2O—(CH2—CH2—O)m—H where m is a number from 1 to 1000.
    Type: Application
    Filed: May 25, 2012
    Publication date: August 28, 2014
    Applicant: UMICORE AG & CO. KG
    Inventor: Dieter Arlt
  • Patent number: 8741798
    Abstract: Embodiments of the invention provide catalysts for hydrocarbon oxidation. One embodiment of the invention provides a catalyst for hydrocarbon oxidation comprising: a liquid medium including aromatic hydrocarbon 150; bis(2,4-pentanedionato)platinum; bis(2,4-pentanedionato)palladium; ferrocene; magnesium 2-ethylhexanoate; and cerium (III) 2-ethylhexanoate, rhenium in an organo-metallic compound, or both.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: June 3, 2014
    Inventor: Emmett M. Cunningham
  • Patent number: 8710276
    Abstract: Disclosed are a catalyst composition for hydroformylation of olefin compounds, comprising a specific phosphine ligand and a transition metal catalyst, and a hydroformylation process using the same. Through a hydroformylation process using the catalyst composition according to the present invention, a suitable selectivity of iso-aldehyde can be maintained, catalyst stability can be improved, the amount of used ligand can be reduced and superior catalyst activity can be obtained.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: April 29, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong Hyun Ko, Sung Shik Eom, O Hak Kwon, Hye Won Yang, Jae Hui Choi
  • Publication number: 20140114090
    Abstract: The present invention relates to ligands and catalyst systems for the hydroformylation of short and long chain olefins, preferably for the hydroformylation of ally alcohol producing 4-hydroxybutyraldehyde. The ligands disclosed herein are all-trans phosphinomethyl-cyclobutane ligands, such as, for example, all-trans-1,2,3, 4-tetra[bis-(3,5-xylyl)phosphinomethyl]-cyclobutane. The catalyst systems comprise these all-trans phosphinomethyl-cyclobutane ligands in combination with an organometallic rhodium complex such as, e.g., (acctylacetonato)-dicarbonyl-rhodium (I). The ligands and catalyst systems of the present invention may be employed in the hydroformylation of olefins, in particular in the hydroformylation of allylalcohol, and provide improved selectivity and high reaction yields.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 24, 2014
    Applicant: UMICORE AG & CO. KG
    Inventor: Dieter Arlt
  • Publication number: 20140088318
    Abstract: The present invention is directed to the synthesis of novel stable open metal clusters by selective oxidation of bound ligands. The synthesis comprises, for example, using an amine based oxidant for decarbonylation of specific carbonyl ligands. The synthesis can also comprise further removal of a bound amine group by an acid. The resulting metal cluster contains a coordinatively unsaturated site comprising a carbonyl vacancy. The resulting metal cluster can be used as a catalyst in a variety of chemical transformations.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.
    Inventors: Alexander S. Katz, Alexander Kuperman, Alexander Okrut, Ron C. Runnebaum, Xiaoying Ouyang
  • Publication number: 20140018461
    Abstract: A titanium-oxo-chelate catalyst formulation, comprising: (i) at least one compound of the formula (I), wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 and R12 independently of each other are for example hydrogen, halogen, C1-C20alkyl, C6-C14aryl which is unsubstituted or substituted; or R1, R2 and R3 and/or R4, R5 and R6 and/or R7, R8 and R9 and/or R10, R11 and R12 together with the C-atom to which they are attached each form a C6-C14aryl group which is unsubstituted or substituted; or R1 and R2 and/or R4 and R5 and/or R7 and R8 and/or R10 and R11 together with the C-atom to which they are attached form a 5- to 7-membered carbocyclic ring; at least one chelate ligand compound of the formula (IIa), (IIb) or (IIc), wherein R1, R2, R3, R4, R5 and R6 are defined as above for formula (I), is suitable as photolatent catalyst formulation for polymerizing compounds, which are capable to crosslink in the presence of a Lewis acid.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 16, 2014
    Applicant: BASF SE
    Inventors: Tobias Hintermann, Antoine Carroy, Caroline Lordelot, Didier Bauer, Rachel Kohli Steck, Marc Faller
  • Patent number: 8609924
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: December 17, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Taek Kyu Han, Myung Ahn Ok, Sung Seok Chae, Sang Ook Kang, Jae Ho Jung
  • Publication number: 20130317256
    Abstract: Disclosed are a catalyst composition for hydroformylation of olefin compounds, comprising a specific phosphine ligand and a transition metal catalyst, and a hydroformylation process using the same. Through a hydroformylation process using the catalyst composition according to the present invention, a suitable selectivity of iso-aldehyde can be maintained, catalyst stability can be improved, the amount of used ligand can be reduced and superior catalyst activity can be obtained.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 28, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Dong Hyun KO, Sung Shik EOM, O Hak KWON, Hye Won YANG, Jae Hui CHOI
