And Vanadium Containing Patents (Class 502/209)
  • Patent number: 11964937
    Abstract: A (methyl)acrolein oxidation catalyst and a preparation method therefor-in which the catalyst has a composition represented by the following formula: x(Mo12PaCsbVcDeOf)+tC/yZ in which Mo12PaCSbVcDeOf is a heteropolyacid salt main catalyst; C is a nano carbon fiber additive, and Z is a carrier thermal conduction diluent; Mo, P, Cs, V, and O represent the elements of molybdenum, phosphorus, cesium, vanadium, and oxygen, respectively; D represents at least one element selected from the group consisting of copper, iron, magnesium, manganese, antimony, zinc, tungsten, silicon, nickel, and palladium; a, b, c, e, and f represent the atomic ratio of each element, a=0.1-3, b=0.01-3, c=0.01-5, e=0.01-2, and f being the atomic ratio of oxygen required to satisfy the valence of each of the described components; x and y represent the weights of the main catalyst and the carrier thermal conduction diluent Z, and y/x=11.1-50%; and t represents the weight of the nano carbon fiber, and t/x=3-10%.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 23, 2024
    Assignee: Shanghai Huayi New Material Co., Ltd.
    Inventors: Xin Wen, Ge Luo, Xinlei Jin, Tonghao Wu, Yan Zhuang, Zhigang Qian, Xiaodong Chu
  • Patent number: 11909046
    Abstract: Bimetallic polyanionic materials, such as silver vanadium phosphorus oxide (Ag2VO2PO4, SVOP), are promising cathode materials for Li batteries due in part to their large capacity and high current capability. A new synthesis of Ag2VO2PO4 based on microwave heating is disclosed, where the reaction time is reduced by approximately 100 times relative to other reported methods, and the crystallite size is controlled via synthesis temperature, showing a linear positive correlation of crystallite size with temperature. Reaction times of an hour or less are sufficient to render phase-pure material after reaction at 50° C. to 180° C., significantly lower than the temperatures reported for other methods. Crystallite sizes between 42 nm and 60 nm are achieved by the novel method, smaller than by other methods. Silver/vanadium atomic ratios of 1.96 to 2.04 in the as-synthesized SVOP result and appear temperature-dependent.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 20, 2024
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Kenneth J. Takeuchi, Esther S. Takeuchi, Amy C. Marschilok
  • Patent number: 11547989
    Abstract: The present disclosure provides an improved shaped catalyst containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalysts for the production of maleic anhydride.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 10, 2023
    Assignee: Huntsman Petrochemical LLC
    Inventors: Chunli Zhao, Bennie Albert Horrell, Jr., William S. Frazee
  • Patent number: 11400442
    Abstract: The disclosure relates to a process for producing a VPO catalyst containing molybdenum and a vanadyl pyrophosphate phase, which comprises the steps: a) provision of a reaction mixture comprising a V(V) compound, a P(V) compound, an Mo compound, a reducing agent and a solvent, b) reduction of the V(V) compound by means of the reducing agent at least in parts to give vanadyl hydrogenphosphate in order to obtain an intermediate suspension, c) filtration of the intermediate suspension from step b) in order to obtain an intermediate, d) drying of the intermediate at a temperature of not more than 350° C. in order to obtain a dried intermediate and e) activation of the dried intermediate at a temperature above 200° C., characterized in that not more than 0.2% by weight of water, based on the weight of the reaction mixture, is present in step a) and no water is withdrawn during the reduction in step b).
