Molybdenum Containing Patents (Class 502/206)
  • Patent number: 10479759
    Abstract: The present disclosure relates generally to catalyst materials and processes for making and using them. More particularly, the present disclosure relates to molybdenum, bismuth and iron-containing metal oxide catalyst materials useful, for example, in the partial oxidation or ammoxidation of propylene or isobutylene, processes for making them, and processes for making acrolein, methacrolein, acrylonitrile, and methacrylonitrile using such catalysts.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: November 19, 2019
    Assignee: Clariant Corporation
    Inventors: Hailian Li, Claus G. Lugmair
  • Patent number: 9539523
    Abstract: An integrated waste catalyst cleaning apparatus includes a reaction unit, an organic solvent unit, an organic acid unit, a drying unit, a condensation unit, a heating band, and control valves formed at transfer paths. The waste catalyst is injected into the reactor. The organic solvent stored in the organic solvent unit is to first-clean the waste catalyst. The organic solvent is discharged after cleaning. The waste catalyst is dehydrated and dried by the drying unit. The organic acid stored in the organic acid unit is to second-clean the waste catalyst. The organic acid is discharged after cleaning. The waste catalyst is dehydrated and dried by the drying unit.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: January 10, 2017
    Assignee: KC COTTRELL CO., LTD.
    Inventors: Jeong Hee Hong, Gwan GU Yun, Chang Hee Lee
  • Patent number: 9517451
    Abstract: A process for preparing a propane oxidation catalyst, the process comprising pre-calcining the catalyst precursor in an oxygen-containing gas at a temperature of less than 330° C. until the weight of the precursor stabilizes to obtain a pre-calcined precursor; then calcining the pre-calcined precursor to obtain the catalyst.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: December 13, 2016
    Assignee: Rohm and Haas Company
    Inventor: Leonard E. Bogan, Jr.
  • Patent number: 9486788
    Abstract: A process for preparing a propane oxidation catalyst, the process comprising pre-calcining a catalyst precursor in a precalcining zone in an oxygen-containing gas, then feeding an oxygen-free gas to a purging zone until the gas exiting the zone is substantially free of oxygen, and calcining the pre-calcined precursor to obtain the catalyst.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: November 8, 2016
    Assignee: Rohm and Haas Company
    Inventor: Leonard E. Bogan, Jr.
  • Patent number: 9334173
    Abstract: Methods for making high-surface area, high-porosity, stable metal oxides, such as, but not limited to materials used as adsorbents and catalyst supports include (i) forming a solvent deficient precursor mixture from a metal salt and a base and reacting the metal ions and base ions in the solvent deficient precursor mixture to form an intermediate hydroxide product (e.g., metal hydroxide or metal oxide hydroxide), (ii) causing the intermediate hydroxide to form nanoparticles (e.g., by heating), and (iii) calcining the intermediate nanoparticles to sinter the nanoparticles together and yield a highly porous, stable metal oxide aggregate having a pore structure.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 10, 2016
    Assignee: Brigham Young University
    Inventors: Calvin H. Bartholomew, Brian F. Woodfield, Baiyu Huang, Rebecca Elizabeth Olsen, Lynn Astle
  • Patent number: 9018126
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Patent number: 8962514
    Abstract: A hydrotreating catalyst that exhibits excellent levels of both desulfurization activity and denitrification activity. The hydrotreating catalyst is prepared by supporting molybdenum, cobalt and nickel on a carrier comprising aluminum, silicon, phosphorus and boron, and then performing a presulfiding treatment, and has an average stacking number for molybdenum sulfide slab that is greater than 1.0 but not more than 1.9. Also, a process for producing a hydrotreating catalyst that enables a hydrotreating catalyst having excellent levels of both desulfurization activity and denitrification activity to be produced with comparative ease. The process includes a first step of mixing an acidic aluminum salt aqueous solution and a basic aluminum salt aqueous solution in the presence of phosphate ions and silicate ions to achieve a pH of 6.5 to 9.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 24, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida
  • Patent number: 8822367
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 2, 2014
    Assignee: Emory University
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Patent number: 8772196
    Abstract: Disclosed is a composition useful in the saturation of aromatics contained in a hydrocarbon feedstock. The composition includes a support composition having a high macroporosity of greater than 51 percent. The support composition comprises an amorphous silica-alumina having unique properties.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: July 8, 2014
