And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/213)
  • Publication number: 20140057780
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicants: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, KOREA GAS CORPORATION, DAELIM INDUSTRIAL CO., LTD., KOREA NATIONAL OIL CORPORATION, HYUNDAI ENGINEERING CO., LTD., SK INNOVATION CO., LTD.
    Inventors: Jong-Wook BAE, Seung-Moon KIM, Yun-Jo LEE, Ki-Won JUN
  • Patent number: 8658558
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8658557
    Abstract: A process for the preparation of a promoted VPO catalyst, wherein the catalyst comprises the mixed oxides of vanadium and phosphorus and wherein the catalyst is promoted with at least one of niobium, cobalt, iron, zinc, molybdenum or titanium, said process comprising the steps of (i) preparing a VPO catalyst comprising vanadyl pyrophosphate as the major component and containing less than 5 wt % of vanadyl phosphate, (ii) contacting the VPO catalyst with a solution comprising a metal source compound of at least one metal selected from the group consisting of niobium, cobalt, iron, zinc, molybdenum or titanium to form a metal impregnated VPO catalyst, and (iii) drying the metal impregnated VPO catalyst to form the promoted VPO catalyst. In one embodiment, a niobium promoted VPO catalyst is prepared.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: February 25, 2014
    Assignee: INEOS USA LLC
    Inventors: Muin S. Haddad, Robert A. Gustaferro
  • Patent number: 8658024
    Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: February 25, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jiushun Zhang, Beiyan Chen, Haitao Song
  • Patent number: 8633128
    Abstract: The invention describes a heteropolycompound constituted by a nickel salt of a lacunary Keggin type heteropolyanion comprising tungsten in its structure, with formula: Nix+y/2AW11-yO39-5/2y, zH2O wherein Ni is nickel, A is selected from phosphorus, silicon and boron, W is tungsten, O is oxygen, y=0 or 2, x=3.5 if A is phosphorus, x=4 if A is silicon, x=4.5 if A is boron, and x=m/2+2 for the rest, and z is a number in the range 0 to 36, in which said heteropolycompound has no nickel atom in substitution for a tungsten atom in its structure, said nickel atoms being placed in the counter-ion position in the structure of said compound.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 21, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Fabrice Bertoncini, Karima Ben Tayeb, Carole Lamonier, Michel Fournier, Edmond Payen
  • Publication number: 20140018455
    Abstract: This invention provides a phosphide catalyst for syngas conversion and the production method and use thereof, more specifically, to a catalyst for converting a syngas raw material into oxygenates, comprising one or more metallic Fe, Co, Ni and their phosphides, the production method of the catalyst and its use in the reaction of converting a syngas raw material into hydrocarbons and oxygenates. According to the invention, a catalyst for converting H2/CO into hydrocarbons and oxygenates, supported by SiO2 or Al2O3 and comprising one or more metallic Fe, Co, Ni and their phosphides under certain reaction temperatures and pressures is provided. The catalysts are consisted of two parts of an active component and a support. The active component is a mixture consisted of one or more of metallic Fe, Co, Ni and their phosphides. The support is selected from SiO2 or Al2O3.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventors: Yunjie Ding, Xiangen Song, Weimiao Chen, Li Yan, Yuan Lv
  • Patent number: 8629312
    Abstract: The present invention provides a method to produce olefins by the decarboxylation of organic carboxylic acids in the presence of an organopalladium catalyst.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 14, 2014
    Assignee: Iowa State University Research Foundation, Inc.
    Inventor: George A. Kraus
  • Patent number: 8598066
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 3, 2013
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation, Hyundai Engineering Co. Ltd., SK Innovation Co., Ltd., Korea Gas Corporation
    Inventors: Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee, Ki-won Jun
  • Publication number: 20130310560
    Abstract: Processes for preparing an amine are described which comprise reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group of ammonia, primary and secondary amines, in the presence of a zirconium dioxide-, copper- and nickel-containing catalyst. The catalytically active composition of the catalyst, before its reduction with hydrogen, comprises oxygen compounds of zirconium, of copper, of nickel, in the range from 1.0 to 5.0% by weight of oxygen compounds of cobalt, calculated as CoO, and in the range from 0.2 to 5.0% by weight of oxygen compounds of sulfur, of phosphorus, of gallium, of lead and/or of antimony, calculated in each case as H2SO4, H3PO4, Ga203, PbO and Sb203 respectively.
