And Silicon Containing Patents (Class 502/214)
  • Patent number: 6540970
    Abstract: The present invention provides a method for the synthesis of MeAPO molecular sieves which includes the following steps: providing a source of alumina, a source of phosphorus, water, and a template suitable for forming a MeAPO molecular sieve; providing a source of metal (Me) including metal particles, the metal particles measuring, in their largest dimension, equal to or less than five nanometers; providing a water soluble organic solvent capable of solubilizing the source of metal; forming a synthesis mixture from the source of alumina, the source of phosphorus, the water, the template, the source of metal, and the solvent; and forming a MeAPO molecular sieve from the synthesis mixture.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: April 1, 2003
    Assignee: Exxon Mobil Chemical Patents, Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan
  • Patent number: 6541415
    Abstract: Disclosed is a molecular sieve catalyst which contains molecular sieve-containing attrition particles and virgin molecular sieve, the attrition particles having been recycled from a catalyst manufacture process or from a reaction system. The catalyst can be used in a variety of catalytic reaction processes. A desired process is making olefins from an oxygenate feedstock. The recovery and use of the attrition particles in the catalyst is beneficial in minimizing waste, thereby reducing problems relating to both environmental and economic constraints.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: April 1, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Stephen N. Vaughn, Luc R. M. Martens, Keith H. Kuechler, Albert E. Schweizer
  • Patent number: 6537941
    Abstract: The method includes freeze drying a molecular sieve having a methanol conversion ratio of less than 1, or a catalyst containing molecular sieve and a binder having a methanol conversion ratio of less than 1. The rejuvenated molecular sieve or catalyst is used to make an olefin product from an oxygenate. The olefin product containing ethylene and propylene can then be used to make polyethylene and polypropylene, respectively.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: March 25, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Marcel J. G. Janssen, Cornelis W. M. Van Oorschot, Kenneth R. Clem
  • Publication number: 20030055304
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is, also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 20, 2003
    Inventors: Shun C. Fung, Marcel J.G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W.M. Van Oorschot, Luc R.M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Patent number: 6521563
    Abstract: Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: February 18, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan
  • Patent number: 6521562
    Abstract: A method of making a molecular sieve catalyst by preparing a catalyst slurry containing molecular sieve, binder and a matrix material and directing the slurry to a forming unit. The catalyst slurry is prepared by using a microfiltration process whereby the molecular sieve is washed and concentrated from a preparation medium without having to isolate the molecular sieve in a dry or semi-dry form. The catalyst is used to make ethylene and propylene from an oxygenate.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 18, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Kenneth R. Clem, Luc R. M. Martens, Stephen N. Vaughn, Paul R. Stafford, John W. Kress, Machteld M. Mertens
  • Publication number: 20030027712
    Abstract: This invention is directed to a molecular sieve composition or a catalyst containing molecular sieve which has a relatively high residual silica index, preferably at least about 1.5. The molecular sieve or catalyst can be made by contacting a template-containing molecular sieve with a silicon containing material having an average kinetic diameter that is larger than the average pore diameter of the sieve or catalyst, and heating to leave residual silica at the sieve or catalyst surface. The molecular sieve or catalyst is particularly effective in making an olefin product from an oxygenate feedstock.
    Type: Application
    Filed: June 27, 2002
    Publication date: February 6, 2003
    Inventors: Stephen N. Vaughn, John Di-Yi Ou, Jar-Lin Kao, Hsiang-Ning Sun
  • Publication number: 20030027710
    Abstract: There is provided catalysts and conversion processes for converting hydrocarbons using the catalysts. The catalysts comprises a first alumino-phosphospho-molecular sieves and a binder comprising a second alumino-phopho-molecular sieves. Exemplary conversion processes include the conversion of oxygenates to olefins, dewaxing, reforming, dealkylation, dehydrogenation, transalkylation, alkylation, and isomerization.