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: August 2, 2022
    Assignee: CLARIANT INTERNATIONAL LTD
    Inventors: Sebastian Boecklein, Gerhard Mestl, Gabriele Bindseil, Rene Hausmann, Sarah Limbrunner, Anna Waldschuetz
  • Patent number: 11219859
    Abstract: The present disclosure relates to a catalyst for NOx removal. In some embodiments, the catalyst comprises a support comprising at least one selected from the group consisting of TiO2, Al2O3, SiO2, ZrO2, CeO2, zeolite, TiO2 and WO3, and combinations thereof, and catalytically active components supported on the support. The catalytically active components comprise vanadium, antimony and at least one further component selected from the group consisting of silicon, aluminum and zirconium.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 11, 2022
    Assignee: BASF Corporation
    Inventors: Liang Chen, Feng Zhao, Jia Di Zhang, An Ju Shi, Shau-Lin Frank Chen, Miao Mark Chen
  • Patent number: 11052380
    Abstract: Oxidative dehydrogenation catalysts for converting lower paraffins to alkenes such as ethane to ethylene when prepared as an agglomeration, for example extruded with supports chosen from slurries of TiO2, ZrO2 Al2O3, AlO(OH) and mixtures thereof have a lower temperature at which 25% conversion is obtained.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 6, 2021
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Yoonhee Kim, Vasily Simanzhenkov, Xiaoliang Gao, David Sullivan, Marie Annette Barnes, Renee Laurel Anseeuw, Yipei Styles
  • Patent number: 11014072
    Abstract: Mixed metal oxide catalysts having an amorphous content of not less than 40 wt. % are prepared by calcining the catalyst precursor fully or partially enclosed by a porous material having a melting temperature greater than 600° C. in an inert container including heating the catalyst precursor at a rate from 0.5 to 10° C. per minute from room temperature to a temperature from 370° C. to 540° C. under a stream of pre heated gas chosen from steam and inert gas and mixtures thereof at a pressure of greater than or equal to 1 psig having a temperature from 300° C. to 540° C. and holding the catalyst precursor at that temperature for at least 2 hours and cooling the catalyst precursor to room temperature.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 25, 2021
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, David Sullivan, Yipei Styles, Yoonhee Kim, Hanna Drag, Marie Barnes
  • Patent number: 10882031
    Abstract: A catalyst for treating an exhaust gas comprising SO2, NOx and elemental mercury in the presence of a nitrogenous reductant comprises a composition containing oxides of: (i) Molybdenum (Mo) and optionally Tungsten (W); and (ii) Vanadium (V); and (iii) Titanium (Ti); and (iv) Phosphorus (P), wherein, with respect to the total metal atoms in the composition, the composition comprises: (i) Mo in an amount of less than 2 at. %, and optionally up to 9 at. % W; (ii) from 2.5 to 12 at. % V; (iii) from 85 to 96 at. % Ti, and wherein the composition comprises (iv) P in an atomic ratio to the sum of atoms of Mo, W and V of from 1:2 to 3:2. The values expressed must total 100%.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: January 5, 2021
    Inventors: Silvia Alcove Clave, Paul Andersen, Maria Brandmair, Manop Huber, Michael Nash, David Repp
  • Patent number: 10661256
    Abstract: Oxidative dehydrogenation catalysts for converting lower paraffins to alkenes such as ethane to ethylene when prepared as an agglomeration, for example extruded with supports chosen from slurries of TiO2, ZrO2 Al2O3, AlO(OH) and mixtures thereof have a lower temperature at which 25% conversion is obtained.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 26, 2020
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Yoonhee Kim, Vasily Simanzhenkov, Xiaoliang Gao, David Sullivan, Marie Annette Barnes, Renee Laurel Anseeuw, Yipei Styles
  • Patent number: 10242989
    Abstract: A ferroelectric memory device includes a plurality of memory cells. Each of the memory cells comprises at least one electrode and a ferroelectric crystalline material disposed proximate the at least one electrode. The ferroelectric crystalline material is polarizable by an electric field capable of being generated by electrically charging the at least one electrode. The ferroelectric crystalline material comprises a polar and chiral crystal structure without inversion symmetry through an inversion center. The ferroelectric crystalline material does not consist essentially of an oxide of at least one of hafnium (Hf) and zirconium (Zr).