    Type: Application
    Filed: November 8, 2012
    Publication date: November 21, 2013
    Applicant: BASF SE
    Inventors: PETR KUBANEK, WOLFGANG MÄRGELEIN, EKKEHARD SCHWAB, JOHANN-PETER MELDER, MANFRED JULIUS
  • Publication number: 20130303363
    Abstract: Catalytic processes to produce a reaction product comprising 1-butanol by contacting a reactant comprising ethanol with a catalyst composition under suitable reaction conditions are provided. The catalyst to composition may comprise a hydroxyapatite of the Formula (MwM?xM?yM??z)5(PO4)3(OH), wherein M is Mg; M? is Ca; M? is Sr; M?? is Ba; w is any number between 0 and 1 inclusive; x is any number from 0 to less than 0.5; y is any number between 0 and 1 inclusive; z is any number between 0 and 1 inclusive; and w+x+y+z=1. Base-treated catalyst compositions may be used. Also provided are processes for contacting an initial catalyst composition comprising the hydroxyapatite with a base to produce a base-treated catalyst composition, and the base-treated catalyst compositions so obtained.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: PAUL JOSEPH FAGAN, Thomas G. Calvarese, Ronald James Davis, Ronnie Ozer
  • Publication number: 20130303362
    Abstract: Catalytic processes to produce a reaction product comprising 1-butanol by contacting a reactant comprising ethanol with a catalyst composition under suitable reaction conditions are provided. The catalyst composition may comprise a hydroxyapatite of the Formula (MwM?xM?yM??z)5(PO4)3(OH), wherein M is Mg; M? is Ca; M? is Sr; M?? is Ba; w is any number between 0 and 1 inclusive; x is any number from 0 to less than 0.5; y is any number between 0 and 1 inclusive; z is any number between 0 and 1 inclusive; and w+x+y+z=1. Base-treated catalyst compositions may be used. Also provided are processes for contacting an initial catalyst composition comprising the hydroxyapatite with a base to produce a base-treated catalyst composition, and the base-treated catalyst compositions so obtained.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Paul Joseph Fagan, Thomas G. Calvarese, Ronald James Davis, Ronnie Ozer
  • Patent number: 8569197
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Yohan Oudart
  • Patent number: 8562926
    Abstract: A method and device for catchment of platinum group metals (PGM) in a gaseous steam, where the method comprises using a catalyst comprising a porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s), and where the device comprises the porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s). In a further aspect, the invention also relates to a method for producing the inventive device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Yara International ASA
    Inventors: David Waller, David M. Brackenbury, Ketil Evjedal
  • Publication number: 20130274355
    Abstract: The present invention relates to a catalyst composition comprising cobalt manganese oxide which is modified with lanthanum and/or phosphorus and optionally one or more basic elements selected from the group consisting of alkali metal, alkaline earth metal and transition metal. Furthermore, a method for preparing said catalyst composition and a process for producing aliphatic and aromatic hydrocarbons by Fischer-Tropsch synthesis using said catalyst composition is provided.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 17, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Khalid Karim, Saleh A. Al-Sayari
  • Patent number: 8557449
    Abstract: An air cathode for a metal-air battery is disclosed which contains a catalyst chosen to make the metal air battery more easily rechargeable. This catalyst is based on cobalt phosphate, cobalt borate mixed metal cobalt phosphates, mixed metal cobalt borates, or mixed metal cobalt phosphate borates.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: October 15, 2013
    Inventors: Wilson Hago, Ivan Marc Lorkovic
  • Publication number: 20130253227
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Battelle Momerial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Publication number: 20130245332
    Abstract: The present invention relates to a process for the formation of an alcohol from an alkanoic acid, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals comprising tin and cobalt and a metal promoter selected from the group consisting of noble metals or first metal, the first metal selected from the group of barium, cesium and potassium.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Patent number: 8530703
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 10, 2013
    Assignee: Battelle Memorial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Publication number: 20130225876
    Abstract: A process for producing a catalyst that results in improved yields and productivity to ethanol. The process involves the steps of preparing a solution comprising one or more precursors to an active metal and impregnating a first portion of the solution on a support to form a first impregnated support. The first impregnated support is calcined to form a first calcined support and a second portion of the solution is impregnated on the first calcined support. The catalyst is useful for hydrogenating alkanoic acids to ethanol.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: Celanese International Corporation
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Publication number: 20130225878
    Abstract: The present invention relates to a process for the formation of alcohols from alkanoic acids, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals on a support, wherein the active metals comprise cobalt and tin.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Patent number: 8507398
    Abstract: Catalysts for metathesis reactions, in particular for the metathesis of nitrile rubber, are provided.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 13, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Ludek Meca, Lubica Triscikova, Heinz Berke, Kirsten Langfeld, Martin Schneider, Oskar Nuyken, Werner Obrecht
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8450550
    Abstract: A process for producing propylene, which including feeding at least one of dimethyl ether and methanol to a reactor to be reacted in the presence of a catalyst; supplying an obtained reaction product to a separator by which low-boiling compounds having a boiling point of ?50° C. or lower at atmospheric pressure among the reaction product are separated; and recycling a proportion of at least 70% of a total amount of the separated low-boiling compounds to said reactor.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 28, 2013
    Assignee: JGC Corporation
    Inventors: Hirofumi Ito, Jiro Yoshida, Shuichi Funatsu, Koji Ooyama, Nobuyasu Chikamatsu
  • Publication number: 20130130888
    Abstract: The present invention relates to a multifunctional catalyst additive composition for reduction of carbon monoxide and nitrogen oxides in a fluid catalytic cracking process comprising an inorganic oxide; alumino silicate or a zeolite; a noble metal; a metal of Group I A; a metal of Group II A; a metal of Group III A; a metal of Group IV A; a metal of Group V A; a rare earth oxide; at least a metal of Group VIII. The composition is attrition resistant and is incorporated on a support. The present invention also discloses a process for preparing the multifunctional catalyst additive composition. The present invention also discloses a fluid cracking catalyst comprising the multifunctional catalyst additive composition.