    Type: Application
    Filed: May 31, 2002
    Publication date: February 6, 2003
    Inventors: Robert Scott Smith, Gary David Mohr, Jannetje Maatje Van den Berge
  • Patent number: 6514899
    Abstract: The invention is directed to a method for making a silicoaluminophosphate (SAPO) molecular sieve from a reaction mixture comprising components present in amounts sufficient to form the SAPO, the reaction mixture having a first pH. The method comprises the steps of: adding an acid to the reaction mixture after the reaction mixture undergoes a change in pH from the first pH; and crystallizing the SAPO from the reaction mixture. The present invention is also directed to a silicoaluminophosphate molecular sieve made by this process.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: February 4, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Machteld M. Mertens, Brita Engels, Ronald G. Searle, Grigore Pop, Irina Rodica Tamas, Rodica Ganea, Ruxandra Birjega
  • Publication number: 20030018228
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: June 24, 2002
    Publication date: January 23, 2003
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R.M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 6509290
    Abstract: Disclosed is a molecular sieve catalyst which contains molecular sieve-containing attrition particles and virgin molecular sieve, the attrition particles having been recycled from a catalyst manufacture process or from a reaction system. The catalyst can be used in a variety of catalytic reaction processes. A desired process is making olefins from an oxygenate feedstock. The recovery and use of the attrition particles in the catalyst is beneficial in minimizing waste, thereby reducing problems relating to both environmental and economic constraints.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: January 21, 2003
    Assignee: Exxon Mobil Chemical Patents, Inc.
    Inventors: Stephen N. Vaughn, Luc R. M. Martens, Keith H. Kuechler, Albert E. Schweizer
  • Patent number: 6509289
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: January 21, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6503863
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 7, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Publication number: 20030004056
    Abstract: The invention is directed to a method of stabilizing metalloaluminophosphate molecular sieves and catalysts derived therefrom. In particular, the invention is directed to a method of treating such molecular sieves with one or more nitrogen containing compounds selected from the group consisting of amines, monocyclic heterocyclic compounds, organonitrile compounds and mixtures thereof to chemisorbed and/or physisorbed the compound onto the molecular sieve. The compounds may be easily desorbed before or during use and after storage. The invention is also directed to formulating the molecular sieve into a catalyst useful in a process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: March 29, 2002
    Publication date: January 2, 2003
    Inventors: Filip Mees, Etienne Vansant
  • Patent number: 6486086
    Abstract: A simplified method of forming a porous crystalline titanium silicate membrane comprises preforming a mass of titanium dioxide particles into a consolidated preform such as by pressing into a thin film, and contacting the thin film of titanium dioxide with an aqueous alkaline silicate synthesis solution at a temperature and for a period of time sufficient to form the titanium silicate in-situ.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: November 26, 2002
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Richard M. Jacubinas, Tadeusz W. Langner
  • Publication number: 20020165090
    Abstract: The present invention relates to a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of molecular sieves having AEI and CHA framework types, wherein said intergrown phase has an AEI/CHA ratio of from about 5/95 to 40/60 as determined by DIFFaX analysis, using the powder X-ray diffraction pattern of a calcined sample of said silicoaluminophosphate molecular sieve. It also relates to methods for its preparation and to its use in the catalytic conversion of methanol to olefins.
    Type: Application
    Filed: March 7, 2002
    Publication date: November 7, 2002
    Inventors: Marcel J.G. Janssen, An Verberckmoes, Machteld M. Mertens, Antonie Jan Bons, Wilfried J. Mortier
  • Publication number: 20020165089
    Abstract: The present invention relates to a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of molecular sieves having AEI and CHA framework types, wherein said intergrown phase has an AEI/CHA ratio of from about 5/95 to 40/60 as determined by DIFFaX analysis, using the powder X-ray diffraction pattern of a calcined sample of said silicoaluminophosphate molecular sieve. It also relates to methods for its preparation and to its use in the catalytic conversion of methanol to olefins.