  • Patent number: 8551439
    Abstract: A method of refining carbon parts for the production of polycrystalline silicon, comprises the steps of, replacing an inside gas of a reactor, in which the carbon parts are placed, with an inert gas, drying the carbon parts by raising a temperature in the reactor to a drying temperature of the carbon parts while flowing an inert gas through the reactor, raising a temperature in the reactor to a purification temperature higher than the drying temperature while flowing chlorine gas through the reactor, reducing a pressure in the reactor, maintaining the inside of the reactor in a reduced pressure, pressurizing the inside of the reactor by introducing chlorine gas for bringing the inside of the reactor into a pressurized state, and cooling the inside of the reactor.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: October 8, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Mitsutoshi Narukawa, Kenichi Watabe
  • Publication number: 20130244865
    Abstract: Provided is a catalyst for producing hydrogen, which catalyst has higher performance than conventional catalysts since, for example, it exhibits a certain high level of activity in an aqueous formic acid solution at high concentration even without addition of a solvent, amine and/or the like. The metal phosphine complex is a metal phosphine complex represented by General Formula (1): MHm(CO)Ln, wherein M represents an iridium, iron, rhodium or ruthenium atom; in cases where M is an iridium or rhodium atom, m=3 and n=2, and in cases where M is an iron or ruthenium atom, m=2 and n=3; and the number n of Ls each independently represent a tri-substituted phosphine represented by General Formula (2): PR1R2R3. The catalyst for producing hydrogen comprises the metal phosphine complex as a constituent component.
    Type: Application
    Filed: November 24, 2011
    Publication date: September 19, 2013
    Applicant: NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY
    Inventors: Makoto Muranaka, Toshiyuki Oshiki
  • Publication number: 20130225873
    Abstract: This invention concerns a promoted catalyst system for making one or more alkanols from synthesis gas. The catalyst system contains a ruthenium compound and a halogen promoter dispersed in a low-melting tetraorganophosphonium salt. The halogen promoter is a compound capable of generating HX (where X?Cl, Br, or I) under reaction conditions. The invention also concerns a process for selectively preparing one or more alkanols from synthesis gas using the promoted catalyst system.
    Type: Application
    Filed: August 24, 2012
    Publication date: August 29, 2013
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Jan Hendrik Blank, David John Cole-Hamilton, Robert Thomas Hembre, James Allen Ponasik, JR.
  • Patent number: 8481447
    Abstract: This invention relates to a solid particulate substrate for use in the vulcanization of rubber and a process for the production thereof. The solid particulate substrate is coated with a coating containing a complexed acetometallate salt of sodium and a transition metal. The use of the solid particulate substrate in the vulcanization of rubber reduces the amount of transition metal oxide used in the vulcanization process.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: July 9, 2013
    Assignee: Rubber Nano Products (Proprietary) Limited
    Inventor: Robert M. Bosch
  • Patent number: 8383543
    Abstract: The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Publication number: 20130018158
    Abstract: Catalyst in form of solid particles, wherein the particles—have a specific surface area of less than 20 m2/g, comprise a transition metal compound which is selected from one of the groups 4 to 10 of the periodic table (IUPAC) or a compound of actinide or lanthanide, comprise a metal compound which is selected from one of the groups 1 to 3 of the periodic table (IUPAC), and—comprise solid material, wherein the solid material does not comprise catalytically active sites, has a specific surface area below 500 m2/g, and has a mean particle size below 100.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Applicant: Borealis Technology Oy
    Inventors: Peter Denifl, Timo Leinonen, Anssi Haikarainen, Torvald Vestberg
  • Patent number: 8318878
    Abstract: The present invention relates to a catalyst, which is an organic component with electron withdrawing substituents and to compositions with such catalyst and at least one benzoxazine component, and the use of such compositions in adhesives, sealants and coatings.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 27, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Atsushi Sudo, Takeshi Endo, Andreas Taden, Rainer Schönfeld, Thomas Huver
