Organic Nitrogen Containing Patents (Class 502/167)
  • Patent number: 10465289
    Abstract: Group 4 transition metal-containing film forming compositions comprising Group 4 transition metal precursors having the formula: wherein M is Ti, Zr, or Hf; each E is independently C, Si, B or P; m and n is independently 0, 1 or 2; m+n>1; o and p is independently 0, 1 or 2; o+p>1; each R is independently hydrogen or or a C1-C4 hydrocarbon group; each L is independently a ?1 anionic ligand selected from the group consisting of NR?2, OR?, Cp, amidinate, ?-diketonate or keto-iminate, wherein R? is a H or a C1-C4 hydrocarbon group; and each L? is independently NR? or O, wherein R? is a H or a C1-C4 hydrocarbon group. Also disclosed are methods of synthesizing and using the disclosed precursors to deposit Group 4 transition metal-containing films on one or more substrates via vapor deposition processes.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: November 5, 2019
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude at l'Exploitation des Procédés Georges Claude
    Inventors: Satoko Gatineau, Daehyeon Kim, Wontae Noh, Julien Gatineau, Jean-Marc Girard
  • Patent number: 10464876
    Abstract: Disclosed are processes, products, and compositions having tetraalkylguanidine salt of aromatic acid. The processes include providing a pre-mix comprising an aromatic carboxylic acid component and contacting a tetraalkylguanidine with the aromatic carboxylic acid component in the pre-mix to form the tetraalkylguanidine salt of aromatic carboxylic acid or producing a catalyst composition by contacting the tetraalkylguanidine with the aromatic carboxylic acid component to form the tetraalkylguanidine salt of aromatic carboxylic acid. The compositions include the tetraalkylguanidine salt of aromatic carboxylic acid. The product is formed by the tetraalkylguanidine salt of aromatic carboxylic acid.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 5, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Matti Sakari Huhtasaari
  • Patent number: 10376873
    Abstract: This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 13, 2019
    Assignee: Advanced Refining Technologies LLC
    Inventors: Xianghua Yu, Shuguang Zhang, Gill M. Malick, Bruno Nesci, Henry Saternus, Jifei Jia, Cecelia Radlowski, Theodorus Ludovicus Michael Maesen, Colleen T. Miedona
  • Patent number: 10377720
    Abstract: A process for preparing, 2-[[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy]methyl]-N-hydroxy-benzenamine of formula (I) comprising: mixing 1-(4-chlorophenyl)-3-[(2 -nitrophenyl)methoxy]-1H-pyrazole of formula (II) with a nitrogen-containing base, a sulfur compound, a solvent and a platinum-based catalyst in the presence of hydrogen.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 13, 2019
    Assignee: Adama Makhteshim Ltd.
    Inventors: Gal Suez, Michael Grabarnick, Alexander Frenklah, Heinz Steiner
  • Patent number: 10370600
    Abstract: This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 6, 2019
    Assignee: Advanced Refining Technologies LLC
    Inventors: Xianghua Yu, Shuguang Zhang, Gill M. Malick, Bruno Nesci, Henry Saternus, Jifei Jia, Cecelia A. Radlowski, Theodorus Ludovicus Michael Maesen, Colleen T. Miedona
  • Patent number: 10369558
    Abstract: This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst. As a result, the hydrotreating catalysts have lower percent weight loss-on-ignition, higher activity and longer catalyst life.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 6, 2019
    Assignee: Advanced Refining Technologies LLC
    Inventors: Xianghua Yu, Shuguang Zhang, Gill M. Malick, Bruno Nesci, Henry Saternus, Jifei Jia, Cecelia A. Radlowski, Theodorus Ludovicus Michael Maesen, Colleen T. Miedona
  • Patent number: 10251398
    Abstract: Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed, wherein the resin compositions that are generated exhibit lower initial color, reduced color shift upon storage and reduced levels of spontaneous polymerization. Such methods generally comprise: combining a silver-containing material with a self-cure and dual-cure base resin in situ wherein the base resin does not contain a catalytic amine; and adding a catalytic resin to the mixture of the resin and silver-containing material in order to form the final cured resin. Antimicrobial polymeric materials formed by said methods are also disclosed.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 9, 2019
    Assignee: The Board of Regents of the University of Texas System
    Inventor: Kyumin Whang
  • Patent number: 10196476