    Type: Application
    Filed: August 7, 2001
    Publication date: November 7, 2002
    Inventors: Marcel J.G. Janssen, Shun C. Fung, An A. Verberckmoes, Machteld M. Mertens, Wilfried J. Mortier
  • Patent number: 6472569
    Abstract: A catalyst system comprising a silicoaluminophosphate impregnated with a compound selected from the group consisting of phosphoric acid, boric acid, tributyltin acetate, and combinations of any two or more thereof, and a method of preparing such catalyst system, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the conversion of a hydrocarbon feedstock comprising oxygenated hydrocarbons to olefins and/or ethers.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 29, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6448197
    Abstract: A molecular sieve and a molecular sieve catalyst containing a surface heat impregnated with a metal. The molecular sieve is heated in the presence of a metal containing solution at a temperature between 30° C. and 400° C. then separated from the metal containing solution. The molecular sieve and molecular sieve catalyst is used to make olefin from an oxygenate feedstock.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: September 10, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Zhongmin Liu, Lixin Yang, Lei Xu, Chenglin Sun, Yi-Gang Xiong
  • Patent number: 6440894
    Abstract: Methods of calcining non-zeolitic molecular sieve catalyst to remove most, if not nearly all, of halogen contained in the catalyst. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The calcination methods provides a catalyst that contains from about 10 ppmw to about 600 ppmw chlorine, preferably 10 ppmw to about 200 ppmw chlorine, more preferably 10 ppmw to about 80 ppmw chlorine.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: August 27, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Luc R. Martens, Stephen N. Vaughn, Albert E. Schweizer, John K. Pierce
  • Patent number: 6436869
    Abstract: An aluminophosphate bound silicoaluminophosphate catalyst contains iron, cobalt and/or nickel is useful in a method of making a product including an olefin from a feedstock containing an oxygenate. The method includes contacting an oxygenate feedstock with the catalyst, which is an aluminophosphate bound silicoaluminophosphate catalyst containing iron, cobalt and/or nickel and which does not contain a significant amount of amorphous binder, in its activated state under conditions effective to produce an olefin product.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: August 20, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald G. Searle, Krishna K. Rao, Gary D. Mohr, Xiaobing Feng
  • Patent number: 6423663
    Abstract: The present invention relates to a chromium/silica-aluminophosphate catalyst, titanated under specific conditions and used for the homopolymerisation or the copolymerisation of ethylene. The polyethylene obtained with this catalyst has a high melt potential and a high shear resistance. The catalyst has a high level of activity.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: July 23, 2002
    Assignee: Fina Research, S.A.
    Inventor: Guy L Debras
  • Publication number: 20020077246
    Abstract: A catalyst support consisting mainly of synthetic silica, with 0.5-10 parts by weight of one or more oxides or phosphates of the elements of group IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides characterised in that the support preparation method comprises mixing particulate synthetic silica with particulate oxides or phospates of the elements of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides, or with precursors thereof, a forming step and calcination.
    Type: Application
    Filed: October 9, 2001
    Publication date: June 20, 2002
    Inventors: Hermanus Gerhardus Jozef Lansink Rotgerink, Heike Reidemann, Helmfried Krause
  • Patent number: 6403855
    Abstract: This invention is directed to a method of making a crystalline silicoaluminophosphate molecular sieve. The method includes adding to a vessel a mixture comprising a silicon containing composition, an aluminum containing composition, a phosphorus containing composition, and a template, and continuously stirring the mixture while applying heat at a temperature and duration effective to form a crystalline silicoaluminophosphate molecular sieve, wherein stirring is applied for 20-95% of the duration that heat is applied. The result is a substantial increase in crystalline molecular sieve product.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: June 11, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventor: Machteld M. Mertens
  • Patent number: 6395674
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: May 28, 2002
    Assignee: Exxon Mobil Chemical Patents, Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert E. Schweizer, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Publication number: 20020055433
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Application
    Filed: August 15, 2001
    Publication date: May 9, 2002
    Inventors: Shun C. Fung, Marcel J.G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W.M Van Oorschot, Luc R.M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Patent number: 6379646
