And Vanadium Containing Patents (Class 502/209)
  • Publication number: 20040030172
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by contact with a liquid contacting member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 12, 2004
    Inventor: Leonard Edward Bogan
  • Publication number: 20040013601
    Abstract: The invention relates to a supported platinum group metal catalyst obtainable by controlled electroless deposition of at least one platinum group metal from a deposition solution which comprises
    Type: Application
    Filed: April 2, 2003
    Publication date: January 22, 2004
    Inventors: Thomas Butz, Henrik Junicke
  • Publication number: 20040014990
    Abstract: A vanadium-, phosphorus- and oxygen-containing catalyst for the preparation of maleic anhydride by heterogeneously catalyzed gas-phase oxidation of a hydrocarbon of at least four carbon atoms has a phosphorus/vanadium ratio of from 0.9 to 1.5, comprises particles having a mean diameter of at least 2 mm and has a composition which, using CuK&agr; radiation (&lgr;=1.54·10−10 m), gives a powder X-ray diffraction pattern which, in the 2&thgr; range from 10° to 70°, has a signal/background ratio of ≦10 for all diffraction lines which are attributable to a vanadium- and phosphorus-containing phase. Said catalyst is prepared and is used for the preparation of maleic anhydride.
    Type: Application
    Filed: April 14, 2003
    Publication date: January 22, 2004
    Inventors: Sebastian Storck, Jens Weiguny, Mark Duda, Gerhard Cox
  • Patent number: 6664206
    Abstract: This invention provides a method of reactivating a catalyst for methacrylic acid production, which catalyst is used in production of methacrylic acid through vapor-phase oxidation of methacrolein or vapor-phase oxidative dehydrogenation of isobutyric acid, contains P and Mo, and exhibits reduced activity. The process comprises treating the catalyst, whose activity level has dropped (deteriorated catalyst), with a gas containing a nitrogen-containing heterocyclic compound (e.g., pyridine, piperidine, piperazine, quinoline).
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: December 16, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6660681
    Abstract: A catalyst comprising vanadium phosphorus oxide combined with a thermally conductive material is particularly useful for the selective hydrocarbon oxidations (e.g., butane to maleic anhydride) and can be prepared by forming a suspension comprising a vanadium (IV) phosphate compound in a liquid medium (via hydrochloric acid digestion of V2O5 and H3PO4 in an aqueous solvent or via heating vanadium pentoxide with at least one substantially anhydrous unsubstituted alcohol having 1-10 carbon atoms, 1-3 hydroxyl groups free from olefinic double bonds to form a feed of vanadium pentoxide reduced to a valence between 4 and 4.6, and then contacting the feed with a solution of orthophosphoric acid and at least one unsubstituted alcohol), adding a thermally conductive material to the suspension under agitation at moderated temperature between 40° C. and 120° C., followed by drying, optionally but preferably washing and calcining (either in situ or ex situ) the material thus formed.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: December 9, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Marc J. Ledoux, Baudain Heinrich, Jan Joseph Lerou, Claude Crouzet, Christophe Bouchy, Kostantinos Kourtakis
  • Patent number: 6652823
    Abstract: Process for the preparation of a vanadium phosphate catalyst comprising treatment of a vanadium compound with formic acid, water and a phosphorus compound.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: November 25, 2003
    Assignee: Haldor Topsoe A/S
    Inventor: Herman Teunissen
  • Patent number: 6638890
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6624326
    Abstract: A novel method for preparing a heteropolyacid catalyst containing a heteropolyacid composed of molybdophosphoric acid and/or molybdovanadophosphoric acid, or a salt of the heteropolyacid, is provided. The method comprises preparing an aqueous solution or aqueous dispersion which (1) contains the nitrogen-containing heterocyclic compound, nitrate anions and ammonium ions, (2) the ammonium ion content not exceeding 1.7 mols per mol of the nitrate anion content, and (3) the ammonium ion content not exceeding 10 mols per 12 mols of the molybdenum atom content by mixing raw materials containing the catalyst-constituting elements with the nitrogen-containing heterocyclic compound in the presence of water, drying and calcining the same. This heteropolyacid catalyst excels over conventional catalysts in performance, life and strength.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: September 23, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Kaori Nakatani, Eiichi Shiraishi
  • Publication number: 20030171604
    Abstract: The present invention provides a catalyst capable of producing an epoxy compound in high yield and improving the utilization efficiency of the oxidizing agent as well as a method of producing an epoxy compound using that catalyst.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 11, 2003
    Inventors: Noritaka Mizuno, Yasutaka Sumida, Koji Yonehara, Masahiro Wada, Minoru Urata
  • Publication number: 20030144550
    Abstract: An active and selective hydrocarbon partial oxidation catalyst comprises an activated partially-reduced polyoxometallate, preferably niobium polyoxomolybdate, that is prepared from a suitable polyoxoanion, which has been exchanged with a suitable cation and activated by heating to an activation effective temperature in the presence of a suitable reducing agent such as pyridinium. C3 and C4 hydrocarbons may be partially oxidized selectively to acrylic acid and maleic acid.