    Abstract: Catalyst compositions useful in the production of insulating polyurethane or polyisocyanurate foam are disclosed. The catalyst compositions impart increased stability of a mixture of the catalyst, a halogen-containing blowing agent, and a polyol. These catalyst compositions comprise of at least 10% of a tetraalkylguanidine and at least 10% of a tertiary amine catalyst with an isocyanate reactive group. These improved catalysts can be used with any halogenated blowing agent, and provide substantial stability benefits with the use of hydrofluoroolefins and hydrofluorochloroolefins. In an exemplary embodiment, a process includes providing a pre-mix comprising a hydrohaloolefin blowing agent, at least one polyol, water, and a catalyst comprising 10-50% tetramethylguanidine and 10-90% of one or more of an amine catalyst containing an isocyanate reactive group.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: February 5, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Jean Louise Vincent, Timothy J. Miller
  • Patent number: 10154669
    Abstract: Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed. Such methods generally comprise: combining a silver-containing material with a resin in situ in the presence of a silver-binding compound; and curing the resin. Antimicrobial polymeric resin compositions formed by said methods have a lighter color than control compositions and also display a slower release of silver ions over time.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: December 18, 2018
    Assignee: The Board of Regents of the University of Texas System
    Inventor: Kyumin Whang
  • Patent number: 10065977
    Abstract: Flow batteries incorporating an active material with one or more catecholate ligands can have a number of desirable operating features. Commercial syntheses of catechol produce significant quantities of hydroquinone as a byproduct, which presently has limited value in the battery industry and can represent a significant waste disposal issue at industrial production scales. Using a concerted, high-yield process, low-value hydroquinone can be transformed into high-value 1,2,4-trihydroxybenzene, which can be a desirable ligand for active materials of relevance in the flow battery industry.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 4, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Patent number: 10023683
    Abstract: The present invention provides a reactive catalyst composition for making a water blown flexible polyurethane foam. The catalyst composition comprises one or more tertiary amine catalysts in combination with (1) 2-methyl-1,3-propanediol or (2) a blend of 2-methyl-1,3-propanediol and a C7+ alkanol. The use of such catalyst composition improves the physical properties of the polyurethane foam.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 17, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Jared Denis Bender, Mark Leo Listemann, James Douglas Tobias
  • Patent number: 9902614
    Abstract: Disclosed is a method of producing hydrogen from formaldehyde, the method comprising obtaining an aqueous mixture having a basic pH and comprising formaldehyde, an iron containing photocatalyst, and a base, and subjecting the aqueous mixture to light to produce hydrogen (H2) gas from the formaldehyde.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 27, 2018
    Assignee: SABIC Global Technologies B.V.
    Inventors: Khalid Al-Bahily, Balamurugan Vidjayacoumar, Sandro Gambarotta, Nicholas P. Alderman
  • Patent number: 9833774
    Abstract: Preparation of a catalyst suitable for use in Fischer-Tropsch Synthesis reactions using a two step process in which the steps may be performed in either order. In step a), impregnate an iron carboxylate metal organic framework selected from a group consisting of iron-1,3,5-benzenetricarboxylate (Fe-(BTC), Basolite™ F-300 and/or MIL-100 (Fe)), iron-1,4 benzenedicarboxylate (MIL-101(Fe)), iron fumarate (MIL-88 A (Fe)), iron-1,4 benzenedicarboxylate (MIL-53 (Fe)), iron-1,4 benzenedicarboxylate (MIL-68 (Fe)) or iron azobenzenetetracarboxylate (MIL-127 (Fe)) with a solution of a promoter element selected from alkali metals and alkaline earth metals. In step b) thermally decompose the iron carboxylate metal organic framework under an inert gaseous atmosphere to yield a catalyst that is a porous carbon matrix having embedded therein a plurality of discrete aliquots of iron carbide.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: December 5, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Vera P. Santos Castro, Adam Chojecki, Garmt R. Meima, Adrianus Koeken, Matthijs Ruitenbeek, Thomas Davidian, Gascon Jorge, Michiel Makkee, Freek Kapteijn, Tim A. Wezendonk
  • Patent number: 9796743
