And Bismuth Containing Patents (Class 502/212)
  • Patent number: 11007506
    Abstract: The present invention relates to a process for producing mixed oxide catalysts on the basis of molybdenum and bismuth oxides in which the precursor compounds of the components of mixed oxide catalysts provided in the form of a solution and/or suspension are subjected to a spray-drying with a specific temperature regime and the spray particles obtained in this way are then calcined to yield a catalytic active mass, and to the mixed oxide catalysts obtainable by this process and to the use of these catalysts in the partial oxidation of olefins, in particular in the partial gas phase oxidation of propene to acrolein and acrylic acid. The spray drying of the precursor compounds containing solution or suspension is performed in concurrent with a gas stream having a specific entrance temperature. Alternatively, when the main gas stream has a higher entrance temperature, an additional colder gas stream can be fed in downstream.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 18, 2021
    Assignee: Evonik Operations GmbH
    Inventors: Achim Fischer, Axel Mescher, Harald Jakob
  • Patent number: 10940464
    Abstract: The present invention clarifies the characteristic of the hygroscopicity of the catalyst for producing acrylic acid and finds out a relationship between the water amount of the catalyst and the catalytic performance as the catalyst for producing acrylic acid, and provides an excellent catalyst. Provided is a catalyst for producing acrylic acid, which contains molybdenum and vanadium as essential active components, in which the amount of water contained in the catalyst is 0.01 mass % or more and 0.53 mass % or less.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: March 9, 2021
    Assignee: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kouichi Tamura, Tatsuhiko Kurakami
  • Patent number: 9884315
    Abstract: Disclosed are a composite oxide catalyst for preparing butadiene and a method of preparing the same. More particularly, a composite oxide catalyst, for preparing butadiene, including a metal composite oxide and AlPO4, and a method of preparing the same are disclosed. According to the present disclosure, a composite oxide catalyst for preparing butadiene, which includes a specific binder material, prevents generation of ingredients with a high boiling point, has superior catalyst strength, catalytic activity and butadiene yield, and a method of preparing the same are provided.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: February 6, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang, Dong Hyun Ko
  • Patent number: 8993473
    Abstract: Embodiments of the present invention include improved shaped catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalyst structures for the production of maleic anhydride.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 31, 2015
    Assignee: Huntsman Petrochemical LLC
    Inventors: Larry E. Melde, William A. Smith
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8658558
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8586499
    Abstract: A method for producing a catalyst for the preparation of methacrylic acid comprising a heteropolyacid compound containing phosphorus, molybdenum and an element X selected from the group consisting of potassium, rubidium, cesium and thallium and having an atomic ratio of the element X to molybdenum of 0.5:12 to 2:12, which method comprises the steps of mixing aqueous slurry A containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 2:12 to 4:12, and aqueous slurry B containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 0:12 to 0.5:12 to form a slurry mixture; heat-treating the slurry mixture at a temperature of 100° C. or higher; drying the slurry mixture; and calcining the dried mixture.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshiaki Miyatake, Junji Shibata, Eiichi Shiraishi
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8481790
    Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 9, 2013
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
  • Patent number: 8415268
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 9, 2013
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8410013
    Abstract: Provided is a catalyst for treating exhaust gas capable of reducing the amount of a highly corrosive mercury-chlorinating agent to be added while keeping the mercury oxidation efficiency high in an exhaust gas treatment. By the catalyst for treating exhaust gas, nitrogen oxide in the exhaust gas is removed upon contact with ammonia serving as a reducing agent, and mercury is oxidized using a halogen serving as an oxidant. The catalyst includes: TiO2 as a support; an oxide of at least one selected from the group consisting of V, W and Mo, which is supported as an active component on the support; and at least one selected from the group consisting of Bi, P, and compounds containing Bi and/or P, which is supported as a co-catalyst component on the support.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Yoshiaki Obayashi, Masashi Kiyosawa
  • Publication number: 20120283088
    Abstract: The invention relates to mixed oxide catalysts made of hollow shapes for the catalytic gas phase oxidation of olefins, and to a method for producing the catalysts by applying them as a layer to a carrier made of organic material and removing said organic material. The reaction into aldehydes and carboxylic acids occurs by air or oxygen in the presence of inert gases in different quantity ratios, at elevated temperatures and pressure in the presence of said catalysts.