    Type: Application
    Filed: November 1, 2002
    Publication date: July 31, 2003
    Inventors: Mark E. Davis, Christopher J. Dillon, Joseph H. Holles, Jay A. Labinger, Axel Brait
  • Publication number: 20030135071
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula:
    Type: Application
    Filed: December 20, 2002
    Publication date: July 17, 2003
    Applicant: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis
  • Patent number: 6586361
    Abstract: A coated catalyst for the catalytic gas-phase oxidation of aromatic hydrocarbons comprises, on an inert nonporous support, a catalytically active composition comprising a defined amount of vanadium oxide, titanium dioxide, a cesium compound, a phosphorus compound, and antimony oxide, wherein the catalytically active composition is applied in two or more layers and where relative to the inner layer or inner layers the outer layer has an antimony oxide content which is from 50 to 100% lower and wherein the amount of catalytically active composition of the inner layer or layers is from 10 to 90% by weight of the amount of catalytically active composition, and can be used for preparing carboxylic acids and/or anhydrides, in particular phthalic anhydride; also specified is a production process for such catalysts.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: July 1, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Heidemann, Stefan Bauer, Gerd Linden, Hermann Petersen
  • Publication number: 20030118497
    Abstract: A siliceous support for use in a catalyst for producing a lower aliphatic carboxylic acid ester by reacting a lower olefin with a lower aliphatic carboxylic acid in a gas phase, which has a silicon content of from 39.7 to 46.3% by mass or a silicon content of from 85 to 99% by mass in terms of silicon dioxide or a crush strength of 30 N or more. By the use of a catalyst comprising the support, a lower aliphatic carboxylic acid ester is produced from lower olefin and a lower aliphatic carboxylic acid without causing great reduction of catalytic activity or cracking or abrasion of the catalyst.
    Type: Application
    Filed: March 4, 2002
    Publication date: June 26, 2003
    Inventors: Etsuko Kadowaki, Kousuke Narumi, Hiroshi Uchida
  • Publication number: 20030114688
    Abstract: A catalyst used in a process for preparing maleic anhydride by heterogeneously catalyzed gas-phase oxidation of a hydrocarbon having at least four carbon atoms by means of oxygen-containing gases comprises a catalytically active composition comprising vanadium, phosphorus and oxygen and has a essentially hollow cylindrical structure in which (a) the ratio of the height h to the diameter of the continuous hole d2 is not more than 1.5 and (b) the ratio of the geometric surface area Ageo to the geometric volume Vgeo is at least 2 mm−1.
    Type: Application
    Filed: September 5, 2002
    Publication date: June 19, 2003
    Inventors: Jens Weiguny, Sebastian Storck, Andreas Tenten
  • Patent number: 6562752
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 13, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Publication number: 20030069131
    Abstract: One aspect of the present invention relates to a catalytic compound of anion-modified metal oxides doped with metal ions. Another aspect of the present invention relates to a method of isomerizing an alkane or alkyl moiety.