    Abstract: Bidentate heteroleptic square planar complexes of (pyridyl)azolates possess optical and electrical properties that render them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes (“OLEDs”), including doping-free OLEDs. Preferred forms also demonstrate semiconducting behavior and may be useful in a variety of other applications. Within the general complexes of (pyridyl)azolates, the metal and the ligands may be varied to impart different optoelectronic properties.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: October 24, 2017
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Mohammad A. Omary, Iain W. H. Oswald
  • Patent number: 9765009
    Abstract: Disclosed are processes, products, and compositions having tetraalkylguanidine salt of aromatic acid. The processes include providing a pre-mix comprising an aromatic carboxylic acid component and contacting a tetraalkylguanidine with the aromatic carboxylic acid component in the pre-mix to form the tetraalkylguanidine salt of aromatic carboxylic acid or producing a catalyst composition by contacting the tetraalkylguanidine with the aromatic carboxylic acid component to form the tetraalkylguanidine salt of aromatic carboxylic acid. The compositions include the tetraalkylguanidine salt of aromatic carboxylic acid. The product is formed by the tetraalkylguanidine salt of aromatic carboxylic acid.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 19, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Matti Sakari Huhtasaari
  • Patent number: 9718900
    Abstract: Catalyst systems and methods for making and using the same. A catalyst system can include a non-metallocene catalyst having the structure: wherein M is a group 4 element, each of R13-R20 are independently a hydrogen or a methyl group, wherein at least one of R13-R20 is a methyl group, Ar is an aryl group or a substituted aryl group, Ar? is an aryl group or a substituted aryl group, and each X is, independently, a hydride group, an amide, a benzyl group, a methyl group, a chloro group, a fluoro group, or a hydrocarbyl group.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 1, 2017
    Assignee: Univation Technologies, LLC
    Inventor: Garth R. Giesbrecht
  • Patent number: 9722256
    Abstract: In the present disclosure, imidazole-derived materials including M-N—C catalysts, imidazole-derived MOFs and MOF-based M-N—C catalysts as well as methods for preparing the same utilizing mechanochemical synthesis and/or a sacrificial support-based methods are described.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: August 1, 2017
    Assignee: STC.UNM
    Inventors: Alexey Serov, Plamen B Atanassov
  • Patent number: 9624582
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver complex comprising reducible silver ions, (b) an oxyazinium salt silver ion photoreducing agent, (c) a hindered pyridine, (d) a photocurable component, a non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (e) a photo sensitizer different from all components (a) through (d) in the non-aqueous metal catalytic composition, in an amount of at least 1 weight %. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: April 18, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Deepak Shukla
  • Patent number: 9586200
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver complex comprising reducible silver ions, (b) an organic phosphite, (c) an oxyazinium salt silver ion photoreducing agent, (d) a hindered pyridine, (e) a photocurable component, a non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (f) a photosensitizer different from all components (a) through (e) in the non-aqueous metal catalytic composition, in an amount of at least 1 weight %. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 7, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Patent number: 9484582
    Abstract: According to an embodiment, a method of preparing a catalyst for a fuel cell component includes soaking catalyst particles in citric acid. The catalyst particles are then rinsed after having been soaked in the citric acid. Catalyst particles are dried after they have been rinsed. When desired, the pre-treated catalyst particles may be incorporated into a catalyst ink used for making a fuel cell component.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 1, 2016
    Assignee: Audi AG
    Inventors: Jesse M. Marzullo, Elise Lorraine Izzo, Robert Mason Darling
  • Patent number: 9469658
    Abstract: A novel class of lanthanide metal salen complexes can be used as an ingredient of a catalyst system. The catalyst system can be used in polymerizations of ethylenically unsaturated hydrocarbon monomers.
    Type: Grant
    Filed: February 5, 2012
    Date of Patent: October 18, 2016
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Steven Luo, Joshua S. Dickstein
  • Patent number: 9464256
    Abstract: The present invention relates to a novel method for preparing stabilized oil formulations by means of certain carbodiimides.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 11, 2016
    Assignee: Rhein Chemie Rheinau GmbH
    Inventors: Wilhelm Laufer, Armin Eckert, Siegfried Kuenzel
  • Patent number: 9434820
    Abstract: Thermoplastic resin polymer compositions having a block of random polysiloxane co- or terpolymer structure, such as substituted phenyl-terminated polysiloxane co- or terpolymers having the general structure: provide improved flame resistance, optical clarity, and better low-temperature impact strength compared to conventional blends, additives, and copolymers. The substituted phenyl terminated polysiloxanes may be used to make various polysiloxane-thermoplastic resin polymer and polymer blends, as well as articles including such polysiloxane-thermoplastic resin polymer and blends.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: September 6, 2016
    Assignee: Momentive Performance Material Inc.
    Inventors: Anuj Mittal, Narayan Padmanabha Iyer, Samim Alam, Indumathi Ramakrishnan, Roy U. Rojas-Wahl
  • Patent number: 9381507
    Abstract: The present invention concerns a process for the preparation with high selectivity of a compound of formula (I) by isomerization at room temperature of compound of formula (II) in the presence of a complex of formula [Ru(dienyl)2H]X.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: July 5, 2016
    Assignee: Firmenich SA
    Inventors: Jean-Jacques Riedhauser, Oliver Knopff, Luigi Marinoni
  • Patent number: 9302979
    Abstract: A bis (2-dialkylaminoethyl) ether synthesizing method is disclosed, which includes steps of: 1) synthesizing: wherein N,N-dialkylethanolamine, N,N-dialkylamine and ethyne are mixed at a mole ratio of 4:3:1-2:1:1 as a raw material; and the raw material, catalyst and solvent are added in a high-pressure clave for reaction in a sealed condition; a weight of catalyst accounts for 2.0%-10.5% of the total weight of the raw material; a reaction temperature is 50-120° C. and the reaction time is 3-7 hours; the clave is then opened after reaction and a filtrate is collected by filtering the reaction mixture; and 2) separating: wherein the filtrate obtained in the step 1) is rectified to obtain the bis (2-dialkylaminoethyl) ether as a product. The synthetic method of the bis (2-dialkylaminoethyl) ether in the present invention has many characteristics, such as simple process, high atomic economy, etc.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: April 5, 2016
    Assignee: SICHUAN ZHIJIANG ADVANCED MATERIALS CO., LTD.
    Inventors: Chao Zhang, Hua Zhang, Xiaoming Ye, Qi Zhang, Chuanwei Ye
  • Patent number: 9266991
    Abstract: A formulation for preparing a low density, full water blown polyurethane rigid foam includes an isocyanate component; an isocyanate-reactive component comprising from 30-50 wt % of a first polyether polyol having a functionality greater than 5 and an OH value from 350-550 mgKOH/g; from 5 to 25 wt % of a diol having an OH value from 100-300 mgKOH/g; and from 15 to 35 weight percent of a second polyether polyol having a functionality from 3 to 5; further including from 1.5 to 5 wt % of a catalyst selected from dimethylbenzylamine and/or 1,2-dimethyl-imidazole; from greater than 0 to 1 wt % of a trimerization catalyst selected from a glycine salt and/or tris(dimethyl aminomethyl) phenol; greater than 4.1 wt % water as a blowing agent; and any additional constituents selected such that the formulation, excluding the isocyanate component, totals 100 wt % and, the formulation absent the isocyanate component, has a dynamic viscosity from 540 to 864 mPa*s at 20° C.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 23, 2016
    Assignee: Dow Global Technologies LLC
    Inventor: Cecilia Girotti
  • Patent number: 9169386
    Abstract: Disclosed are organic, UV resistant epoxy resins derived largely from vegetable oil. More specifically, the present invention provides a virtually non-toxic, hypoallergenic UV resistant resin that gives off substantially no VOCs or disagreeable odors. The composition comprises a vegetable oil-based polyfunctional carboxylic acid, a cycloaliphatic anhydride, and an epoxy compound either of bicyclic difunctional epoxy resin, epoxidized vegetable oil or epoxidized polymer chains. The composition further comprises a catalyst and a wetting agent. In its cured state the material is leather like and exhibits high tensile strength as well as unusually high, totally reversible elongation. In an alternative embodiment, the resin comprises a cyclic anhydride.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: October 27, 2015
    Assignee: ECO GREEN RESINS, LLC
    Inventors: Arthur Katzakian, Craig Katzakian
  • Patent number: 9090557
    Abstract: Disclosed is a method for producing di(2-ethylhexyl)terephthalate (DOTP), which comprises subjecting terephthalic acid and 2-ethylhexanol to esterification in the presence of a chelate catalyst. The method of the present invention increases the reaction rate, improves the filtration efficiency of the ester product and yields DOTP with low APHA.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: July 28, 2015
    Assignee: Chang Chun Plastics Co., Ltd.
    Inventors: Chung-Chi Yang, Yung-Shang Lin, Jing-Ping Wang, Shaw-Ming Du, Yih-Jiang Lai
  • Patent number: 9050591
    Abstract: A novel nickel particulate form is provided that efficiently forms a zero-valent nickel complex with a phosphorus-containing ligands in an organic liquid to form a hydrocyanation catalyst. Particles in the nickel particulate form comprise nickel crystallites. For example, the nickel particulate form can have a BET Specific Surface Area of at least about 1 m2/gm; an average crystallite size less than about 20-25 nm, the nickel particulate form can have at least 10% of the crystallites in the nickel form can have a diameter (C10) of less than about 10 nm, and/or there are on average at least about 1015 surface crystallites per gram nickel. A ratio of BET SSA to C50 for the nickel particulate form can be at least about 0.1×109 m/gm and preferably at least about 0.4×109 m/gm. Methods of preparation and use are also provided.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: June 9, 2015
    Assignee: INVISTA North America S.a.r.l.
    Inventors: Joan Fraga-Dubreuil, Vinay Medhekar, Thomas A. Micka, Keith Whiston
  • Patent number: 9040446
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 9040653
    Abstract: This disclosure provides methods of controlled polymerization of cyclic compounds catalyzed by carbene derivatives having a general formula as shown below, and to obtain a biodegradable polymeric material having a large molecular weight, a narrow dispersity, and no metallic impurity.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 26, 2015
    Assignee: NANJING UNIVERSITY OF TECHNOLOGY
    Inventors: Zhenjiang Li, Pingkai Ouyang, He Huang
  • Patent number: 9040447
    Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20150133680
    Abstract: A method of making an anti-Markovnikov addition product is carried out by reacting an acid with an alkene or alkyne in a dual catalyst reaction system to the exclusion of oxygen to produce said anti-Markovnikov addition product; the dual catalyst reaction system comprising a single electron oxidation catalyst in combination with a hydrogen atom donor catalyst. Compositions useful for carrying out such methods are also described.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 14, 2015
    Inventors: David A. Nicewicz, David S. Hamilton, Andrew J. Perkowski
  • Patent number: 9029281
    Abstract: A regenerated spent hydroprocessing catalyst treated with a chelating agent and having incorporated therein a polar additive.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 12, 2015
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, Ed Ganja, Salvatore Philip Torrisi
  • Publication number: 20150126626
    Abstract: A liquid catalyst for methanation of carbon dioxide, including an amphiphilic ionic liquid and a metal active component dispersed in the amphiphilic ionic liquid. The metal active component is dispersed in the amphiphilic ionic liquid in the form of stable colloid. The colloid is spherical and has a particle size of between 0.5 and 20 nm. The metal active component includes a first metal active component and a second metal active component. The first metal active component includes nickel. The second metal active component is selected from the group consisting of lanthanum, cerium, molybdenum, ruthenium, ytterbium, rhodium, palladium, platinum, potassium, magnesium, or a mixture thereof. The molar ratio of the first metal active component to the second metal active component is between 10:0.1 and 10:2.
    Type: Application
    Filed: December 14, 2014
    Publication date: May 7, 2015
    Inventors: Yanfeng ZHANG, Xiaodong ZHAN, Xingcai ZHENG, Zhilong WANG, Zhangjian FANG, Yongjie XUE, Leiming TAO
  • Patent number: 9024076
    Abstract: Embodiments include an alkane oxidation catalyst having a support modified with a carboxylate group. The carboxylate group is functionalized with a manganese complex selected from the group consisting of [(C6H12N3R3)Mn(OCH3)3]Z, [(C6H12N3R3)Mn2O3]Z2, [(C6H15N3)Mn4O6]Z4. Each R is independently an alkyl group having 1 to 3 carbons, and each Z is independently PF6?, ClO4?, or Br?.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Northwestern University
    Inventors: Justin M. Notestein, Nicholas J. Schoenfeldt, Andrew W. Korinda
  • Publication number: 20150119584
    Abstract: A catalyst system and a method for manufacturing cyclic carbonate by the same are provided. The catalyst system includes a transition metal salt containing a halo group, an acetate group, or a combination thereof, and an organic phosphine ligand. The molar ratio of the organic phosphine ligand to the transition metal salt is greater than 0 and less than or equal to 50.
    Type: Application
    Filed: December 25, 2013
    Publication date: April 30, 2015
    Applicant: Industrial Technology Research Institute
    Inventors: Cheng-Wei Yeh, Mao-Lin Hsueh, Yi-Zhen Chen, Chih-Wei Liu, Kuo-Chen Shih, Hsi-Hsin Shih
  • Publication number: 20150118406
    Abstract: The present invention relates to a stable palladium ion catalyst aqueous solution for electroless metal plating that does not use boric acid and can be used stably over a wide pH range. The catalyst solution for electroless plating of the present invention contains palladium ion, palladium ion complexing agent, and a specific amine compound and is alkaline.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Hiroki OKADA, Li SHENGHUA, Shinjiro HAYASHI
  • Patent number: 9018420
    Abstract: The present invention provides a composition comprising: a) an inert porous support material, b) an ionic liquid, c) a metal selected from group 9 of the Periodic Table of the Elements, d) a phosphorus-containing organic ligand, e) at least one organic amine. The present invention further provides a process for hydroformylating olefin-containing hydrocarbon mixtures to aldehydes with addition of the inventive composition as a catalytically active composition, wherein: a) the water content of the olefin-containing hydrocarbon mixture is adjusted to not more than 20 ppm, b) the content of polyunsaturated compounds in the olefin-containing hydrocarbon mixture is adjusted to not more than 3000 ppm, c) a molar ratio of organic amines according to claims 10-13 to phosphorus-containing organic ligands according to claims 8-9 of at least 4:1 is established, d) a molar ratio of phosphorus-containing organic ligands according to claims 8-9 to rhodium of at least 10:1 is established.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 28, 2015
    Assignee: Evonik Oxeno GmbH
    Inventors: Robert Franke, Nicole Brausch, Dirk Fridag, Andrea Christiansen, Marc Becker, Peter Wasserscheid, Marco Haumann, Michael Jakuttis, Sebastian Werner, Andreas Schoenweiz
  • Patent number: 9018431
    Abstract: The present invention relates to a catalyst composition for oligomerization of ethylene, comprising a chromium compound; a ligand of the general structure R1R2P—N(R3)—P(R4)—N(R5)—H, wherein R1, R2, R3, R4 and R5 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl; a modifier containing organic or inorganic halide; and an activator or co-catalyst; and a process for oligomerization utilizing that catalyst.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 28, 2015
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Anina Wöhl, Uwe Rosenthal, Bernd H. Müller, Normen Peulecke, Stephan Peitz, Wolfgang Müller, Heinz Bölt, Andreas Meiswinkel, Bhaskar Reddy Aluri, Mohammed Al-Hazmi, Mohammed Al-Masned, Khalid Al-Eidan, Fuad Mosa
  • Publication number: 20150102258
    Abstract: The present disclosure relates to a photocatalytic composition comprising photocatalytic titanium dioxide particles being dispersed in a continuous phase, and at least one anti-photogreying additive, wherein said at least one anti-photogreying additive is adapted to limit photogreying of said titanium dioxide particles while the photocatalytic activity of said titanium dioxide particles is maintained, and wherein the photo greying index (?L) of said composition is less than 6.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 16, 2015
    Applicant: Välinge Photocatalytic AB
    Inventors: Michael Humle, Simon Lausten Østergaard
  • Patent number: 9006126
    Abstract: A composition that comprises a support material that is loaded with an active metal or metal precursor and an additive that comprises an ether amine compound and, preferably, a morpholine compound as an additional component of the ether amine containing additive. The ether amine containing additive impregnated composition is useful in the hydroprocessing of hydrocarbon feedstocks. The ether amine containing additive impregnated composition is prepared by incorporating a metal solution into a support material followed by incorporating therein the ether amine containing additive.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Shell Oil Company
    Inventor: William Douglas Gillespie
  • Publication number: 20150099849
    Abstract: [Problem] To provide a curable composition having high stability and excellent curing properties. [Solution] The present invention relates to a curable composition, and a cured synthetic resin using same, that functions as a curing catalyst for a synthetic resin. The curable composition contains (A) a titanium alkoxide, (B) a bidentate organic chelating agent that stabilizes the titanium alkoxide and (C) a guanidine compound. The molar ratio of the titanium alkoxide (A), the bidentate organic chelating agent (B), and the guanidine compound (C) is 1:0.5-3:0.5-2.
    Type: Application
    Filed: April 2, 2013
    Publication date: April 9, 2015
    Inventors: Shuhei Nakamura, Yoshimi Tanaka, Mikihito Kano, Kazuyo Miyata, Yasushi Murakami
  • Patent number: 8999875
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 9000192
    Abstract: The present invention provides a catalyst used for manufacturing an optically active carbonyl compound by selective asymmetric hydrogenation of an ?, ?-unsaturated carbonyl compound, which is insoluble in a reaction mixture, and a method for manufacturing the corresponding optically active carbonyl compound. Particularly, the invention provides a catalyst for obtaining an optically active citronellal useful as a flavor or fragrance, by selective asymmetric hydrogenation of citral, geranial or neral. The invention relates to a catalyst for asymmetric hydrogenation of an ?, ?-unsaturated carbonyl compound, which comprises: a powder of at least one metal selected from metals belonging to Group 8 to Group 10 of the Periodic Table, or a metal-supported substance in which the at least one metal is supported on a support; an optically active cyclic nitrogen-containing compound; and an acid, and also relates to a method for manufacturing an optically active carbonyl compound using the same.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 7, 2015
    Assignee: Takasago International Corporation
    Inventors: Shinya Yamada, Hironori Maeda, Yoji Hori
  • Publication number: 20150094387
    Abstract: The present disclosure relates to an amine catalyst composition for producing polyurethane foam. The amine catalyst composition includes an amine catalyst and a diluent containing a thickening agent and water. The use of such a diluent, in place of conventional glycols, reduces raw material and processing costs as well as environmental concerns during the production of polyurethane foam.
    Type: Application
    Filed: August 10, 2012
    Publication date: April 2, 2015
    Applicant: Huntsman Petrochemical LLC
    Inventors: Eugene P. Wiltz, JR., Donald Ridgway, Jennifer Chavez, Frank Rodriguez, Robert A. Grigsby, JR., Gwynne Whitcombe
  • Patent number: 8993822
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 31, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
  • Patent number: 8987393
    Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 24, 2015
    Assignee: LANXESS Elastomers B.V.
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
  • Patent number: 8987482
    Abstract: Process for producing a supported silver catalyst, which comprises (a) reacting oxalic acid with an alkali metal base in a solvent, preferably water, to the second equivalence point of oxalic acid to give alkali metal oxalate; (b) reacting the alkali metal oxalate obtained according to (a) with silver salt in a solvent, preferably water, to give silver oxalate; (c) forming a complexation of the silver oxalate obtained according to (b) with a diamine compound in a solvent, preferably water, to give a diamine-silver oxalate complex.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 24, 2015
    Assignee: BASF SE
    Inventors: Tobias Rosendahl, Torsten Mäurer, Cornelia Katharina Dobner, Andreas Lehr, Johanna Wanka
  • Publication number: 20150080612
    Abstract: A method of acetalizing an aldehyde comprising reacting said aldehyde with an alcohol in the presence of a polymeric catalyst to form an acetal wherein the polymeric catalyst is a mesoporous poly-melamine-formaldehyde polymer.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Inventors: Yugen Zhang, Jackie Y. Ying, Mei Xuan Tan