    Type: Application
    Filed: May 7, 2012
    Publication date: May 23, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Chiranjeevi THOTA, Dattatraya Tammannashastri GOKAK, P. S. VISWANATHAN
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Patent number: 8415268
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 9, 2013
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8383543
    Abstract: The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Publication number: 20130040807
    Abstract: A metal fiber based on one or several elements from the group of platinum, palladium, rhodium, ruthenium, and iridium with 0 to 30% by weight of one or several additional alloy elements from the group of nickel, cobalt, gold, rhenium, molybdenum, and tungsten, contains 1 to 500 ppm by weight of boron or phosphorus. A non-woven material or netting, in particular for the production of nitrogen oxide or for the production of hydrocyanic acid, is made of such fibers. For the production of fibers based on noble metals having up to 30% by weight of additional alloy metals by drawing the fibers from a melt, the melting point of the metal is reduced by at least 400° C., before drawing of the fibers, by additionally alloying with boron or phosphorus, and the boron or the phosphorus is removed again from the fibers.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 14, 2013
    Applicant: Heraeus Materials Technology GmbH & Co. KG
    Inventor: Heraeus Materials Technology GmbH & Co. KG
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Publication number: 20130015101
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventor: Stephen J. MILLER
  • Publication number: 20130018161
    Abstract: A catalyst for glycerin dehydration of the present invention comprises boron phosphate or a rare-earth metal phosphate, wherein a molar ratio P/B of phosphorus (P) to boron (B) or a molar ratio P/R of phosphorus (P) to a rare-earth metal (R) is more than 1.0 and 2.0 or less. An another catalyst for glycerin dehydration of the present invention comprises a combination of boron phosphate and a metal element or a combination of a rare-earth metal phosphate and a metal element other than a rare-earth metal, wherein a molar ratio M/(P+B) of a metal element (M) to phosphorus (P) and boron (B) or a molar ratio M/(P+R) of a metal element (M) to phosphorus (P) and a rare-earth metal (R) is more than 0.00005 and 0.5 or less.