    Assignee: Shell Oil Company
    Inventors: Russell Craig Ackerman, Christian Gabriel Michel, John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Publication number: 20140171299
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Publication number: 20140171298
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Patent number: 8642498
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium, titanium; and at least one oxide additive. The at least one oxide additive is present in an amount of at least 0.1 wt % based on the total weight of the catalyst composition. The molar ratio of titanium to metal additive in an active phase of the catalyst composition is at least 0.05:1.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 4, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Patent number: 8633128
    Abstract: The invention describes a heteropolycompound constituted by a nickel salt of a lacunary Keggin type heteropolyanion comprising tungsten in its structure, with formula: Nix+y/2AW11-yO39-5/2y, zH2O wherein Ni is nickel, A is selected from phosphorus, silicon and boron, W is tungsten, O is oxygen, y=0 or 2, x=3.5 if A is phosphorus, x=4 if A is silicon, x=4.5 if A is boron, and x=m/2+2 for the rest, and z is a number in the range 0 to 36, in which said heteropolycompound has no nickel atom in substitution for a tungsten atom in its structure, said nickel atoms being placed in the counter-ion position in the structure of said compound.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 21, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Fabrice Bertoncini, Karima Ben Tayeb, Carole Lamonier, Michel Fournier, Edmond Payen
  • Publication number: 20140001090
    Abstract: The present invention relates to a catalyst combination for hydrotreating raw oils and a process for hydrotreating raw oils with the catalyst combination. The catalyst combination comprises one or both of at least one hydrogenation protection catalyst I and at least one hydrogenation demetalling catalyst I; at least one hydrogenation demetalling catalyst II; and at least one hydrogenation treatment catalyst III.
    Type: Application
    Filed: March 29, 2013
    Publication date: January 2, 2014
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Qinghe YANG, Dawei Hu, Shuling Sun, Jia Liu, Hong Nie, Xinqiang Zhao, Xuefen Liu, Dadong Li, Lishun Dai, Zhicai Shao, Tao Liu
  • Publication number: 20130040807
    Abstract: A metal fiber based on one or several elements from the group of platinum, palladium, rhodium, ruthenium, and iridium with 0 to 30% by weight of one or several additional alloy elements from the group of nickel, cobalt, gold, rhenium, molybdenum, and tungsten, contains 1 to 500 ppm by weight of boron or phosphorus. A non-woven material or netting, in particular for the production of nitrogen oxide or for the production of hydrocyanic acid, is made of such fibers. For the production of fibers based on noble metals having up to 30% by weight of additional alloy metals by drawing the fibers from a melt, the melting point of the metal is reduced by at least 400° C., before drawing of the fibers, by additionally alloying with boron or phosphorus, and the boron or the phosphorus is removed again from the fibers.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 14, 2013
    Applicant: Heraeus Materials Technology GmbH & Co. KG
    Inventor: Heraeus Materials Technology GmbH & Co. KG
  • Publication number: 20120323026
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited thereon, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 5.0 mmole/kg, relative to the weight of the catalyst; and wherein the carrier has a monomodal, bimodal or multimodal pore size distribution, a pore diameter of 0.01-200 ?m, a specific surface area of 0.03-10 m2/g, a pore volume of 0.2-0.7 cm3/g, wherein the median pore diameter is 0.1-100 ?m, and a water absorption of 10-80%.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 20, 2012
    Inventors: John Robert Lockemeyer, Marek Matusz, Randall Clayton Yeates
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Patent number: 8148295
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 3, 2012
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: Steven M. Augustine
  • Publication number: 20120037540
    Abstract: A catalyst having at least one Group VIB metal component, at least one Group VIII metal component, a phosphorus component, and a boron-containing carrier component. The amount of the phosphorus component is at least 1 wt %, expressed as an oxide (P2O5) and based on the total weight of the catalyst, and the amount of boron content is in the range of about 1 to about 13 wt %, expressed as an oxide (B2O3) and based on the total weight of the catalyst. In one embodiment of the invention, the boron-containing carrier component is a product of a co-extrusion of at least a carrier and a boron source. A method for producing the catalyst and its use for hydrotreating a hydrocarbon feed are also described.