  • Publication number: 20120270135
    Abstract: Provided is a catalyst having high durability with resistance to corrosion in an acidic electrolyte or at high potential and high oxygen reduction activity. The catalyst is a metal oxycarbonitride containing at least one group III transition metal compound and at least one group IV or V transition metal oxide having a crystallite size of 1 to 100 nm. The group III transition metal compound may be a compound of at least one selected from the group consisting of scandium, yttrium, lanthanum, cerium, samarium, dysprosium, and holmium. The group IV or V transition metal oxide may be an oxide of at least one selected from the group consisting of titanium, zirconium, tantalum, and niobium.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Tadatoshi KUROZUMI
  • Patent number: 8293675
    Abstract: The invention relates to a process for producing a catalyst comprising a metal of the platinum group and a second metal selected from among the metals of the platinum group or the transition metals, in which a catalyst comprising the metal of the platinum group is mixed with a complex comprising the second metal to give a dry powder in a first step and the powder is subsequently heat treated to form a compound between the metal of the platinum group and the second metal. The invention further relates to the use of the catalyst produced according to the invention.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: October 23, 2012
    Assignee: BASF SE
    Inventors: Stefan Kotrel, Gerhard Cox, Ekkehard Schwab, Alexander Panchenko
  • Patent number: 8236262
    Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Publication number: 20120029258
    Abstract: The present invention relates to a catalyst composition for oligomerization of ethylene, comprising a chromium compound; a ligand of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H, wherein R1, R2, R3, R4 and R5 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl; a modifier containing organic or inorganic halide; and an activator or co-catalyst; and a process for oligomerization utilizing that catalyst.
    Type: Application
    Filed: March 24, 2010
    Publication date: February 2, 2012
    Applicant: Saudi Basic Industries Corporation
    Inventors: Anina Wöhl, Uwe Rosenthal, Bernd H. Müller, Normen Peulecke, Stephan Peitz, Wolfgang Müller, Heinz Bött, Andreas Meiswinkel, Bhaskar Reddy Aluri, Mohammed Al-Hazmi, Mohammed Al-Masned, Khalid Al-Eidan, Fuad Mosa
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Patent number: 8092720
    Abstract: Polymer supported metal complex catalysts and methods of their preparation and use are described. The polymer supported metal complex catalysts can be obtained via ligand exchange reactions between polymer ligands and a metal complex having catalytic activity. For example, a polymer supported rhodium (II) complex catalyst can be prepared via ligand exchange reaction between an insoluble polymer and a rhodium (II) carboxylate complex, wherein the insoluble polymer is prepared by a copolymerization reaction of (i) a styrene derivative with a substituted carboxylic acid, (ii) a styrene, and (iii) a linear alkane with both ends substituted by vinylbenzyloxy groups. The polymer supported catalysts can be used to catalyze asymmetric carbene reactions such as C—H insertion reactions and the like with high catalytic activity, chemical selectivity, diastereoselectivity, and enantioselectivity.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: January 10, 2012
    Assignee: National University Corporation Hokkaido University
    Inventors: Shunichi Hashimoto, Masahiro Anada
  • Patent number: 8080492
    Abstract: A catalyst precursor for preparing a bulk multi-metallic catalyst upon sulfidation is provided. The precursor has an essentially monomodal pore volume distribution with at least 90% of the pores being macropores, and a total pore volume of at least 0.08 g/cc. The bulk multi-metallic prepared from the precursor is particularly suitable for hydrotreating heavy oil feeds having a boiling point in the range of 343° C. (650° F.)—to 454° C. (850° F.), an average molecular weight Mn ranging from 300 to 400, and an average molecular diameter ranging from 0.9 nm to 1.7 nm.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: December 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Soy Uckung, Darren Fong
  • Publication number: 20110201844
    Abstract: The present invention relates to a catalyst composition for hydroformylation and a method for preparing aldehydes using the same, wherein the catalyst composition for hydroformylation comprises: a triaryl phosphine ligand; a phosphine oxide or phosphine sulfide ligand having a specific chemical formula; and a transition metal catalyst. The catalyst composition provides high catalyst activity and stability and selectivity to normal aldehydes when used in the hydroformylation for preparing aldehydes from olefins.