    Type: Application
    Filed: March 28, 2011
    Publication date: January 17, 2013
    Inventors: Takayuki Ezawa, Masaki Okada, Yoshitaka Arita
  • Patent number: 8354049
    Abstract: An antibacterial measure using titanium oxide includes mixing titanium oxide in a resin to form a coating resin, and then coating a key surface with the coating resin. This method requires formation of a coating layer on a resin molding and thus increases the number of the production steps and cost. Furthermore, in the method, a coating film containing an antibacterial agent is scraped off light by little at each time of keying, and thus the film is finally completely removed to lose its antibacterial function. A conceivable measure against this includes directly mixing a resin and an antibacterial agent. However, titanium oxide used as an antibacterial agent degrades a raw material resin. It has recently be thought that photocatalytic apatite as a substitute for titanium oxide also causes chalking, and an antibacterial coating layer has been formed on a surface of a resin molding.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 15, 2013
    Assignee: Fujitsu Limited
    Inventors: Masato Wakamura, Noriyasu Aso
  • Patent number: 8343887
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Publication number: 20120251422
    Abstract: There is disclosed a method of making, through direct synthesis, a catalyst comprising an Fe-SAPO-34 molecular sieve. There is also disclosed an Fe-SAPO-34 molecular sieve made according to the disclosed method herein, wherein the molecular sieve contains both framework iron and iron cations at ion-exchange sites. In addition, there is disclosed a method of using the Fe-SAPO-34 disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia or urea, to reduce or remove nitric oxides from exhaust emissions.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 4, 2012
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Patent number: 8252709
    Abstract: An object of the present invention is to provide a catalyst for hydrodesulfurization/dewaxing of a hydrocarbon oil, with which sulfur compounds in the hydrocarbon oil can be desulfurized to a high degree and which simultaneously is extremely effective in reducing the wax deposit content; a process for producing the catalyst; and a method of hydrotreatment with the catalyst. The invention relates to a catalyst for hydrodesulfurization/dewaxing of a hydrocarbon oil, comprising a support comprising an inorganic oxide containing at least one crystalline aluminosilicate having a one- or two-dimensional pore path system and, having provided thereon, 10 to 35% by mass of a metal in Group 6 of the Periodic Table, 1 to 10% by mass of a metal in Group 8 of the Periodic Table, and 1.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 28, 2012
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Yoshinori Kato, Hiroshi Kimura, Kazuyuki Kiriyama, Takashi Fujikawa
  • Patent number: 8242043
    Abstract: A process for production of a supported catalyst that, when used for production of lower aliphatic carboxylic acids from oxygen and lower olefins, improves yields of the lower aliphatic carboxylic acids and minimizes production of carbon dioxide gas (CO2) by-product compared to the prior art. A compound comprising at least one element selected from elements of Groups 8, 9 and 10 of the Periodic Table, at least one chloride of an element selected from copper, silver and zinc, and a chloroauric acid salt, are loaded on a carrier, after which there are further loaded a compound comprising at least one element selected from gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulfur, selenium, tellurium and polonium, and a heteropoly acid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 14, 2012
    Assignee: Showa Denko K.K.
    Inventor: Atsuyuki Miyaji
  • Patent number: 8242041
    Abstract: The invention includes a method for impregnating a molecular sieve primary catalyst with an aromatic co-catalyst, the method comprising contacting the small pore molecular sieve primary catalyst having a porous framework structure with a combination of from at least 50 wt % to about 99.9 wt % of an aromatic co-catalyst and from about 0.1 wt % to less than 50 wt % of a polar impregnation agent containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and boron, under conditions sufficient to impregnate the porous framework structure of the primary catalyst with the aromatic co-catalyst (and optionally also with the polar impregnation agent), thus forming an integrated catalyst system. Methods for converting oxygenates to olefins using said integrated catalyst system are also described herein.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 14, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Guang Cao, Teng Xu
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Publication number: 20120178979
    Abstract: The invention concerns a process for preparing a catalyst comprising at least one metal M from the platinum group, tin, a phosphorus promoter, a halogenated compound, a porous support and at least one promoter X1 selected from the group constituted by gallium, indium, thallium, arsenic, antimony and bismuth. The promoter or promoters X1 and the phosphorus are introduced during one or more sub-steps a1) or a2), the sub-step a1) corresponding to synthesis of the precursor of the main oxide and sub-step a2) corresponding to shaping the support. The tin is introduced during at least one of sub-steps a1) and a2). The product is dried and calcined before depositing at least one metal M from the platinum group. The ensemble is then dried in a stream of neutral gas or a stream of gas containing oxygen, and then is dried. The invention also concerns the use of a catalyst obtained by said process in catalytic reforming or aromatics production reactions.
    Type: Application
    Filed: June 15, 2010
    Publication date: July 12, 2012
    Applicant: IFP Energies nouvelles
    Inventors: Priscilla Avenier, Sylvie Lacombe, Herve Cauffriez
  • Patent number: 8207080
    Abstract: The invention concerns a compound comprising a combination of two crystal phases. The first crystal phase corresponds to the formula: AaEbVcModPeOfHg wherein A is an alkali-metal; E is Te, Sb or Bi; and 0?a?3, 0<b?3, 0?c?3, 0<d?13, 0<e?2, 0?g?3. The second crystal phase corresponds to the formula ZgMohXiOj wherein: Z is selected among trivalent rare earths; X is selected among the elements V, Ga, Fe, Bi, Ce, Ti, Sb, Mn, Zn, Te; and 0<g?3, 0?h?3, 0?i?1. The indices f and j represent the number of oxygen atoms required for satisfying the relative valency and atomic proportions of the elements present. The invention also concerns the method for preparing said compound, and its use in particular as catalyst for oxidizing alkanes.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 26, 2012
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jean-Marc Millet, Phillippe Lacorre, Quyen Huynh
  • Publication number: 20120122665
    Abstract: The invention concerns a catalyst comprising at least one metal M from group VIII, tin, a phosphorus promoter, a halogenated compound, a porous support and at least one promoter X1 selected from the group constituted by gallium, indium, thallium, arsenic, antimony and bismuth. In 119Sn Mössbauer spectroscopy, the catalyst in the reduced form has a signal with a quadripole splitting value in the range 0 to 0.45 mm/s and an isomer shift, IS, in the range 1.5 to 2.4 mm/s with respect to CaSnO3, said signal representing in the range 1% to 30% of the total area of the signals.