    Type: Application
    Filed: April 21, 2010
    Publication date: February 16, 2012
    Applicant: ALBEMARLE EUROPE SPRL
    Inventors: Marcel Adriaan Jansen, Henk Jan Tromp, Bob Gerardus Oogjen, Sander Hendrikus Lambertus Thoonen, Jan Nieman, Wilhelmus Clemens Jozef Veerman
  • Publication number: 20120027666
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 2, 2012
    Applicant: EMORY UNIVERSITY
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Patent number: 8105971
    Abstract: A process for forming a catalyst useful for the production of an olefin from a hydrocarbon is disclosed. The process may include: admixing at least one of elemental metals and compounds to form a multi-metal composition comprising Mo, V, Nb, Te and at least one of Ni and Sb; adjusting the pH of the multi-metal composition by adding nitric acid; drying the acidified multi-metal composition; calcining the dried multi-metal composition; and grinding the calcined multi-metal composition. The ground multi-metal composition may then be sized or shaped to form a mixed metal oxide catalyst. Alternatively, the ground multi-metal composition may be treated with an acid, optionally annealed, and sized or shaped to form a mixed metal oxide catalyst.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Patent number: 8105972
    Abstract: A catalyst for the oxidative dehydrogenation of a paraffin to form an olefin, the catalyst having a general formula MoaVbXcYdOn wherein: X=at least one of Nb and Ta; Y=at least one of Te, Sb, Ga, Pd, W, Bi and Al; a=1.0; b=0.05 to 1.0; c=0.001 to 1.0; d=0.001 to 1.0; and n is determined by the oxidation states of the other elements. The catalyst may have a selectivity to the olefin of at least 90 mole % at a paraffin conversion of at least 65%.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Publication number: 20120018352
    Abstract: A hydrotreating catalyst that exhibits excellent levels of both desulfurization activity and denitrification activity. The hydrotreating catalyst is prepared by supporting molybdenum, cobalt and nickel on a carrier comprising aluminum, silicon, phosphorus and boron, and then performing a presulfiding treatment, and has an average stacking number for molybdenum sulfide slab that is greater than 1.0 but not more than 1.9. Also, a process for producing a hydrotreating catalyst that enables a hydrotreating catalyst having excellent levels of both desulfurization activity and denitrification activity to be produced with comparative ease. The process includes a first step of mixing an acidic aluminum salt aqueous solution and a basic aluminum salt aqueous solution in the presence of phosphate ions and silicate ions to achieve a pH of 6.5 to 9.
    Type: Application
    Filed: March 18, 2010
    Publication date: January 26, 2012
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Publication number: 20110318656
    Abstract: An air cathode for a metal-air battery is disclosed which contains a catalyst chosen to make the metal air battery more easily rechargeable. This catalyst is based on cobalt phosphate, cobalt borate mixed metal cobalt phosphates, mixed metal cobalt borates, or mixed metal cobalt phosphate borates.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 29, 2011
    Inventors: Wilson Hago, Ivan Marc Lorkovic
  • Patent number: 8034736
    Abstract: A catalyst for synthesizing acrylonitrile that enables acrylonitrile to be synthesized at high yield, and a process for producing acrylonitrile using that catalyst, are provided. A catalyst for synthesizing acrylonitrile is used having a composition represented by FeaSbbCcDdTeeFfXxYyZzOg(SiO2)h. In the formula, component C represents at least one element selected from the group consisting of Cu, Ni and Co, component D from the group consisting of Mo, W and V, component F from the group consisting of P and B, component X from the group consisting of Sn, Ti, Zr, Nb, Ta, Cr, Ru, Pd, Ag, Al, Ga, In, Tl, Ge, As, Bi, La, Ce, Pr, Nd and Sm, component Y from the group consisting of Mg, Ca, Sr, Ba, Mn, Zn and Pb, and component Z from the group consisting of Li, Na, K, Rb and Cs, and SiO2 represents silica, when a=10, b=5 to 60, c=0.1 to 8.0, d=0.1 to 4.0, e=0.1 to 5.0, f=1.3 to 5.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 11, 2011
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Kenichi Miyaki, Motoo Yanagita, Hirokazu Watanabe, Takashi Karasuda
  • Publication number: 20110105789
    Abstract: A method for producing a catalyst for the preparation of methacrylic acid comprising a heteropolyacid compound containing phosphorus, molybdenum and an element X selected from the group consisting of potassium, rubidium, cesium and thallium and having an atomic ratio of the element X to molybdenum of 0.5:12 to 2:12, which method comprises the steps of mixing aqueous slurry A containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 2:12 to 4:12, and aqueous slurry B containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 0:12 to 0.5:12 to form a slurry mixture; heat-treating the slurry mixture at a temperature of 100° C. or higher; drying the slurry mixture; and calcining the dried mixture.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Toshiaki MIYATAKE, Junji SHIBATA, Eiichi SHIRAISHI
  • Patent number: 7879224
    Abstract: The present invention concerns doped catalysts on an alumino-silicate support with an adapted macropore content and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table, a controlled quantity of phosphorus (optionally in combination with boron and/or silicon) as a doping element, and a non-zeolitic support based on alumina-silica containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: February 1, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Magalie Roy-Auberger, Patrick Bourges, Tivadar Cseri, Maryline Delage, Nathalie Lett
  • Patent number: 7749936
    Abstract: A supported amorphous alloy catalyst, which is supported on a macroporous carrier-expanded graphite. The catalyst contains a Ni—B amorphous alloy (5 to 50% by weight) and a transition inductive metal (0.1 to 10% by weight). The diameter of expanded graphite carrier particles is 80-800 ?m. Its BET specific surface area is 10-100 m2/g. The catalyst is prepared by metal inductive electroless powder plating method which is easy to apply to industrial production. Ni—B clusters of prepared catalyst are well dispersed on the support. The catalyst shows high catalytic activity and good mechanical property, and is safe to use with low manufacturing costs.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: July 6, 2010
    Inventors: Li Wei, Bian Junmin, Zhang Minghui, Han Chong, Tao Keyi
  • Publication number: 20100163458
    Abstract: The invention is concerned with a supported or unsupported catalyst comprising an active phase constituted by a sulfur-containing group VIB element, the group VIB element being molybdenum, and a hydrodeoxygenation process with a yield of hydrodeoxygenation product which is greater than or equal to 90% of charges from renewable sources using a catalyst according to the invention.
    Type: Application
    Filed: December 22, 2009
    Publication date: July 1, 2010
    Applicant: IPF
    Inventors: Antoine DAUDIN, Laurent Bournay, Thierry Chapus
  • Publication number: 20100152030
    Abstract: In one aspect, the present invention is directed to a coating composition. The coating composition comprises photocatalytic particles and an alkali metal silicate binder comprising a boric acid, borate, or combination thereof. In another aspect, the present invention is directed to a coated article. The coated article has a photocatalytic coating with improved durability on its external surface that is formed from the aforesaid coating composition.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 17, 2010
    Inventors: Feng Bai, Rachael A.T. Gould, Mark T. Anderson
  • Publication number: 20090318739
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Application
    Filed: September 20, 2007
    Publication date: December 24, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Publication number: 20090234149
    Abstract: A catalyst for synthesizing acrylonitrile that enables acrylonitrile to be synthesized at high yield, and a process for producing acrylonitrile using that catalyst, are provided. A catalyst for synthesizing acrylonitrile is used having a composition represented by FeaSbbCcDdTeeFfXxYyZzOg(SiO2)h. In the formula, component C represents at least one element selected from the group consisting of Cu, Ni and Co, component D from the group consisting of Mo, W and V, component F from the group consisting of P and B, component X from the group consisting of Sn, Ti, Zr, Nb, Ta, Cr, Ru, Pd, Ag, Al, Ga, In, Tl, Ge, As, Bi, La, Ce, Pr, Nd and Sm, component Y from the group consisting of Mg, Ca, Sr, Ba, Mn, Zn and Pb, and component Z from the group consisting of Li, Na, K, Rb and Cs, and SiO2 represents silica, when a=10, b=5 to 60, c=0.1 to 8.0, d=0.1 to 4.0, e=0.1 to 5.0, f=1.3 to 5.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 17, 2009
    Applicant: DIA-NITRIX CO., LTD.
    Inventors: Kenichi Miyaki, Motoo Yanagita, Hirokazu Watanabe, Takashi Karasuda
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Publication number: 20090188834
    Abstract: The present invention concerns doped catalysts on an alumino-silicate support with an adapted macropore content and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table, a controlled quantity of phosphorus (optionally in combination with boron and/or silicon) as a doping element, and a non-zeolitic support based on alumina-silica containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).
    Type: Application
    Filed: September 20, 2005
    Publication date: July 30, 2009
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Magalie Roy-Auberger, Partick Bourges, Tivadar Cseri, Maryline Delage, Nathalie Lett
  • Patent number: 7553794
    Abstract: A supported catalyst comprising a support having supported thereon at least one member selected from the group consisting of heteropolyacids and heteropolyacid salts, in which the heteropolyacid and/or heteropolyacid salt is substantially present in a surface layer region of the support to a depth of 30% from the support surface. The catalyst has a high performance when used for the production of compounds by various reactions.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: June 30, 2009
    Assignee: Showa Denko K.K.
    Inventor: Masaaki Sakai
  • Patent number: 7547655
    Abstract: The present invention provides a catalyst precursor for producing maleic anhydride by oxidizing butane. Said catalyst precursor is prepared by a process comprising partially reducing V+5 to V+4 in a mixture of alcohols consisting of isobutanol and benzyl alcohol in a volume ratio of 2.5-5.0, then adding a phosphoric oxy-acid and an alkylsilicon in turn. The catalyst precursor prepared according to said process has a small pore volume, a relatively high bulk density in an appropriate pore size distribution.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 16, 2009
    Assignee: New Tianjin T. & D. Co., Ltd.
    Inventor: Renshui Lan
  • Publication number: 20090145808
    Abstract: This invention relates to a hydrodesulfurization catalyst and a method for preparing the catalyst by spray pyrolysis. The catalyst is useful for the hydrodesulfurization of gas oils, particularly diesel. The catalyst particles can include at least one metal selected from molybdenum, cobalt and nickel, and a silicon dioxide support. The spray pyrolysis technique allows for the preparation of catalyst particles having high loading of catalyst on the substrate.
    Type: Application
    Filed: November 24, 2008
    Publication date: June 11, 2009
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Isao Mochida
  • Publication number: 20080306289
    Abstract: A catalyst composition comprising a support having a surface area of at least 500 m2/kg, and deposited on the support: silver metal, a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound, and a Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium, wherein the value of the expression (QK/R)+QHIA is in the range of from 1.5 to 30 mmole/kg, wherein QHIA and QK represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of QHIA to QK is at least 1:1, the value of QK is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.
    Type: Application
    Filed: August 14, 2008
    Publication date: December 11, 2008
    Inventors: Marek MATUSZ, Michael Alan Richard, Martin Lysle Hess
  • Publication number: 20080281118
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; and the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 3.8 mmole/kg, relative to the weight of the catalyst; a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 13, 2008
    Inventor: Marek Matusz
  • Patent number: 7365041
    Abstract: An ammoxidation catalyst comprising a molybdenum (component (1)), bismuth (component (2)), at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese and copper (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)), over which an organic compound is subject to ammoxidation which is a composite oxide fluid bed catalyst, is prepared by i) preparing a first solution that comprises at least a portion of component (1), at least a portion of component (2), and at least a portion of component (3) but none of component (4); ii) preparing a second solution by adding a solution of component (4) to the first solution; and iii) drying the second solution obtained and calcining the solid matter obtained from the drying step.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 29, 2008
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Kenichi Miyaki, Motoo Yanagita, Kunio Mori
  • Publication number: 20080064590
    Abstract: A method for producing a catalyst by contacting a mixed metal oxide catalyst with water, and optionally, an aqueous metal oxide precursor to produce a modified mixed metal oxide, and calcining the modified mixed metal oxide.
    Type: Application
    Filed: August 20, 2007
    Publication date: March 13, 2008
    Inventors: Leonard Edward Bogan, Ruozhi Song
  • Patent number: 7157401
    Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 2, 2007
    Assignee: Carnegie Mellon University
    Inventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
  • Patent number: 7045482
    Abstract: The present invention relates to a method for preparing a heteropolyacid catalyst and method for preparing methacrylic acid using thereof. More particularly, the present invention relates to a method for preparing heteropolyacid catalyst, which is produced by the recrystallization of a heteropolyacid and/or its salt dissolved in a basic organic solvent and heat-treatment, and further to a method for preparing metachrylic acid using thereof, wherein the use of the heteropolyacid catalyst increases the activity of oxidation reaction induced by the modified electronic properties of heteropolyanions and provides high efficiency production of methacrylic acid from methacrolein, since the basic property of solvent inhibits peculiar acidic property of heteropolyacid.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 16, 2006
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, In Kyu Song, Suk Woo Nam
  • Publication number: 20040178117
    Abstract: A composition comprising a promoter, a metal oxide, a support component, and a silicon-containing material, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Robert W. Morton, M. Bruce Welch, Roland Schmidt, Jason J. Gislason
  • Publication number: 20040181085
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contacting member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; and calcining the recovered insoluble material in a non-oxidizing atmosphere.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 16, 2004
    Inventors: Leonard Edward Bogan, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20040030172
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by contact with a liquid contacting member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 12, 2004
    Inventor: Leonard Edward Bogan
  • Patent number: 6638890
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6610629
    Abstract: Disclosed is a process for producing an oxide catalyst comprising, as component elements, molybdenum (Mo), vanadium (V), at least one element selected from the group consisting of the two elements of antimony (Sb) and tellurium (Te), and niobium (Nb), wherein the process comprises providing an aqueous raw material mixture containing compounds of the component elements of the oxide catalyst, and drying the aqueous raw material mixture, followed by calcination, and wherein, in the aqueous raw material mixture, at least a part of the niobium compound as one of the compounds of the component elements is present in the form of a complex thereof with a complexing agent comprising a compound having a hydroxyl group bonded to an oxygen atom or a carbon atom. Also disclosed is a process for producing (meth)acrylonitrile or (meth)acrylic acid, which comprises performing the ammoxidation or oxidation of propane or isobutane in the gaseous phase in the presence of the oxide catalyst.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hidenori Hinago, Hiroyuki Yano