    Abstract: Molecular sieves comprising (1) phosphorus oxide; (2) a first oxide comprising an oxide of silicon, germanium or mixtures thereof; and (3) a second oxide comprising an oxide of aluminum, boron or mixtures thereof, said molecular sieve having a mole ratio of the first oxide to the second oxide of greater than 1, containing at least about 10 weight percent phosphorus oxide in the crystal framework, and having pores greater than 5 Å in diameter are useful as catalysts in hydrocarbon conversion reactions.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: April 30, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 6376562
    Abstract: The present invention provides a hybrid catalyst which is prepared by mixing a methanol synthesis catalyst with SAPO-type zeolite as a methanol conversion catalyst, and a process for the preparation of hydrocarbons from carbon dioxide by using the hybrid catalyst. The hybrid catalyst of the invention can be used for preparing hydrocarbons having a carbon number of more than 2 from carbon dioxide under a relatively on the hydrocarbons produced. Therefore, the hybrid catalyst may be used for preparing various high-valued hydrocarbons from an ubiquitous carbon source of carbon dioxide.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: April 23, 2002
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Son-Ki Ihm, Young-Kwon Park, Jong-Ki Jeon, Kwang-Eun Jeong
  • Publication number: 20020045539
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Application
    Filed: December 22, 2000
    Publication date: April 18, 2002
    Applicant: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6362128
    Abstract: A method for manufacturing of an improved attrition resistant catalyst having an oxide-rich surface layer involving forming an aqueous slurry comprising; catalyst, catalyst precursor or catalyst support particles (e.g., vanadium/phosphorus oxide, V/P/O catalyst), a large particle colloidal oxide sol (e.g., 200 Å, 600 Å, 750 Å colloidal silica, sodium stabilized) as the major oxide-rich surface layer forming component, and a second oxide-rich surface layer forming component solution wherein the solute is selected from the group consisting essentially of a precursor of the oxide-rich surface with average particle size no greater than 5 nm (e.g., aqueous silicic acid or polysilicic acid), a colloidal oxide sol wherein oxide particles in the sol have an average size below 10 nm (e.g., 50 Å colloidal silica), and mixtures thereof and then spray drying the slurry to form porous microspheres of attrition resistant catalyst; and, calcining/activating the spray dried microspheres.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: March 26, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jo-Ann Theresa Schwartz
  • Patent number: 6359185
    Abstract: An improved process is disclosed for the selective disproportionation of toluene. The process uses a zeolitic catalyst which is oil-dropped in an amorphous aluminum phosphate binder and optionally is selectively precoked prior to toluene disproportionation. The catalyst and process provide enhanced selectivity for the production of paraxylene.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: March 19, 2002
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Jennifer S. Holmgren, Gregory J. Gajda, Michael H. Quick
  • Publication number: 20020019307
    Abstract: The invention concerns a process for skeletal isomerisation of linear olefins using a catalyst containing at least one pre-treated molecular sieve selected from the group formed by SAPO-31, SAPO-11, Theta-1, EU-1, omega zeolite, mordenite, Nu-10, Nu-86, Nu-87, ferrierite, ZSM-12 and ZSM-23.
    Type: Application
    Filed: September 11, 1998
    Publication date: February 14, 2002
    Inventors: ERIC BENAZZI, MICHEL GUISNET, CHRISTINE TRAVERS, NGI SUOR GNEP, PATRICIA ANDY
  • Publication number: 20020016522
    Abstract: Disclosed is a molecular sieve catalyst which contains molecular sieve-containing attrition particles and virgin molecular sieve, the attrition particles having been recycled from a catalyst manufacture process or from a reaction system. The catalyst can be used in a variety of catalytic reaction processes. A desired process is making olefins from an oxygenate feedstock. The recovery and use of the attrition particles in the catalyst is beneficial in minimizing waste, thereby reducing problems relating to both environmental and economic constraints.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 7, 2002
    Inventors: Stephen N. Vaughn, Luc R.M. Martens, Keith H. Kuechler, Albert E. Schwiezer
  • Publication number: 20020010094
    Abstract: This invention relates to a process for depositing one or more catalytically reactive metals on a carrier, said process comprising selecting a carrier and depositing a catalytically effective amount of one or more catalytically reactive metals on the carrier, the deposition effected by submersing the carrier in an impregnation solution wherein the hydrogen ion activity of the impregnation solution has been lowered. The invention further relates to catalysts made from the process.
    Type: Application
    Filed: March 13, 2001
    Publication date: January 24, 2002
    Inventor: John Robert Lockemeyer
  • Patent number: 6334994
    Abstract: Microporous crystalline silico-alumino-phosphate (SAPO) compositions, catalytic materials comprising the composition, and use of these for production of olefins from methanol. The catalysts contain silico-alumino-phosphate materials with AEI/CHA-mixed phase composition. The catalysts have prolonged life compared to those belonging to the prior art.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: January 1, 2002
    Assignee: Norsk Hydro ASA
    Inventors: Rune Wendelbo, Duncan E. Akporiaye, Anne Andersen, Martin Ivar Dahl, Helle Brit Mostad, Terje Fuglerud, Steinar Kvisle
  • Publication number: 20010053744
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and their preparation. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from single phase synthesis solutions, or from microemulsions containing surfactants.
    Type: Application
    Filed: May 20, 1999
    Publication date: December 20, 2001
    Inventors: KARL G. STROHMAIER, DAVID E. W. VAUGHAN
  • Patent number: 6319487
    Abstract: A method for making molecular sieves comprising silicoaluminophosphate 44 (SAPO-44) or substantially pure SAPO-44 and a method for using the molecular sieves so prepared for oxygenate conversion to olefins.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: November 20, 2001
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Zhongmin Liu, Xiexian Guo, Guangyu Cai
  • Patent number: 6316683
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 6303534
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and their preparation. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from single phase synthesis solutions, or from microemulsions containing surfactants.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 16, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan
  • Patent number: 6294493
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity, a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single- phase synthesis solution.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 25, 2001
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, David E. W. Vaughan
  • Publication number: 20010018398
    Abstract: This invention is directed to a molecular sieve having acid catalyst sites and a method of maintaining the acid catalyst sites of a template-containing silicoaluminophosphate molecular sieve. The method comprises providing a template-containing silicoaluminophosphate molecular sieve and heating the molecular sieve in an oxygen depleted environment under conditions effective to maintain or preserve the number of acid catalyst sites. The heated molecular sieve exhibits at least one peak in the infrared region in a range of from 3630 cm−1 to 3580 cm−1. Preferably, the heated molecular sieve exhibits a combined peak area in the 3630 cm−1 to 3580 cm−1 range of at least 10% of a total peak area of all peaks in an infrared region between 4000 cm−1 to 3400 cm−1.
    Type: Application
    Filed: March 14, 2001
    Publication date: August 30, 2001
    Inventors: Marcel J.G. Janssen, Machteld M. Mertens, Cornelius W.M. Van Oorschot, Stephen N. Vaughn, Hsiang-Ning Sun, David R. Lumgair
  • Publication number: 20010004626
    Abstract: Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
    Type: Application
    Filed: December 13, 2000
    Publication date: June 21, 2001
    Inventors: Karl G. Strohmaier, David E.W. Vaughan
  • Patent number: 6241960
    Abstract: A method for the preparation of small zeotype crystals with controlled sizes comprising the steps of synthesizing inside a porous material having a majority of pores less than 1000 Å a synthesis gel consisting essentially of (a) a zeotype precursor composition comprising hydratized oxides of Si, Al and P and metal compounds (b) a zeolite template; and heating or autoclaving the porous support material containing synthesis gel, whereby zeotype crystals are formed; and rinsing and drying the porous support material containing zeotype crystals.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: June 5, 2001
    Assignee: Haldor Topsoe A/S
    Inventors: Haldor F. A. Topsøe, Claus J. H. Jacobsen, Michael Brorson, Claus Madsen, Iver Schmidt
  • Patent number: 6242167
    Abstract: An electron accepting developer useful for producing visible images by reaction with an electron donor in carbonless paper and photo-imaging systems, the developer comprising an acid-treated, water insoluble alkali metal-modified, inorganic oxide or an acid-treated molecular sieve.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: June 5, 2001
    Assignee: Rentech, Inc.
    Inventors: Dale R. Shackle, Benjamin Chaloner-Gill
  • Patent number: 6225254
    Abstract: This invention is directed to a molecular sieve having acid catalyst sites and a method of maintaining the acid catalyst sites of a template-containing silicoaluminophosphate molecular sieve. The method comprises providing a template-containing silicoaluminophosphate molecular sieve and heating the molecular sieve in an oxygen depleted environment under conditions effective to maintain or preserve the number of acid catalyst sites. The heated molecular sieve exhibits at least one peak in the infrared region in a range of from 3630 cm−1 to 3580 cm−1. Preferably, the heated molecular sieve exhibits a combined peak area in the 3630 cm−1 to 3580 cm−1 range of at least 10% of a total peak area of all peaks in an infrared region between 4000 cm−1 to 3400 cm−1.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 1, 2001
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Machteld M. Mertens, Cornelius W. M. Van Oorschot, Stephen N. Vaughn, Hsiang-Ning Sun, David R. Lumgair
  • Patent number: 6225253
    Abstract: The present invention relates to a chromium/silca-aluminophosphate catalyst, titanated under specific conditions and used for the homopolymerisation or the copolymerisation of ethylene. The polyethylene obtained with this catalyst has a high melt potential and a high shear resistance. The catalyst has a high level of activity.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: May 1, 2001
    Assignee: Fina Technology, Inc.
    Inventor: Guy Debras
  • Patent number: 6207872
    Abstract: A catalyst for converting methanol to light olefins along with the process itself are disclosed and claimed. The catalyst is a metalloaluminophosphate molecular sieve having the empirical formula (ELxAlyPz)O2 where EL is a metal such as silicon or magnesium and x, y and z are the mole fractions of EL, Al and P respectively. The molecular sieve has predominantly a plate crystal morphology in which the average smallest crystal dimension is at least 0.1 microns and has an aspect ratio of no greater than 5. Use of this catalyst gives a product with a larger amount of ethylene versus propylene.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: March 27, 2001
    Assignee: UOP LLC
    Inventors: Paul T. Barger, Stephen T. Wilson, Thomas M. Reynolds
  • Patent number: 6194610
    Abstract: The present invention relates to a process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, X and Y in gram atom ratios a:b:c:d in combination with oxygen MoaPdbXcYd  (I) where the symbols X and Y have the following meanings: X is one or more elements selected from the group consisting of: Cr, Mn, Nb, Ta, Ti, V, Te and/or W, in particular Nb, V and W; Y is one or more elements selected from the group consisting of: B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Cu, Rh, Ir, Au, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, TI and U, in particular Ca, Sb, Te and Li. The present invention further provides a catalyst for the selective preparation of acetic acid comprising the elements Mo, Pd, X and Y in the gram atom ratios a:b:c:d in combination with oxygen.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: February 27, 2001
    Assignee: Aventis Research & Technologies GmbH & Co. KG
    Inventors: Holger Borchert, Uwe Dingerdissen
  • Patent number: 6162415
    Abstract: A method for making molecular sieves comprising silicoaluminophosphate 44 (SAPO-44) or substantially pure SAPO-44 and a method for using the molecular sieves so prepared for oxygenate conversions to olefins.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: December 19, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Zhongmin Liu, Guangyu Cai, Xiexian Guo, deceased, by Juan Liang, legal representative
  • Patent number: 6153552
    Abstract: Catalysts that are useful for hydrocarbon conversions and oxygenate conversions, and a method for making such catalysts. The method for making the catalysts comprises forming a mixture comprising molecular sieves comprising pores having a diameter smaller than about 10 Angstroms, an inorganic sol, and an external phosphorus source, and drying the mixture.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 28, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: William A. Wachter, Jeffrey T. Elks, Stephen Neil Vaughn