    Type: Application
    Filed: June 8, 2012
    Publication date: November 8, 2012
    Applicant: Evonik Degussa Gmbh
    Inventors: Achim FISCHER, Werner BURKHARDT, Stefan RÖDER, Klaus HUTHMACHER
  • Patent number: 8242043
    Abstract: A process for production of a supported catalyst that, when used for production of lower aliphatic carboxylic acids from oxygen and lower olefins, improves yields of the lower aliphatic carboxylic acids and minimizes production of carbon dioxide gas (CO2) by-product compared to the prior art. A compound comprising at least one element selected from elements of Groups 8, 9 and 10 of the Periodic Table, at least one chloride of an element selected from copper, silver and zinc, and a chloroauric acid salt, are loaded on a carrier, after which there are further loaded a compound comprising at least one element selected from gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulfur, selenium, tellurium and polonium, and a heteropoly acid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 14, 2012
    Assignee: Showa Denko K.K.
    Inventor: Atsuyuki Miyaji
  • Patent number: 8232224
    Abstract: Methods for preparing catalysts for oxidation of unsaturated and/or saturated aldehydes to unsaturated acids is disclosed where the catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), where the bismuth component was dissolved in an organic acid solution prior to adding the bismuth containing solution to a solution of the other components.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 31, 2012
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey
  • Patent number: 8207080
    Abstract: The invention concerns a compound comprising a combination of two crystal phases. The first crystal phase corresponds to the formula: AaEbVcModPeOfHg wherein A is an alkali-metal; E is Te, Sb or Bi; and 0?a?3, 0<b?3, 0?c?3, 0<d?13, 0<e?2, 0?g?3. The second crystal phase corresponds to the formula ZgMohXiOj wherein: Z is selected among trivalent rare earths; X is selected among the elements V, Ga, Fe, Bi, Ce, Ti, Sb, Mn, Zn, Te; and 0<g?3, 0?h?3, 0?i?1. The indices f and j represent the number of oxygen atoms required for satisfying the relative valency and atomic proportions of the elements present. The invention also concerns the method for preparing said compound, and its use in particular as catalyst for oxidizing alkanes.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 26, 2012
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jean-Marc Millet, Phillippe Lacorre, Quyen Huynh
  • Patent number: 8114805
    Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 14, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
  • Publication number: 20110295041
    Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: Shanghai HuaYi Acrylic Acid Co. Ltd.
    Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
  • Patent number: 8053386
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Gyo-hyun Hwang, Min-ho Kil, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
  • Patent number: 8048820
    Abstract: The invention relates to a shaped catalyst body for preparing maleic anhydride, which comprises mixed oxides of vanadium and of phosphorus as catalyst components. To develop a generic shaped catalyst body further so that it has improved properties, it is proposed that the basic geometric body enveloping the shaped catalyst body (100; 200) be a prism (180) having a first triangular face and a second triangular face and the shaped catalyst body (100; 200) be provided with three through openings (111, 121, 131; 211, 221, 231) which extend from a first face of the shaped body (100; 200) which contacts the first triangular face of the prism (180) to a second face of the shaped body (100; 200) which contacts the second triangular face of the prism (180).
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 1, 2011
    Assignee: Sud-Chemie AG
    Inventors: Willi Brandstädter, Leopold Streifinger, Marvin Estenfelder
  • Publication number: 20110250114
    Abstract: A vanadia-based catalytic composition for reduction of nitrogen oxides includes a titania-based support material; vanadia deposited on the titania-based support material; a primary promoter comprising tungsten oxide, molybdenum oxide or combinations thereof; and an amount of phosphate to achieve a mole ratio of phosphorus to vanadium plus molybdenum of about 0.2:1 or greater. A zirconia, tin or manganese oxide can be added to further inhibit the volatility of molybdenum. Results show low SO2 oxidation rates and excellent NOx conversion and/or molybdenum stability.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 13, 2011
    Inventors: Steve M. Augustine, Modasser El-Shoubary, Dennis Clark
  • Patent number: 8034737
    Abstract: A catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile for a long time is provided. The catalyst has a composition represented by MoaBibFecWdRbeAfBgChDiOj(SiO2)k, wherein A is Ni, Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, Cd or mixture thereof; B is Al, Cr, Ga, Y, In, La, Ce, Pr, Nd, Sm or mixture thereof; C is Ti, Zr, V, Nb, Ta, Ge, Sn, Pb, Sb, P, B, Te or mixture thereof; D is Ru, Rh, Pd, Re, Os, Ir, Pt, Ag or mixture thereof; SiO2 is silica, when a is 10, b is 0.1 to 1.5, c is 0.5 to 3.0, d is 0.01 to 2.0, e is 0.02 to 1.0, f is 2.0 to 9.0, g is 0 to 5, h is 0 to 3, i is 0 to 2, k is 10 to 200; and j is the atomic ratio of oxygen determined by the valence of other elements (excluding silicon); and (a×2+d×2)/(b×3+c×3+e×1+f×2+g×3) is 0.90 to 1.00.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 11, 2011
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Hirokazu Watanabe, Motoo Yanagita, Kenichi Miyaki
  • Publication number: 20110237821
    Abstract: A catalytic composition useful for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof. The catalytic composition comprising a complex of metal oxides comprising bismuth, molybdenum, iron, cerium and other promoters, wherein the ratio of cerium to iron in the composition is greater than or equal to 0.8 and less than or equal to 5.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Inventors: James F. Brazdil, Mark A. Toft, Michael J. Seely, Charles J. Besecker, Robert A. Gustaferro
  • Patent number: 7923404
    Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: April 12, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Publication number: 20100323882
    Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.
    Type: Application
    Filed: May 31, 2010
    Publication date: December 23, 2010
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Publication number: 20100324331
    Abstract: The invention relates to mixed oxide catalysts made of hollow shapes for the catalytic gas phase oxidation of olefins, and to a method for producing the catalysts by applying them as a layer to a carrier made of organic material and removing said organic material. The reaction into aldehydes and carboxylic acids occurs by air or oxygen in the presence of inert gases in different quantity ratios, at elevated temperatures and pressure in the presence of said catalysts.
    Type: Application
    Filed: January 28, 2008
    Publication date: December 23, 2010
    Inventors: Achim Fischer, Werner Burkhardt, Stefan Röder, Klaus Huthmacher
  • Patent number: 7851397
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehydes to unsaturated acids is disclosed where the catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the bismuth component was dissolved in an organic acid solution prior to adding the bismuth containing solution to a solution of the other components. Methods for making and using the catalysts are also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: December 14, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey
  • Patent number: 7825061
    Abstract: The object of the present invention is to provide a catalyst for producing methacrylic acid in high yield and highly selectively by subjecting methacrolein, isobutylaldehyde or isobutyric acid to gas phase catalytic oxidation, and the preparation method thereof. The catalyst contains Mo, V, P, Cu, Cs and NH4 as the essential, active components, and the feature is to use for preparing the catalyst a cesium weak acid salt or cesium hydroxide as the Cs raw material and ammonium acetate as the NH4 raw material. A coated catalyst of the present invention is obtainable by supporting the active component on an inert carrier of alumina or the like.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: November 2, 2010
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Atsushi Sudo, Yoshimasa Seo, Hideki Sugi
  • Patent number: 7777082
    Abstract: A process for preparing annular unsupported catalysts by thermally treating annular shaped unsupported catalyst precursor bodies, wherein the side crushing strength of the annular shaped unsupported catalyst precursor bodies is ?12 N and ?23 N; such precursor bodies per se; annular unsupported catalysts having a specific pore structure; and a method of using such annular unsupported catalysts for the catalytic partial oxidative preparation in the gas phase of (meth)acrolein.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: August 17, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Klaus Joachim Mueller-Engel, Signe Unverricht
  • Patent number: 7772148
    Abstract: An annular unsupported catalyst for the heterogeneously catalyzed partial gas phase oxidation of propene to acrolein at a propene hourly space velocity on the fixed catalyst bed of ?120 1 (STP)/1·h and a total CO2 and saturated hydrocarbon content of the starting reaction gas mixture of below 15 mol %, the catalysts of the fixed catalyst bed are the annular unsupported catalysts whose active composition is a multimetal oxide in which the molar Co/Fe ratio=from 2 to 4 and the molar Co/Mo ratio=from 0.3 to 0.7.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 10, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Klaus Joachim Mueller-Engel
  • Patent number: 7732367
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the catalyst has at least 57% medium pores and a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12. Methods for making and using such catalysts are also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 8, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Patent number: 7662742
    Abstract: A method for producing a catalyst containing given atoms in a given atomic proportion for use in producing methacrylic acid through gas-phase catalytic oxidation of methacrolein with molecular oxygen comprising the steps of: (i) preparing a solution or slurry containing at least molybdenum, phosphorus, and vanadium (liquid I); (ii) preparing a solution or slurry containing ammonium radical (liquid II); (iii) preparing a mixture of the liquid I and the liquid II by introducing one liquid (liquid PR) of the liquid I and the liquid II into a tank (tank A) and pouring the other liquid (liquid LA) on a continuous region in the surface of the liquid PR, the continuous region occupying 0.01 to 10% of the whole area of the surface of the liquid PR; and (iv) drying and calcining the resultant solution or slurry containing a catalyst precursor comprising all the catalyst constituents.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 16, 2010
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda, Tomoki Fukui
  • Patent number: 7649111
    Abstract: A heteropolyacid catalyst for oxidation of isobutyraldehyde, methacrolein or mixtures or combinations thereof to methacrylic acid is disclosed where the heteropolyacid catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), and a first component including bismuth (Bi) and/or boron (B). The heteropolyacid catalyst can also optionally include a second component including potassium (K), rubidium (Rb), cesium (Cs), and/or thallium (Tl) and optionally a third component including antimony (Sb), cerium (Ce), niobium (Nb), indium (In), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), arsenic (As), silver (Ag), zinc (Zn), germanium (Ge), gallium (Ga), zirconium (Zr), magnesium (Mg), barium (Ba), lead (Pb), tin (Sn), titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), tungsten (W), and/or lanthanum (La). The heteropolyacid catalyst can also include an ammonium-containing compound designed to increase a value of medium pores in the final heteropolyacid catalyst.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 19, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey, Joseph R. Linzer
  • Patent number: 7629286
    Abstract: A process is disclosed for the improvement of fluid bed vanadium phosphorus mixed oxide catalyst performance in the manufacture of maleic anhydride from butane, which process comprises impregnating the VPO catalyst powder with a phosphorus compound, such as an alkyl ester of orthophosphoric acid and then using this impregnated catalyst powder to provide phosphorus to the maleic anhydride producing catalyst.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: December 8, 2009
    Assignee: INEOS USA LLC
    Inventors: Muin S. Haddad, Gary V. Goeden
  • Patent number: 7625834
    Abstract: In a method of producing a catalyst for the production of methacrylic acid, which has a composition of the following formula (1), when mixing 100 parts by mass of a solution or a slurry (liquid A) containing molybdenum atoms, phosphorous atoms and vanadium atoms in which the content of ammonium species is 0 to 1.5 mol relative to 12 mol of the molybdenum atoms, 5 to 300 parts by mass of a solution or a slurry (liquid B) containing 6 to 17 mol of ammonium species relative to 12 mol of the molybdenum atoms contained in the liquid A and a solution or a slurry (liquid C) containing an element Z such as cesium, the liquid B is mixed with the liquid A, the liquid C or a mixture of the liquid A and the liquid C over 0.1 to 15 minutes PaMobVcCudXeYfZgOh??(1).
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: December 1, 2009
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda
  • Publication number: 20090221843
    Abstract: A catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile for a long time is provided. The catalyst has a composition represented by MoaBibFecWdRbeAfBgChDiOj(SiO2)k, wherein A is Ni, Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, Cd or mixture thereof; B is Al, Cr, Ga, Y, In, La, Ce, Pr, Nd, Sm or mixture thereof; C is Ti, Zr, V, Nb, Ta, Ge, Sn, Pb, Sb, P, B, Te or mixture thereof; D is Ru, Rh, Pd, Re, Os, Ir, Pt, Ag or mixture thereof; SiO2 is silica, when a is 10, b is 0.1 to 1.5, c is 0.5 to 3.0, d is 0.01 to 2.0, e is 0.02 to 1.0, fis 2.0 to 9.0, g isO to 5, his 0 to 3, i isO to 2, k is 10 to 200; and j is the atomic ratio of oxygen determined by the valence of other elements (excluding silicon); and (a×2+d×2)/(b×3+c×3+e×1+f×2+g×3) is 0.90 to 1.00.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 3, 2009
    Applicant: DIA-NITRIX CO., LTD.
    Inventors: Hirokazu Watanabe, Motoo Yanagita, Kenichi Miyaki
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Publication number: 20090171118
    Abstract: The invention concerns a compound comprising a combination of two crystal phases. The first crystal phase corresponds to the formula: AaEbVcModPeOfHg wherein A is an alkali-metal; E is Te, Sb or Bi; and 0?a?3, 0<b?3, 0?c?3, 0<d?13, 0<e?2, 0?g?3. The second crystal phase corresponds to the formula ZgMohXiOj wherein: Z is selected among trivalent rare earths; X is selected among the elements V, Ga, Fe, Bi, Ce, Ti, Sb, Mn, Zn, Te; and 0<g?3, 0?h?3, 0?i?1. The indices f and j represent the number of oxygen atoms required for satisfying the relative valency and atomic proportions of the elements present. The invention also concerns the method for preparing said compound, and its use in particular as catalyst for oxidizing alkanes.
    Type: Application
    Filed: February 14, 2007
    Publication date: July 2, 2009
    Inventors: Jean-Marc Millet, Philippe Lacorre, Quyen Huynh
  • Patent number: 7538063
    Abstract: Bismuth- and phosphorus-containing naphtha reforming catalysts, methods of making such catalysts, and a naphtha reforming process using such catalysts.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 26, 2009
    Assignee: Shell Oil Company
    Inventor: Peter Tanev Tanev
  • Patent number: 7485597
    Abstract: A method for improving the selectivity of a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, which method comprises contacting the catalyst, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.; and a process for the epoxidation of an olefin, which process comprises contacting a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 3, 2009
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates, Donald Reinalda
  • Patent number: 7485596
    Abstract: The present invention is for a process for making a heteropoly acid compound catalyst for oxidation of unsaturated aldehydes, such as methacrolein, to unsaturated carboxylic acids, such as methacrylic acid, said catalyst containing oxides of molybdenum, phosphorus, and M?, wherein M? is cesium, potassium, rubidium, or sodium, and bismuth. The process is a synthesis of the catalyst with specific process conditions for addition of the bismuth compound as an aqueous slurry without nitric acid. A catalyst precursor is formed by removing the water and drying the solid particles. The heteropoly acid compound catalyst is formed by calcination of the catalyst precursor.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 3, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Lixia Cai, Wugeng Liang
  • Patent number: 7419932
    Abstract: The method for preserving a catalyst of the present invention is characterized in that, in a process for continuously producing an objective product by a vapor phase oxidation reaction using a phosphorus-molybdenum-vanadium catalyst containing phosphorus, molybdenum and vanadium, the phosphorus-molybdenum-vanadium catalyst retained in a reactor is maintained under a condition of a water content of 30 mg or less per 1 g of catalyst dry weight, before the start of the reaction or during the stop of the reaction. By this, deterioration of the catalyst retained in the reactor can be simply prevented.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: September 2, 2008
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yoshiyuki Taniguchi, Toru Kuroda, Hideyasu Takezawa, Yasuhiro Kabu
  • Patent number: 7365041
    Abstract: An ammoxidation catalyst comprising a molybdenum (component (1)), bismuth (component (2)), at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese and copper (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)), over which an organic compound is subject to ammoxidation which is a composite oxide fluid bed catalyst, is prepared by i) preparing a first solution that comprises at least a portion of component (1), at least a portion of component (2), and at least a portion of component (3) but none of component (4); ii) preparing a second solution by adding a solution of component (4) to the first solution; and iii) drying the second solution obtained and calcining the solid matter obtained from the drying step.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 29, 2008
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Kenichi Miyaki, Motoo Yanagita, Kunio Mori
  • Patent number: 7235508
    Abstract: The present invention relates to a composition of metal-incorporated VSB-5 molecular sieve with nanopores and its preparation method, in particular, to a composition of a metal-incorporated VSB-5 molecular sieve with a framework of VSB-5 molecular sieve comprising nickel, phosphorous, oxygen and metal, which is useful in various fields such as a hydrogen storage material, an optical and electric/electronic material, a sensor, a catalyst, a catalyst supporter and an adsorbent, and its preparation method performed in such a manner that a specific metal component is added in a predetermined mole ratio to a reaction mixture comprised of nickel and phosphorous compounds and the resultant mixture is crystallized in the presence of inorganic or organic base as a pH modifier to yield a metal-incorporated VSB-5 molecular sieves in an economical and efficient manner.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 26, 2007
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sung Hwa Jhung, Jong-San Chang, Sang-Eon Park, Anthony K. Cheetham
  • Patent number: 7229945
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a two-part synthesis of the catalyst with the water insoluble components in one part and the water soluble components in the other part. The water insoluble components are co-precipitated to form an intermediate catalyst precursor of a precipitated support incorporating oxides of the metal components. The intermediate catalyst precursor is filtered and washed to remove nitrates. The intermediate catalyst precursor is slurried with the remaining water soluble components. A final catalyst precursor is formed by removing the water and incorporating the water soluble components. This two-part process reduces the amount of nitrates in the final catalyst precursor.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industrics Corporation
    Inventor: James W. Kauffman
  • Patent number: 7053022
    Abstract: Hydrothermally synthesized catalysts comprising a mixed metal oxide are utilized to produce unsaturated carboxylic acids by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, in the presence thereof; or to produce unsaturated nitriles by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, and ammonia in the presence thereof.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 30, 2006
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Ruozhi Song
  • Patent number: 7015173
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: March 21, 2006
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Alex Pak
  • Patent number: 6946422
    Abstract: A process for making a catalyst containing oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals, such as tungsten, cobalt, nickel, antimony, magnesium, zinc, phosphorus, potassium, rubidium, thallium, manganese, barium, chromium, boron, sulfur, silicon, aluminum, titanium, cerium, tellurium, tin, vanadium, zirconium, lead, cadmium, copper and niobium wherein metal compounds are dissolved and then precipitated as a catalyst precursor which is calcined to form a mixed metal oxide catalyst. The process of the present invention uses an organic acid, such as acetic acid, instead of nitric acid to dissolve the bismuth compound and, optionally, other metal compounds. The catalyst synthesized by this process may be used for the production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 20, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang
  • Patent number: 6921831
    Abstract: Modified lead/bismuth/molybdate catalysts containing vanadium, copper, or gold have been prepared, and are selective to the corresponding furan compound from the gas phase oxidation of an unsaturated acyclic hydrocarbon such as butadiene.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: July 26, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Patrick Mills, Carl Z. Cao
  • Patent number: 6903047
    Abstract: The present invention concerns a method for enhancing the activity of vanadium phosphorus oxide (VPO) catalysts. Promoter reagents are grafted onto or reacted with the catalyst surface. An optional calcination and activation heating cycle transforms the catalyst precursor into a final active phase. A preferred VPO catalyst produced has a ratio of molybdenum to vanadium on the surface of the catalyst to molybdenum to vanadium in the overall bulk of the catalyst represented by the equation (Mo/V) Surface?1.10 (Mo/V) overall bulk.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: June 7, 2005
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Pratibha Laxman Gai
  • Patent number: RE39074
    Abstract: The present invention relates to a process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, X and Y in gram atom ratios a:b:c:d in combination with oxygen MoaPdbXcYd??(I) where the symbols X and Y have the following meanings: X is one or more elements selected from the group consisting of: Cr, Mn, Nb, Ta, Ti, V, Te and/or W, in particular Nb, V and W; Y is one or more elements selected from the group consisting of: B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Cu, Rh, Ir, Au, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, TI and U, in particular Ca, Sb, Te and Li. The present invention further provides a catalyst for the selective preparation of acetic acid comprising the elements Mo, Pd, X and Y in the gram atom ratios a:b:c:d in combination with oxygen.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: April 18, 2006
    Assignee: Celanese Chemicals Europe GmbH
    Inventors: Holger Borchert, Uwe Dingerdissen