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Sumeet C. Pandey, Lei Bi, Roy E. Meade, Qian Tao, Ashonita A. Chavan
  • Patent number: 10189014
    Abstract: The present disclosure relates to solid phosphoric acid (SPA) catalysts useful in the conversion of hydrocarbons, such as the oligomerization of olefins, to methods for making such SPA catalysts, and to methods for converting hydrocarbons by contacting hydrocarbons with such catalyst. For example, in certain embodiments, the disclosure provides a calcined solid phosphoric acid catalyst composition that includes phosphoric acid and silicon phosphates, and in which (i) one or more promoters each selected from the group consisting of boron, bismuth, tungsten, silver and lanthanum is present; (ii) the composition is a calcined product of a formable mixture including silica-alumina clay, silica fiber and/or silica alumina fiber; or (iii) the composition is a calcined product of a formable mixture including fumed silica.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 29, 2019
    Assignee: Clariant Corporation
    Inventors: Malati Raghunath, Aaron Miller, Claus G Lugmair, Anthony Volpe
  • Patent number: 10065180
    Abstract: The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus modified with alkali metal. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: September 4, 2018
    Assignee: Eastman Chemical Company
    Inventors: David William Norman, Greg Alan King
  • Patent number: 9931618
    Abstract: The present invention relates to a catalyst containing a vanadium-phosphorus oxide and an alkali metal, wherein the proportion by weight of alkali metal in the vanadium-phosphorus oxide is in the range from 10 to 400 ppm, based on the total weight of the vanadium-phosphorus oxide, a process for producing it and also the use of the catalyst for the gas-phase oxidation of hydrocarbons, in particular for preparing maleic anhydride.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: April 3, 2018
    Assignee: Clariant International Ltd.
    Inventors: Thomas Cotter, Andreas Reitzmann, Gerhard Mestl, Gabriele Donabauer, Susanne Roehrer
  • Patent number: 9919295
    Abstract: The present invention relates to a high-performance polyoxometalate catalyst and a method of preparing the same. More particularly, the present invention provides a high-performance polyoxometalate catalyst, the activity and selectivity of which may be improved by controlling the content of vanadium and the like and which has superior reproducibility and may unsaturated carboxylic acid from unsaturated aldehyde in a high yield for a long time, a method of preparing the same, and the like.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: March 20, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Byung Yul Choi, Hyun Jong Shin, Young Hyun Choe, Duk Ki Kim, Hyun Sub Lim, Hyo Sang You
  • Patent number: 9434673
    Abstract: Process for preparing a vinylidenecarboxylic acid or ester thereof, wherein a reaction gas comprising gaseous formaldehyde, molecular oxygen and an alkycarboxylic acid or ester thereof is brought into contact with a solid catalyst whose active composition comprises a vanadium-phosphorus oxide having an average oxidation state of vanadium of from +4.40 to +5.0 to give a product gas comprising the vinylidenecarboxylic acid or ester thereof.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: September 6, 2016
    Assignee: BASF SE
    Inventors: Philipp Gruene, Cornelia Katharina Dobner, Marco Hartmann
  • Patent number: 9186657
    Abstract: An exhaust gas purification catalyst contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: November 17, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai
  • Patent number: 8993473
    Abstract: Embodiments of the present invention include improved shaped catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalyst structures for the production of maleic anhydride.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 31, 2015
    Assignee: Huntsman Petrochemical LLC
    Inventors: Larry E. Melde, William A. Smith
  • Publication number: 20150071841
    Abstract: In order to improve the lifetime of an SCR catalyst in the waste gas purification by means of the SCR process of waste gas of a biomass combustion plant, the catalyst comprises a sacrificial component selected from a zeolite and/or a clay mineral, in particular halloysite. During operation, catalyst poisons contained in the waste gas, in particular alkali metals, are absorbed by the sacrificial component so that catalytically active centres of the catalyst are not blocked by the catalyst poisons.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Maria Theresia Brandmair
  • Patent number: 8962515
    Abstract: In one embodiment, the invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises a metal phosphate matrix containing vanadium and bismuth. Preferably, the catalyst comprises, in an active phase, vanadium to bismuth at a molar ratio of at least 0.02:1. Preferably, the catalyst composition is substantially free of titanium.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 24, 2015
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Publication number: 20150025272
    Abstract: The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus modified with alkali metal. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Applicant: Eastman Chemical Company
    Inventors: David William Norman, Greg Alan King
  • Patent number: 8900536
    Abstract: Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titania slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3—SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 2, 2014
    Assignee: Cristal USA Inc.