    Type: Application
    Filed: June 15, 2010
    Publication date: May 17, 2012
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Priscilla Avenier, Sylvie Lacombe, Jean Claude Jumas, Josette Olivier-Fourcade
  • Publication number: 20120091038
    Abstract: The present invention concerns an optimized reforming catalyst comprising at least platinum, at least one promoter metal selected from the group formed by rhenium and iridium, at least one halogen, and at least one alumina support with a low sulphur and phosphorus content.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Applicant: IFP Energies nouvelles
    Inventors: Sylvie LACOMBE, Malika Boualleg, Eric Sanchez
  • Publication number: 20120088654
    Abstract: A mesoporous oxide composition includes, other than oxygen, a major amount of aluminum and lesser amounts of phosphorus and at least one rare earth element. The compositions have high surface area and excellent thermal and hydrothermal stability, with a relatively narrow pore size distribution in the mesoporous range. These compositions may be prepared by a hydrothermal co-precipitation method using an organic templating agent. These mesoporous oxide compositions may be used as catalysts or as supports for catalysts, for example, in a fluid catalytic cracking process.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 12, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Robert C. Lemon
  • Patent number: 8148288
    Abstract: The invention relates to a catalyst that comprises a metal M from the group of platinum, at least one promoter X1 that is selected from the group that consists of tin, germanium, and lead, and optionally at least one promoter X2 that is selected from the group that consists of gallium, indium and thallium, a halogenated compound and a porous substrate, in which the atomic ratio X1/M and optionally X2/M is between 0.3 and 8, the Hir/M ratio that is measured by hydrogen adsorption is greater than 0.40, and the bimetallicity index BMI that is measured by hydrogen/oxygen titration is greater than 108. The invention also relates to the process for the preparation of this catalyst and a reforming process using said catalyst.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 3, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Pierre-Yves Le Goff, Fabienne Le Peltier, Jean Giraud, Sylvie Lacombe, Christophe Chau
  • Publication number: 20120061295
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Application
    Filed: October 4, 2011
    Publication date: March 15, 2012
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Stephen J. MILLER
  • Patent number: 8114805
    Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 14, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
  • Publication number: 20120027666
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 2, 2012
    Applicant: EMORY UNIVERSITY
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Publication number: 20120029096
    Abstract: The present invention relates to a hydrocarbon synthesis catalyst comprising in its unreduced form a) Fe as catalytically active metal, b) an alkali metal and/or alkaline-earth metal in an alkali metal- and/or alkaline-earth metal-containing promoter, the alkali metal, c) and a further promoter comprising, or consisting of, one or more element(s) selected from the group of boron, germanium, nitrogen, phosphorus, arsenic, antimony, sulphur, selenium and tellurium, to a process for the synthesis of a hydrocarbon synthesis catalyst, to a hydrocarbon synthesis process which is operated in the present of such a catalyst and to the use of such a catalyst in a hydrocarbon synthesis process.
    Type: Application
    Filed: December 4, 2009
    Publication date: February 2, 2012
    Applicants: SASOL WAX GMBH, SASOL TECHNOLOGY (PTY.) LIMITED
    Inventors: Reinier Crous, Tracy Carolyn Bromfield, Sharon Booyens
  • Publication number: 20120016143
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 19, 2012
    Applicant: SHELL OIL COMPANY
    Inventor: Marek MATUSZ
  • Patent number: 8097149
    Abstract: Oil soluble catalysts are used in a process to hydrodesulfurize petroleum feedstock having a high concentration of sulfur-containing compounds and convert the feedstock to a higher value product. The catalyst complex includes at least one attractor species and at least one catalytic metal that are bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The attractor species selectively attracts the catalyst to sulfur sites in sulfur-containing compounds in the feedstock where the catalytic metal can catalyze the removal of sulfur. Because the attractor species selectively attracts the catalysts to sulfur sites, non-productive, hydrogen consuming side reactions are reduced and greater rates of hydrodesulfurization are achieved while consuming less hydrogen per unit sulfur removed.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: January 17, 2012
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhihua Wu, Zhenhua Zhou, Bing Zhou