    Type: Application
    Filed: August 7, 2002
    Publication date: April 10, 2003
    Inventors: Jackie Y. Ying, Jinsuo Xu
  • Patent number: 6544439
    Abstract: Applicants have developed a novel catalyst composition comprising a crystalline metal oxide having the empirical formula: AvBt+wNixD(Gu−)yOz, where A is an alkali metal (e.g. Na), B is a basic metal (e.g. Ca), D is a framework component (e.g. P), and G is an anionic species (e.g. OH−). Nickel may be present in the framework of the crystalline metal oxide, dispersed thereon, or both. Preferably, the metal oxide component has an apatite or hydroxyapatite crystal structure. These crystalline metal oxide components have been found to have improved performance in partial oxidation and light hydrocarbon (e.g. methane) reforming to produce synthesis gas. A new process for synthesizing these metal oxides is also disclosed.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: April 8, 2003
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, John E. Bauer
  • Publication number: 20030060362
    Abstract: The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores.
    Type: Application
    Filed: October 24, 2002
    Publication date: March 27, 2003
    Inventors: Yong Wang, Charles H.F. Peden, Saemin Choi
  • Publication number: 20030036475
    Abstract: The present invention concern, a method for enhancing the activity of vanadium phosphorus oxide (VPO) catalysts. Promoter reagents are grafted onto or reacted with the catalyst surface. An optional calcination and activation heating cycle transforms the catalyst precursor into a final active phase. A preferred VPO catalyst produced has a ratio of molybdenum to vanadium on the surface of the catalyst to molybdenum to vanadium in the overall bulk of the catalyst represented by the equation (Mo/V) Surface≧1.10 (Mo/V) overall bulk.
    Type: Application
    Filed: July 1, 2002
    Publication date: February 20, 2003
    Inventors: Kostantinos Kourtakis, Pratibha Gai
  • Patent number: 6521562
    Abstract: A method of making a molecular sieve catalyst by preparing a catalyst slurry containing molecular sieve, binder and a matrix material and directing the slurry to a forming unit. The catalyst slurry is prepared by using a microfiltration process whereby the molecular sieve is washed and concentrated from a preparation medium without having to isolate the molecular sieve in a dry or semi-dry form. The catalyst is used to make ethylene and propylene from an oxygenate.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 18, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Kenneth R. Clem, Luc R. M. Martens, Stephen N. Vaughn, Paul R. Stafford, John W. Kress, Machteld M. Mertens
  • Publication number: 20030032837
    Abstract: A catalyst for use in producing a lower aliphatic carboxylic acid ester, wherein the catalyst is produced by a process comprising a step of contacting the catalyst with a gas containing at least one member selected from water, lower aliphatic carboxylic acids and lower aliphatic alcohols; a process for producing the catalyst; and a process for producing a lower aliphatic carboxylic acid ester using the catalyst. The catalyst can exhibit high initial activity and high space time yield, ensure sufficiently long catalyst life in practice in industry, and can prevent the production of by-product materials.
    Type: Application
    Filed: July 17, 2001
    Publication date: February 13, 2003
    Inventors: Etsuko Kadowaki, Tomoyoshi Higashi, Wataru Oguchi, Hiroshi Uchida
  • Publication number: 20020193246
    Abstract: A novel method for preparing a heteropolyacid catalyst containing a heteropolyacid composed of molybdophosphoric acid and/or molybdovanadophosphoric acid, or a salt of the heteropolyacid, is provided.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 19, 2002
    Applicant: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Kaori Nakatani, Eiichi Shiraishi
  • Patent number: 6495486
    Abstract: A novel intercalation compound is provided, in which compound monohydric alcohol is intercalated between layers of a layered compound comprising vanadium, phosphorus and oxygen as primary components, characterized in that the monohydric alcohol is aliphatic secondary monohydric alcohol, alicyclic monohydric alcohol, or aromatic monohydric alcohol. By heating the intercalation compound, a vanadium-phosphorus mixed oxide having a BET specific surface area of at least 80 m2/g can be obtained.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: December 17, 2002
    Assignees: Tonen Chemical Corporation, Japan Chemical Industry Association
    Inventors: Yuichi Kamiya, Eiichiro Nishikawa
  • Patent number: 6479691
    Abstract: A catalyst composition represented by the following empirical formula which is useful in production of unsaturated nitrites by ammoxidation: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j wherein F represents at least one element selected from the group consisting of zirconium, lanthanum and cerium, G represents at least one element selected from the group consisting of magnesium, cobalt, manganese and zinc, H represents at least one element selected from the group consisting of vanadium, niobium, tantalum and tungsten, x represents at least one element selected from the group consisting of phosphorus, boron, and tellurium, Y represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, the suffixes a-k, x and y represent a ratio of atoms or atomic groups, and a=0.1-3, b=0.3-15, c=0-20, d=3-8, e=0.2-2, f=0.05-1, e/f>1, g=0-5, h=0-3, k=0.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 12, 2002
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yutaka Sasaki, Kunio Mori, Yoshimi Nakamura, Takao Shimizu, Yuichi Tagawa, Kenichi Miyaki, Seiichi Kawato
  • Patent number: 6472344
    Abstract: The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: October 29, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Charles H. F. Peden, Saemin Choi
  • Patent number: 6471923
    Abstract: The invention concerns materials for adsorbing and desorbing oxides of nitrogen NO and NO2 present in exhaust gases, in particular from the internal combustion engines of automotive vehicles operating in a medium which is super-stoichiometric in oxidizing agents, which can desorb the oxides of nitrogen by elevating the temperature, with respect to an adsorption temperature, the structure of the materials being composed of phosphate tetrahedra and containing at least one element (A) from groups IVB, VB, VIB, VIIB, IVA, optionally at least one element (B) selected from the group formed by alkali elements IA, alkaline-earth elements IIA, rare earths IIIB and transition metals, and optionally at least one metal (C) selected from the group formed by the precious metals of the platinum family (group VIII). These materials are insensitive to the oxides of sulphur and carbon contained in the gas.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: October 29, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Becue, Gil Mabilon, Philippe Villeret
  • Publication number: 20020142914
    Abstract: Disclosed are catalysts situated on a polyoxometallate supported. Also disclosed are methods of preparing these catalysts and processes for the conversion of alkanes to unsaturated organic compounds using these catalysts.
    Type: Application
    Filed: March 19, 2002
    Publication date: October 3, 2002
    Inventors: Anna Marie Devlin, Anthony Frank Volpe
  • Publication number: 20020142913
    Abstract: A process to prepare an improved fluid rare earth phosphate catalyst composition useful in preparing alkylene oxide adducts of organic compounds having active hydrogen atoms is provided. The catalyst is prepared by dissolving a rare earth salt in a C9-C30 active hydrogen containing organic compound and then adding phosphoric acid to the organic compound rare earth mixture.
    Type: Application
    Filed: December 15, 2000
    Publication date: October 3, 2002
    Applicant: Shell Oil Company
    Inventor: Charles Lee Edwards
  • Patent number: 6458970
    Abstract: In a process for preparing phthalic anhydride by catalytic gas-phase oxidation of o-xylene or naphthalene or o-xylene/naphthalene mixtures with a gas comprising molecular oxygen over a coated catalyst comprising an inert, nonporous support material on which a catalytically active composition comprising titanium dioxide and vanadium pentoxide is applied in layer form, a catalyst whose catalytically active composition comprises from 3 to 6% by weight of vanadium pentoxide, calculated as V2O5, from 0.3 to 0.5% by weight of a cesium compound, calculated as Cs, and the remainder to 100% by weight of titanium dioxide in the anatase modification is used in the presence or absence of a coated catalyst, differing therefrom, for the catalytic gas-phase oxidation of o-xylene or naphthalene or o-xylene/naphthalene mixtures and, in the presence of such a second catalyst, the latter is used in a combined bed with the catalyst of the above composition in the reactor.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: October 1, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerhard Hefele, Otto Kratzer, Walter Scheidmeir, Bernhard Ulrich
  • Patent number: 6458740
    Abstract: A novel method for preparing a heteropolyacid catalyst containing a heteropolyacid composed of molybdophosphoric acid and/or molybdovanadophosphoric acid, or a salt of the heteropolyacid, is provided. The method comprises preparing an aqueous solution or aqueous dispersion which (1) contains the nitrogen-containing heterocyclic compound, nitrate anions and ammonium ions, (2) the ammonium ion content not exceeding 1.7 mols per mol of the nitrate anion content, and (3) the ammonium ion content not exceeding 10 mols per 12 mols of the molybdenum atom content by mixing raw materials containing the catalyst-constituting elements with the nitrogen-containing heterocyclic compound in the presence of water, drying and calcining the same. This heteropolyacid catalyst excels over conventional catalysts in performance, life and strength.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: October 1, 2002
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Hiroto Kasuga, Kaori Nakatani, Eiichi Shiraishi
  • Patent number: 6447741
    Abstract: A mesoporous aluminophosphate material includes a solid aluminophosphate composition modified with at least one element selected from zirconium, cerium, lanthanum, manganese, cobalt, zinc, and vanadium. This mesoporous aluminophosphate material has a specific surface area of at least 100 m2/g, an average pore size less than or equal to 100 Å, and a pore size distribution such that at least 50% of the pores have a pore diameter less than 100 Å. The material can be used as a support for a catalytic cracking catalyst. Additionally, a method for making such a mesoporous aluminophosphate material is disclosed. The method, which preferably avoids use of organic reagents or solvents, includes providing an aqueous solution containing an inorganic phosphorus component; an inorganic aluminum containing component; and an inorganic modifying component containing at least one element selected from zirconium, cerium, lanthanum, manganese, cobalt, zinc, and vanadium.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 10, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Arthur W. Chester, Frederick E. Daugherty, Charles T. Kresge, Hye-Kyung C. Timken, James C. Vartuli
  • Publication number: 20020115562
    Abstract: Process for the preparation of a vanadium phosphate catalyst comprising treatment of a vanadium compound with formic acid, water and a phosphorus compound.
    Type: Application
    Filed: December 14, 2000
    Publication date: August 22, 2002
    Applicant: Haldor Topsoe A/S
    Inventor: Herman Teunissen
  • Patent number: 6432867
    Abstract: Sulfided catalysts produced by sulfurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, wherein the catalyst is brought into contact with at least one source of elemental sulfur e.g. flowers of sulfur in an atmosphere of at least one reducing gas other than hydrogen e.g. carbon monoxide. The catalyst is suitable for converting hydrocarbon-containing feeds, such as hydrocracking and hydrotreatment.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: August 13, 2002
    Assignee: Insitut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6417376
    Abstract: A process for selectively oxidizing an organic molecule by reacting said organic molecule and oxygen in the presence of a selective oxidation catalyst supported on a mesh-like structure.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: July 9, 2002
    Assignee: ABB Lummus Global Inc.
    Inventors: Chuen Y. Yeh, Lawrence L. Murrell, Pal Rylandshom, Robert E. Trubac, Rudolf A. Overbeek, Chiung Y. Huang, Cemal Ercan, Nelleke Vander Puil, Herbert E. Barner
  • Patent number: 6413903
    Abstract: This invention relates to catalysts useful in the vapor phase oxidation of hydrocarbons, such as 1,3-butadiene to furan and maleic anhydride. The catalysts comprise vanadium oxides, vanadium phosphorus oxides or vanadium antimony oxides incorporated in a matrix comprising oxides or oxyhydroxides of silicon, titanium, tantalum and/or niobium derived using sol-gel chemistry, optionally in the presence of an organic directing agent, such as dodecylamine.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: July 2, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Kostantinos Kourtakis
  • Patent number: 6407030
    Abstract: A method is provided for producing catalysts useful for synthesizing maleic anhydride by oxidizing saturated and/or unsaturated C4 hydrocarbons. A vanadium (V) compound is reacted with a mixture of phosphorous and phosphoric acids in a particular ratio, in a solvent mixture containing a structure former, and an entrainer and where the water of reaction together with entrainer is distilled off and the resulting precursor is subjected to calcination.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: June 18, 2002
    Assignee: Consortium für elektrochemische Industrie GmbH
    Inventors: Dirk Groke, Richard Bosch, Joachim Lotz, Hans-Jürgen Eberle
  • Patent number: 6387841
    Abstract: Disclosed are catalysts situated on a polyoxometallate support. Also disclosed are methods of preparing these catalysts and processes for the conversion of alkanes to unsaturated organic compounds using these catalysts.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 14, 2002
    Assignee: Rohm and Haas Company
    Inventors: Anna. Marie Devlin, Anthony Frank Volpe, Jr.
  • Patent number: 6383973
    Abstract: Complex oxide catalysts represented by the formula, MoaWbBicFedAeBfCgDhEiOx (in which A is Ni or Co; B is Na, K, Rb, Cs or Tl; C is an alkaline earth metal; D is P, Te, Sb, Sn, Ce, Pb, Nb, Mn, As, B or Zn; E is Si, Al, Ti or Zr; and where a is 12, 0≦b≦10, 0<c≦10, 0<d≦10, 2≦e≦15, 0<f≦10, 0≦g≦10, 0≦h≦4 and 0≦i≦30) are provided. The catalysts are characterized in that the molar ratio of the total nitrate anions to the molybdenum at the time of catalyst preparation is more than 1 but not more than 1.8. When used in the reaction for producing (meth)acrolein and (meth)acrylic acid by vapor-phase oxidation of at least a compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether, the catalysts exhibit excellent activity and selectivity and maintain stable performance over prolonged period.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: May 7, 2002
    Assignee: Nippon Shokusai Co. Ltd.
    Inventors: Naomasa Kimura, Michio Tanimoto, Hideo Onodera
  • Publication number: 20020052529
    Abstract: Improved catalyst for use in production of methacrylic acid by vapor phase oxidation reaction and/or vapor phase oxidative dehydrogenation reaction of at least one compound selected from methacrolein, isobutylaldehyde and isobutyric acid is provided. This improved catalyst is a composition composed of (A) complex oxide containing as essential components molybdenum and phosphorus, which is per se known as a catalyst for the above reaction(s), and (B) complex oxide containing as essential components cerium and zirconium. When this improved catalyst is used, the operation for producing methacrylic acid can be stably continued over prolonged period.
    Type: Application
    Filed: October 23, 2001
    Publication date: May 2, 2002
    Inventors: Yuichi Kase, Hideo Onodera
  • Publication number: 20020045539
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Application
    Filed: December 22, 2000
    Publication date: April 18, 2002
    Applicant: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Publication number: 20020045542
    Abstract: The invention concerns a catalyst comprising at least one matrix, at least one dioctahedral 2:1 phyllosilicate which is optionally synthesised in a fluorine-containing medium and optionally bridged, at least one metal selected from elements from group VIB and/or group VIII of the periodic table, boron and/or silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also concerns the use of the catalyst for hydrocracking hydrocarbon-containing feeds.
    Type: Application
    Filed: May 8, 2001
    Publication date: April 18, 2002
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6362128
    Abstract: A method for manufacturing of an improved attrition resistant catalyst having an oxide-rich surface layer involving forming an aqueous slurry comprising; catalyst, catalyst precursor or catalyst support particles (e.g., vanadium/phosphorus oxide, V/P/O catalyst), a large particle colloidal oxide sol (e.g., 200 Å, 600 Å, 750 Å colloidal silica, sodium stabilized) as the major oxide-rich surface layer forming component, and a second oxide-rich surface layer forming component solution wherein the solute is selected from the group consisting essentially of a precursor of the oxide-rich surface with average particle size no greater than 5 nm (e.g., aqueous silicic acid or polysilicic acid), a colloidal oxide sol wherein oxide particles in the sol have an average size below 10 nm (e.g., 50 Å colloidal silica), and mixtures thereof and then spray drying the slurry to form porous microspheres of attrition resistant catalyst; and, calcining/activating the spray dried microspheres.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: March 26, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jo-Ann Theresa Schwartz
  • Patent number: 6333293
    Abstract: The present invention provides a process for preparing a catalyst and the same for use in production of methacrylic acid, which is characterized by molding a raw material including a powder containing phosphorus and molybdenum at the specific pressure.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: December 25, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yuichi Kase, Naomasa Kimura, Hideo Onodera
  • Publication number: 20010029233
    Abstract: A novel method for preparing a heteropolyacid catalyst containing a heteropolyacid composed of molybdophosphoric acid and/or molybdovanadophosphoric acid, or a salt of the heteropolyacid, is provided.
    Type: Application
    Filed: March 5, 2001
    Publication date: October 11, 2001
    Applicant: NIPPON SHOKUBAI CO., LTD
    Inventors: Hiroto Kasuga, Kaori Nakatani, Eiichi Shiraishi
  • Publication number: 20010027163
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promoters are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
    Type: Application
    Filed: May 24, 2001
    Publication date: October 4, 2001
    Applicant: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6291394
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: September 18, 2001
    Assignee: Shell Oil Company
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6261988
    Abstract: A metal ion-exchanged phosphorus-vanadium compound having an interlayer distance in the range of 7.0 to 8.2 Å and an ion exchange ratio of the divalent metal at least 20% obtained by treating vanadyl hydrogen orthophosphate hydrate represented by the formula (1) VOHPO4 .nH2O (1) wherein n fulfills the expression, 0<n≦2.0, with an aqueous divalent metal salt solution thereby effecting the exchange of N+ present between the layers of said vanadyl hydrogen orthophosphate hydrate, drying the resultant ion exchanged compound, and if necessary calcining the dried ion exchanged compound, a solid acid and a partial oxidation catalyst for hydrocarbons containing the compound.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: July 17, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Ikuya Matsuura
  • Patent number: 6228798
    Abstract: A method of making a vanadium phosphorus oxide (VPO) catalyst by precipitating from a 45-65 g/l solution of V4+ ions and V5+ ions a vanadium- and phosphorus-containing precipitate comprising a complex of formula VOHPO4. The precipitate is calcined under an inert atmosphere to produce a VPO catalyst whole active phase is formula (VO)2P2O9. Said solution comprises cations of at least two of Bi, Zr, Cr, Ce, Co, Mn, Mg and Mo such that the precipitate comprises 1-25% by mass of said dopant metal cations in total, the balance being said complex. Each dopant metal forms 0.1-20% by mass of the precipitate.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: May 8, 2001
    Assignee: Sasol Technology (Proprietary) Limited
    Inventor: Sadesh H Sookraj
  • Patent number: 6197716
    Abstract: The present invention relates to a hydrogenation process for the production of aromatic halogen-amino compounds by means of catalytic hydrogenation on noble metal catalysts of corresponding aromatic halonitro compounds, characterised in that a rhodium, ruthenium, iridium, platinum or palladium catalyst which is modified with an inorganic or organic phosphorus compound with a degree of oxidation of less than V, is used, in the presence of a vanadium compound.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: March 6, 2001
    Assignee: Novartis AG
    Inventors: Peter Baumeister, Urs Siegrist, Martin Studer
  • Patent number: 6194610
    Abstract: The present invention relates to a process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, X and Y in gram atom ratios a:b:c:d in combination with oxygen MoaPdbXcYd  (I) where the symbols X and Y have the following meanings: X is one or more elements selected from the group consisting of: Cr, Mn, Nb, Ta, Ti, V, Te and/or W, in particular Nb, V and W; Y is one or more elements selected from the group consisting of: B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Cu, Rh, Ir, Au, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, TI and U, in particular Ca, Sb, Te and Li. The present invention further provides a catalyst for the selective preparation of acetic acid comprising the elements Mo, Pd, X and Y in the gram atom ratios a:b:c:d in combination with oxygen.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: February 27, 2001
    Assignee: Aventis Research & Technologies GmbH & Co. KG
    Inventors: Holger Borchert, Uwe Dingerdissen