    Inventors: Steve M. Augustine, David M. Chapman, Dennis F. Clark
  • Patent number: 8889586
    Abstract: In one embodiment, the invention is to a catalyst composition, comprising vanadium and titanium. Preferably, the molar ratio of vanadium to titanium in an active phase of the catalyst composition is greater than 0.5:1.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 18, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Patent number: 8883672
    Abstract: The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus modified with alkali metal. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 11, 2014
    Assignee: Eastman Chemical Company
    Inventors: David William Norman, Greg Alan King
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Publication number: 20140308177
    Abstract: A hydrogen separation membrane including: a metal layer including the at least one Group 5 element; and a transition metal catalyst layer on the metal layer, the transition metal catalyst layer including at least one transition metal and at least one of phosphorus (P) or boron (B).
    Type: Application
    Filed: February 11, 2014
    Publication date: October 16, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun woo Cho, Hyeon Cheol PARK, Kyoung-Seok MOON, Kwang Hee KIM, Jae-Ho LEE, Eun Seog CHO
  • Patent number: 8802585
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium and titanium. The catalyst composition has a surface area of at least 22.6 m2/g and a plurality of pores, and the plurality of pores have a pore diameter of less than 11.9 nm.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 12, 2014
    Assignee: Celanese International Corporation
    Inventors: Heiko Weiner, Josefina T. Chapman, Alexandra S. Locke, Craig T. Peterson, Mark O. Scates, Dick Nagaki
  • Patent number: 8796173
    Abstract: A method for producing phthalic anhydride by catalytic gas-phase oxidation of o-xylene and/or naphthalene, carried out by means of a catalyst arrangement which has a first catalyst layer at the gas inlet side and at least one second catalyst layer after the first catalyst layer in the gas flow direction with different catalytic activity, wherein when the gas-phase oxidation is being carried out a lower maximum temperature is formed in the first catalyst layer than in the second catalyst layer. Furthermore, a method for producing the catalyst arrangement, as well as the catalyst arrangement itself.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: August 5, 2014
    Assignee: Süd-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Gerhard Mestl
  • Publication number: 20140194631
    Abstract: Embodiments of the present invention disclose improved micro-pore catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such improved micro-pore catalyst structures for the production of maleic anhydride.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: Huntsman Petrochemical LLC
    Inventor: Zhiping Shan
  • Patent number: 8765629
    Abstract: The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 1, 2014
    Assignee: Eastman Chemical Company
    Inventors: David William Norman, Gerald Charles Tustin, Michael James Nash, Liu Deng, Theresa Sims Barnette
  • Publication number: 20140166540
    Abstract: A catalyst containing a group VIB element; a group VIII element; phosphorus in a quantity of 0.1% to 9% by weight of phosphorus pentoxide with respect to the total catalyst mass; vanadium in a quantity of 0.25% to 7% by weight of vanadium pentoxide with respect to the total catalyst mass; a porous refractory oxide support; which catalyst has: a total pore volume of 0.3 mL/g or more; a macropore volume of 40% or less of the total pore volume; a median diameter of the mesopores in the range 5 nm to 36 nm; a BET surface area of at least 120 m2/g, and a process for the hydrotreatment of heavy residue type hydrocarbon feeds, in a fixed bed and/or ebullated bed, by said catalyst.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Bertrand GUICHARD, Mathieu DIGNE
  • Patent number: 8735314
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium and titanium. The catalyst composition further comprises ethylene glycol and citric acid. Preferably, the catalyst composition is substantially free of oxalic acid and lactic acid.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 27, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Craig Peterson, Mark Scates, Heiko Weiner, Josefina T. Chapman, Alexandra S. Locke
  • Patent number: 8728972
    Abstract: Embodiments of the present invention disclose improved micro-pore catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such improved micro-pore catalyst structures for the production of maleic anhydride.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: May 20, 2014
    Assignee: Huntsman Petrochemical LLC
    Inventor: Zhiping Shan
  • Publication number: 20140135527