    Type: Application
    Filed: April 22, 2011
    Publication date: August 18, 2011
    Inventors: Jae Hui Choi, Dong Hyun Ko, Sung Shik Eom, Moo Ho Hong, O Hark Kwon, Dae Chul Kim
  • Publication number: 20110184119
    Abstract: Bismuth-containing catalytic systems, formed using inorganic particles coated with at least one inorganic or organic bismuth compound that is catalytically active when polymerising polymers, characterised in that the inorganic bismuth compound is selected from the group comprising bismuth oxychloride, bismuth hydroxo-sulphate and bismuth carbonate, and in that the organic bismuth compound is selected from the group comprising bismuth acetate, bismuth benzoate, bismuth citrate, bismuth lactate and bismuth phthalate.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 28, 2011
    Inventors: Stephan Bloess, Thomas von Oppenkowski, Peter Gross
  • Patent number: 7977271
    Abstract: A multiple-metal complex-containing compound in accordance with an embodiment has a plurality of metal complexes in each of which a ligand is coordinated to one metal atom or a plurality of metal atoms of the same kind. The plurality of metal complexes are bound to each other via a polydentate ligand that substitutes partially the ligands of the two or more metal complexes, and have 2 to 1000 metal atoms.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: July 12, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazushi Mashima, Masato Ohashi, Akihiro Yagyu, Hirohito Hirata
  • Publication number: 20110143925
    Abstract: Catalytic systems and methods for oxidizing materials in the presence of metal catalysts (preferably manganese-containing catalysts) complexed with selected macropolycyclic rigid ligands, preferably cross-bridged macropolycyclic ligands. Included are using these metal catalysts in such processes as: synthetic organic oxidation reactions such as oxidation of organic functional groups, hydrocarbons, and heteroatoms, including enantiomeric epoxidation of alkenes, enynes, sulfides to sulfones and the like; oxidation of oxidizable compounds (e.g., stains) on surfaces such as fabrics, dishes, countertops, dentures and the like; oxidation of oxidizable compounds in solution, dye transfer inhibition in the laundering of fabrics; and further in the bleaching of pulp and paper products.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Inventors: Daryle Hadley Busch, Simon Robert Collinson, Timothy Jay Hubin
  • Publication number: 20110137059
    Abstract: A novel bidentate catalytic ligand of general formula (I) is described. R represents a hydrocarbyl aromatic structure having at least one aromatic ring to which Q1 and Q2 are each linked, via the respective linking group, if present, on available adjacent atoms of the at least one aromatic ring. The groups X3 and X4 represent radicals joined via tertiary carbon atoms to the respective atom Q1 and the groups X1 and X2 represent radicals joined via primary, or substituted aromatic ring carbon atom(s) to the respective atom Q2. A and B represent an optional lower alkylene linking group. Q1 and Q2 each represent phosphorus, arsenic or antimony. A process for the carbonylation of ethylenically unsaturated compounds comprising reacting the compound with carbon monoxide in the presence of a source of hydroxyl groups, optionally, a source of anions and catalyst system obtainable by combining a metal of Group 8, 9 or 10 or a compound thereof and the bidentate ligand of general formula (I) is also described.
    Type: Application
    Filed: July 2, 2009
    Publication date: June 9, 2011
    Applicant: LUCITE INTERNATIONAL UK LIMITED
    Inventors: Graham Ronald Eastham, Mark Waugh, Paul Pringle, Tamara Fanjul Solares
  • Publication number: 20110130532
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition including the compound and an olefin polymer prepared using the same. The metallocene compound and the catalyst composition can be used for preparing the olefin polymer with high copolymerization degree and high molecular weight. Particularly, the block copolymer with high heat resistance can be prepared by using the metallocene compound, and the olefin polymer with high melting point (Tm) can be obtained, even if co-monomer is used at an increased amount in preparation of olefin polymer.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 2, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Young-Chul WON, Sung-Ho CHUN, Dai-Seung CHOI, Dong-Woo YOO, Bun-Yeoul LEE
  • Publication number: 20110083573
    Abstract: Coating for an offset paper comprising a catalyst for fixing polymerisable or crosslinkable constituents of the offset ink. The chemical drying time can be substantially reduced if such a catalyst system is added to the coating, wherein preferentially such a catalyst is a transition metal complex/salt, like Mn (2-ethylhexanoate, bpy).
    Type: Application
    Filed: October 1, 2010
    Publication date: April 14, 2011
    Applicant: SAPPI NETHERLANDS SERVICES B.V.
    Inventors: Bert SCHOLTE, Jean-Pierre HAENEN, Elisabeth BOUWMAN, Zhiliang LIU
  • Patent number: 7918992
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: April 5, 2011
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 7880038
    Abstract: A metal catalyst obtained by contacting (A) at least one metal or metal compound selected from i) tungsten compounds composed of tungsten and an element of group IIIb, IVb, Vb, or VIb, ii) molybdenum compounds composed of molybdenum and an element of group IIIb, IVb, Vb, or VIb, and iii) tungsten metal and molybdenum metal; (B) at least one compound selected from tertiary amine compounds, tertiary amine oxide compounds, nitrogen-containing aromatic compounds and nitrogen-containing aromatic N-oxide compounds; (C) hydrogen peroxide; and (D) a phosphate compound, is provided.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 1, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masaji Hirota, Koji Hagiya
  • Publication number: 20110021345
    Abstract: A multiple-metal complex-containing compound in accordance with an embodiment has a plurality of metal complexes in each of which a ligand is coordinated to one metal atom or a plurality of metal atoms of the same kind. The plurality of metal complexes are bound to each other via a polydentate ligand that substitutes partially the ligands of the two or more metal complexes, and have 2 to 1000 metal atoms.
    Type: Application
    Filed: September 9, 2010
    Publication date: January 27, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazushi MASHIMA, Masato OHASHI, Akihiro YAGYU, Hirohito HIRATA
  • Publication number: 20110014105
    Abstract: A particulate desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulphurisation material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulphurisation material may be used to desulphurise hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 20, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 7863209
    Abstract: A method for recovering and reusing a ring-halogenation catalyst comprises: (A) contacting an aromatic compound with chlorine or bromine in the presence of a catalyst composition, where the catalyst composition comprises at least one salt comprising a Group 4-13 metal, a lanthanide metal, or an actinide metal; and at least one organic counterion derived from an organic acid having a pKa relative to water of 0 or greater; and at least one organic sulfur compound; to form a first product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal halide; (B) separating the metal halide from the first product mixture; and (C) contacting at least a portion of the metal halide and an aromatic compound with chlorine or bromine, and at least one organic sulfur compound; to form a second product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: January 4, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Balakrishnan Ganesan, Pradeep Jeevaji Nadkarni, Robert Edgar Colborn, Dan Hancu
  • Publication number: 20100311914
    Abstract: This invention relates to a solid particulate substrate for use in the vulcanization of rubber and a process for the production thereof. The solid particulate substrate is coated with a coating containing a complexed acetometallate salt of sodium and a transition metal. The use of the solid particulate substrate in the vulcanization of rubber reduces the amount of transition metal oxide used in the vulcanization process.
    Type: Application
    Filed: October 16, 2008
    Publication date: December 9, 2010
    Applicant: Rubber Nano Products (Proprietary)Limited
    Inventor: Robert M. Bosch
  • Publication number: 20100311937
    Abstract: The invention provides a polyurethane catalyst composition comprising a compound of titanium, zirconium or hafnium and a co-catalyst which is a compound effective as a polyisocyanate trimerisation catalyst.
    Type: Application
    Filed: November 14, 2008
    Publication date: December 9, 2010
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Arran Alexander Dickon Tulloch
  • Publication number: 20100279851
    Abstract: A catalyst precursor for preparing a bulk multi-metallic catalyst upon sulfidation is provided. The precursor has an essentially monomodal pore volume distribution with at least 90% of the pores being macropores, and a total pore volume of at least 0.08 g/cc. The bulk multi-metallic prepared from the precursor is particularly suitable for hydrotreating heavy oil feeds having a boiling point in the range of 343° C. (650° F.)—to 454° C. (850° F.), an average molecular weight Mn ranging from 300 to 400, and an average molecular diameter ranging from 0.9 nm to 1.7 nm.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 4, 2010
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Soy Uckung, Darren Fong
  • Publication number: 20100258479
    Abstract: The present invention relates to coal chemical processing, and particularly to a thermal dissolution catalysis method for preparing liquid fuel from lignite. The method comprises steps of: 1) crushing and drying lignite into coal powder; 2) stirring and mixing coal powder, a solvent and a catalyst sufficiently to form coal slurry, wherein there are 30-40% mass of coal powder, 60-70% mass of solvent, and 0.5-1% mass of catalyst relative to coal powder mass; 3) subjecting the coal slurry to thermal dissolution catalysis reaction to obtain thermal dissolution liquefied product, wherein the reaction is carried out for 30-60 minutes at a temperature 390-450° C. under a pressure 5.0-9.0 MPa; 4) separating the thermal dissolution liquefied product into gas, liquid and solid phases; and 5) upgrading the liquid product into liquid fuel. The present invention further discloses a catalyst and a solvent for use in the above method.
    Type: Application
    Filed: December 10, 2008
    Publication date: October 14, 2010
    Applicant: ZHAOQING SHUNXIN COAL CHEMICAL INDUSTRY S.T. CO. LTD.
    Inventors: Ke Wu, Chong Chen, Wenyi Huang, Pai Peng, Chunlai Wu