    Abstract: In one embodiment, the invention is to a catalyst composition, comprising vanadium and titanium. Preferably, the molar ratio of vanadium to titanium in an active phase of the catalyst composition is greater than 0.5:1.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 15, 2014
    Applicant: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Patent number: 8669201
    Abstract: The invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, titanium and tungsten. Preferably, the catalyst comprises vanadium to tungsten at a molar ratio of at least 0.02:1, in an active phase.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 11, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Tianshu Pan, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Patent number: 8658558
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8658557
    Abstract: A process for the preparation of a promoted VPO catalyst, wherein the catalyst comprises the mixed oxides of vanadium and phosphorus and wherein the catalyst is promoted with at least one of niobium, cobalt, iron, zinc, molybdenum or titanium, said process comprising the steps of (i) preparing a VPO catalyst comprising vanadyl pyrophosphate as the major component and containing less than 5 wt % of vanadyl phosphate, (ii) contacting the VPO catalyst with a solution comprising a metal source compound of at least one metal selected from the group consisting of niobium, cobalt, iron, zinc, molybdenum or titanium to form a metal impregnated VPO catalyst, and (iii) drying the metal impregnated VPO catalyst to form the promoted VPO catalyst. In one embodiment, a niobium promoted VPO catalyst is prepared.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: February 25, 2014
    Assignee: INEOS USA LLC
    Inventors: Muin S. Haddad, Robert A. Gustaferro
  • Patent number: 8652988
    Abstract: In one embodiment, the invention is to a catalyst composition, comprising vanadium and titanium. Preferably, the molar ratio of vanadium to titanium in an active phase of the catalyst composition is greater than 0.5:1.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 18, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Publication number: 20140024861
    Abstract: [Problem] Catalyst for use in selective reduction of propionaldehyde in acrolein and/or acrylic acid and/or acrylonitrile containing propionaldehyde and/or propionic acid and/or propionitrile at low concentration. In particular, a novel catalyst for selectively reducing propionaldehyde from acrolein containing the propionaldehyde. [Solution] Catalyst for use in selective reduction of propionaldehyde in acrolein containing the propionaldehyde, characterized in that the catalyst contains Mo as an indispensable component, and at least one element selected from a group comprising P, Si, W, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Tl, Sn, Ag, As, Ge, B, Bi, La, Ba, Sb, Te, Ce, Pb, Mg, K, Rb, Cs and Al.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 23, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kimito Okumura, Toru Kawaguchi, Yasushi Kobayashi
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Publication number: 20130338378
    Abstract: The invention relates to a shaped catalyst body for the catalytic conversion of organic and inorganic components in fixed-bed reactors, wherein the shaped catalyst body is formed as cylinder with a base, a cylinder surface, a cylinder axis and at least one continuous opening running parallel to the cylinder axis, and the base of the cylinder has at least four corners.
    Type: Application
    Filed: November 22, 2011
    Publication date: December 19, 2013
    Inventors: Andreas Reitzmann, Willi Michael Brandstädter, Leopold Streifinger, Marvin Estenfelder
  • Patent number: 8598065
    Abstract: A process for charging a longitudinal section of a catalyst tube with a homogeneous fixed catalyst bed section whose active composition is at least one multielement oxide or comprises elemental silver on an oxidic support body and whose geometric shaped catalyst bodies and shaped inert bodies have a specific inhomogeneity of their longest dimensions.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 3, 2013
    Assignee: BASF SE
    Inventors: Martin Dieterle, Klaus Joachim Müller-Engel
  • Patent number: 8586499
    Abstract: A method for producing a catalyst for the preparation of methacrylic acid comprising a heteropolyacid compound containing phosphorus, molybdenum and an element X selected from the group consisting of potassium, rubidium, cesium and thallium and having an atomic ratio of the element X to molybdenum of 0.5:12 to 2:12, which method comprises the steps of mixing aqueous slurry A containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 2:12 to 4:12, and aqueous slurry B containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 0:12 to 0.5:12 to form a slurry mixture; heat-treating the slurry mixture at a temperature of 100° C. or higher; drying the slurry mixture; and calcining the dried mixture.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshiaki Miyatake, Junji Shibata, Eiichi Shiraishi
  • Patent number: 8586785
    Abstract: An object of the present invention is to provide a process for stably producing a catalyst for methacrylic acid production exhibiting high activity and high performance. The process for producing a catalyst for methacrylic acid production of the invention is characterized in that the water content of the catalyst ingredient powder for use in molding, temperature and humidity of a molding step, humidity and temperature of a baking step are individually controlled in the case where molding is performed by a coating method using an Mo—V—P—Cu-based hetero polyacid as an active ingredient and water or an alcohol and/or an aqueous solution of an alcohol as a binder.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: November 19, 2013
    Assignee: NipponKayaku KabushikiKaisha
    Inventors: Atsushi Sudo, Kazuo Shiraishi, Hideki Sugi, Hiroyoshi Nowatari, Fumio Sakai, Tomoaki Kobayashi, Tatsuhiko Kurakami
  • Publication number: 20130303362
    Abstract: Catalytic processes to produce a reaction product comprising 1-butanol by contacting a reactant comprising ethanol with a catalyst composition under suitable reaction conditions are provided. The catalyst composition may comprise a hydroxyapatite of the Formula (MwM?xM?yM??z)5(PO4)3(OH), wherein M is Mg; M? is Ca; M? is Sr; M?? is Ba; w is any number between 0 and 1 inclusive; x is any number from 0 to less than 0.5; y is any number between 0 and 1 inclusive; z is any number between 0 and 1 inclusive; and w+x+y+z=1. Base-treated catalyst compositions may be used. Also provided are processes for contacting an initial catalyst composition comprising the hydroxyapatite with a base to produce a base-treated catalyst composition, and the base-treated catalyst compositions so obtained.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Paul Joseph Fagan, Thomas G. Calvarese, Ronald James Davis, Ronnie Ozer
  • Patent number: 8567099
    Abstract: A system and process for removing an inorganic salt from a catalyst roaster belt is disclosed. The system includes an apparatus with a drying vessel having a catalyst roaster belt inlet, a catalyst roaster belt outlet, a heating medium inlet, and a heating medium outlet, wherein the catalyst roaster belt inlet and the catalyst roaster belt outlet are spaced apart along a first direction, the heating medium inlet and the heating medium outlet are spaced apart along a second direction, the heating medium inlet is spaced apart from the catalyst roaster belt inlet in the second direction, and the catalyst roaster belt inlet is between the heating medium inlet and the heating medium outlet along the second direction. The system includes an acid bath and a moveable catalyst roaster belt extending from the acid bath through the catalyst roaster belt inlet and through the catalyst roaster belt outlet.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 29, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Hua Bai, Ralph S. Kruska
  • Patent number: 8546287
    Abstract: A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: October 1, 2013
    Assignee: Fina Technology, Inc.
    Inventors: James Butler, Olga Khabashesku, Darek Wachowicz, Callum Bailey
  • Publication number: 20130245308
    Abstract: In one embodiment, the invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises a metal phosphate matrix containing vanadium and bismuth. Preferably, the catalyst comprises, in an active phase, vanadium to bismuth at a molar ratio of at least 0.02:1. Preferably, the catalyst composition is substantially free of titanium.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Publication number: 20130245312
    Abstract: The invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, bismuth and titanium. Preferably, the catalyst comprises 0.3 wt % to 30 wt % vanadium, 0.1 wt % to 69 wt % bismuth and 0.1 wt % to 61 wt % tungsten, in an active phase.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Tianshu Pan, Craig J. Peterson, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Publication number: 20130245310
    Abstract: A process for producing an acrylate product comprises the step of contacting an alkanoic acid and an alkylenating agent over a catalyst over conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, titanium and bismuth. Preferably, the catalyst comprises vanadium to bismuth at a molar ratio of greater than 0.2:1, in an active phase.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: Celanese International Corporation
    Inventors: Dick Nagaki, Craig Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman
  • Publication number: 20130245311
    Abstract: The invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, titanium and tungsten. Preferably, the catalyst comprises vanadium to tungsten at a molar ratio of at least 0.02:1, in an active phase.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Tianshu Pan, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller