And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/221)
-
Patent number: 11524278Abstract: Generally, it is disclosed a catalyst for use in a hydrotreating hydrocarbon feedstocks and the method of making such catalyst. It is generically provided that the catalyst comprises at least one Group VIB metal component, at least one Group VIII metal component, about (1) to (about (30) wt % C, and preferably about (1) to about (20) wt % C, and more preferably about (5) to about 15 wt % C of one or more sulfur containing organic additive and a titanium-containing carrier component, wherein the amount of the titanium component is in the range of about (3) to (about (60) wt %, expressed as an oxide (Ti02) and based on the total weight of the catalyst. The titanium-containing carrier is formed by co-extruding or precipitating a titanium source with a Al203 precursor to form a porous support material comprising Al203 or by impregnating a titanium source onto a porous support material comprising Al203.Type: GrantFiled: July 20, 2018Date of Patent: December 13, 2022Assignee: ALBEMARLE EUROPE SRLInventors: Jana Juan Alcaniz, Jacob Arie Bergwerff, Kar Ming Au Yeung, Wilhelmus Clemens Jozef Veerman
-
Patent number: 9018126Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.Type: GrantFiled: July 11, 2011Date of Patent: April 28, 2015Assignee: Shell Oil CompanyInventor: Marek Matusz
-
Publication number: 20140323779Abstract: The invention concerns a process for the preparation of a catalyst based on tungsten intended for hydrotreatment or hydrocracking processes. The invention concerns a process for the preparation of a catalyst for carrying out hydrogenation reactions in hydrotreatment and hydrocracking processes. Said catalyst is prepared from at least one mononuclear precursor compound based on tungsten (W), in its monomeric or dimeric form, having at least one W?O or W—OR bond or at least one W?S or W—SR bond where [R?CxHy where x?1 and (x?1)?y?(2x+1) or R?Si(OR?)3 or R?Si(R?)3 where R??Cx?Hy? where x??1 and (x??1)?y??(2×t+1)], optionally at least one Mo precursor and optionally at least one promoter element from group VIII. Said precursors are deposited onto an oxide support which is suitable for the process in which it is used, said catalyst advantageously being sulphurized before being deployed in said process.Type: ApplicationFiled: April 30, 2014Publication date: October 30, 2014Applicant: IFP ENERGIES NOUVELLESInventors: Thibault ALPHAZAN, Audrey BONDUELLE, Christele LEGENS, Pascal RAYBAUD, Christophe COPERET
-
Patent number: 8858784Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal to produce a second hydrocarbon-containing product.Type: GrantFiled: December 8, 2011Date of Patent: October 14, 2014Assignee: Shell Oil CompanyInventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
-
Patent number: 8846564Abstract: A process for the sulfidation of a sour gas shift catalyst, wherein the temperature of the sulfidation feed stream is coordinated with the sulfur/hydrogen molar ratio in that feed stream to obtain enhanced performance of the sour gas shift catalyst. In the sulfidation process to produce a sour gas shift catalyst, the lower the sulfur to hydrogen molar ratio of the sulfidation feed stream, the lower the required temperature of the sulfidation feed stream. The sulfidation reaction can be further enhanced by increasing the pressure on the sulfidation feed stream.Type: GrantFiled: September 25, 2009Date of Patent: September 30, 2014Assignee: Clariant CorporationInventors: Justin X. Wang, Yeping Cai
-
Patent number: 8815765Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.Type: GrantFiled: February 27, 2012Date of Patent: August 26, 2014Assignee: Intevep, S.A.Inventors: Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias
-
Patent number: 8809222Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.Type: GrantFiled: December 20, 2011Date of Patent: August 19, 2014Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
-
Patent number: 8785592Abstract: Provided is preparation of poly(alkylene carbonate) through alternating copolymerization of carbon dioxide and epoxide. According to the disclosure, by introducing a diepoxide compound to alternating copolymerization of carbon dioxide and epoxide compound using a metal(III) prepared with salen-type ligands containing quaternary ammonium salt as a catalyst, some of the polymer chains may be cross-linked to thus increase an average molecular weight of the copolymer and extend a distribution of molecular weight. A resin prepared according to this method may have high mechanical strength and rheological advantages.Type: GrantFiled: September 7, 2011Date of Patent: July 22, 2014Assignee: SK Innovation Co., Ltd.Inventors: Ji Su Jeong, Sung Jae Na, Sujith Sudevan, Myung Ahn Ok, Yong Gyu Han, Kwang Jin Chung, Bun Yeoul Lee, Anish Cyriac
-
Patent number: 8685594Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.Type: GrantFiled: August 31, 2006Date of Patent: April 1, 2014Assignee: Samsung SDI Co., Ltd.Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
-
Publication number: 20140066297Abstract: The invention relates to a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock and to a method for preparing the catalyst. The MMS catalyst is characterized as having a multi-phased structure comprising five phases: a molybdenum sulfide phase, a tungsten sulfide phase, a molybdenum tungsten sulfide phase, an active nickel phase, and a nickel sulfide phase.Type: ApplicationFiled: September 5, 2013Publication date: March 6, 2014Applicant: Chevron U.S.A. Inc.Inventors: Jinyi Han, Alexander E. Kuperman, Theodorus Ludovicus Michael Maesen, Horacio Trevino
-
Publication number: 20140066298Abstract: The invention relates to a method for preparing a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock. The method comprises mixing a sufficient amount of a nickel (Ni) metal precursor, a sufficient amount of a molybdenum (Mo) metal precursor, and a sufficient amount of a tungsten (W) metal precursor to produce a catalyst precursor having a molar ratio Ni:Mo:W in relative proportions defined by a region of a ternary phase diagram showing transition metal elemental composition in terms of nickel, molybdenum, and tungsten mol-%, wherein the region is defined by five points ABCDE and wherein the five points are: A (Ni=0.72, Mo=0.00, W=0.28), B (Ni=0.55, Mo=0.00, W=0.45), C (Ni=0.48, Mo=0.14, W=0.38), D (Ni=0.48, Mo=0.20, W=0.33), E (Ni=0.62, Mo=0.14, W=0.24); and sulfiding the catalyst precursor under conditions sufficient to convert the catalyst precursor into a sulfide catalyst.Type: ApplicationFiled: September 5, 2013Publication date: March 6, 2014Applicant: Chevron U.S.A. Inc.Inventors: Jinyi Han, Alexander E. Kuperman, Theodorus Ludovicus Michael Maesen, Horacio Trevino
-
Publication number: 20140066293Abstract: The invention relates to a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock and to a method for preparing the catalyst. The self-supported MMS catalyst contains Ni:W in a mole ratio of 1:3 to 4:1, on a transition metal basis. The self supported MMS catalyst is characterized as having an HYD reaction rate constant of at least 15% higher than that of a catalyst comprising nickel sulfide alone or a catalyst comprising tungsten sulfide alone, when compared on same metal molar basis in hydrotreating of benzene as a feedstock at identical process conditions.Type: ApplicationFiled: September 5, 2013Publication date: March 6, 2014Applicant: Chevron U.S.A. Inc.Inventors: Jinyi Han, Alexander E. Kuperman
-
Publication number: 20140066296Abstract: The invention relates to a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock and to a method for preparing the catalyst. The MMS catalyst has molar ratios of metal components Ni:Mo:W in a region defined by five points ABCDE of a ternary phase diagram, and wherein the five points ABCDE are defined as: A (Ni=0.72, Mo=0.00, W=0.25), B (Ni=0.25, Mo=0.00, W=0.75), C (Ni=0.25, Mo=0.25, W=0.50), D (Ni=0.60, Mo=0.25, W=0.15), E (Ni=0.72, Mo=0.13, W=0.15).Type: ApplicationFiled: September 5, 2013Publication date: March 6, 2014Applicant: Chevron U.S.A. Inc.Inventors: Jinyi Han, Alexander E. Kuperman, Theodorus Ludovicus Michael Maesen, Horacio Trevino
-
Publication number: 20140066295Abstract: A self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock is disclosed. The self-supported MMS catalyst is characterized by an HDN reaction rate constant of at least 100 g feed hr?1 g catalyst?1 assuming first order kinetics, and an HDS reaction rate constant of at least 550 g feed hr?1 g catalyst?1 assuming first order kinetics in hydrotreating of a Heavy Coker Gas Oil as a feedstock with properties indicated in Table A and at given process conditions as indicated in Table E. In one embodiment, the catalyst is characterized as having a multi-phased structure comprising five phases: a molybdenum sulfide phase, a tungsten sulfide phase, a molybdenum tungsten sulfide phase, an active nickel phase, and a nickel sulfide phase.Type: ApplicationFiled: September 5, 2013Publication date: March 6, 2014Applicant: Chevron U.S.A. Inc.Inventors: Jinyi Han, Alexander E. Kuperman, Theodorus Ludovicus Michael Maesen, Horacio Trevino
-
Patent number: 8658558Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.Type: GrantFiled: October 18, 2011Date of Patent: February 25, 2014Assignee: Chevron U.S.A. Inc.Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
-
Publication number: 20140005040Abstract: This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.Type: ApplicationFiled: April 2, 2013Publication date: January 2, 2014Inventors: Yeda Research and Development Co. Ltd., NDSU Research Foundation
-
Patent number: 8597499Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone. Any metal-containing catalyst provided to the mixing zone has an acidity as measured by ammonia chemisorption of at most 200 ?mol ammonia per gram of catalyst.Type: GrantFiled: January 21, 2011Date of Patent: December 3, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Patent number: 8597497Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product containing at least 85% of the atomic carbon initially present in the hydrocarbon-containing feedstock and containing at most 2 wt. % hydrocarbons having a boiling point of at least 538° C.Type: GrantFiled: January 21, 2011Date of Patent: December 3, 2013Assignee: Shell Oil CompanyInventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
-
Patent number: 8597498Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), the hydrogen sulfide, and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa, where hydrogen sulfide is provided at a mole ratio of hydrogen sulfide to hydrogen of at least 0.5:9.5 and the combined hydrogen sulfide and hydrogen partial pressures provide at least 60% of the total pressure. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor may be condensed to produce a liquid hydrocarbon-containing product.Type: GrantFiled: January 21, 2011Date of Patent: December 3, 2013Assignee: Shell Oil CompanyInventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
-
Patent number: 8598067Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: GrantFiled: November 9, 2010Date of Patent: December 3, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
-
Patent number: 8597496Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product. The hydrocarbon-containing feedstock is continuously or intermittently provided to the mixing zone at a rate of at least 350 kg/hr per m3 of the mixture volume in the mixing zone.Type: GrantFiled: January 21, 2011Date of Patent: December 3, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Patent number: 8551907Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.Type: GrantFiled: December 3, 2010Date of Patent: October 8, 2013Assignee: Intevep, S.A.Inventors: Pedro Pereira, Guaicaipuro Rivas, Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias
-
Publication number: 20130239469Abstract: The present invention provides a transition metal chalcogenide photocatalyst, a reactor using the transition metal chalcogenide photocatalyst, and methods of making and using a transition metal chalcogenide photocatalyst for reforming CH4 with CO2.Type: ApplicationFiled: March 14, 2013Publication date: September 19, 2013Applicant: Board of Regents, The University of Texas SystemInventors: Russell R. Chianelli, Brenda Torres
-
Patent number: 8530370Abstract: The present invention is directed to a composition comprising a solid material comprised of a first metal/metalloid comprised of a metal or metalloid selected from the group consisting of Cu, Fe, Ag, Co, Mn, Zr, Zn, Sn, Re, Rh, Ru, Pd, Ir, Pt, B, Al, Ce, La, Pb, Cd, Sb, Ge, Ga, In, Bi, and Au; and a second metal selected from molybdenum, tungsten, or vanadium, where the first metal/metalloid and the second metal form a bimetallic tetrathiometallate or a bimetallic tetraselenometallate with sulfur or with selenium. The solid material is comprised of particles and has a particle size distribution, where the mean particle size of the particle size distribution is from about 50 nm to about 5 ?m.Type: GrantFiled: January 21, 2011Date of Patent: September 10, 2013Assignee: Shell Oil CompanyInventors: Charles Roy Donaho, Michael Anthony Reynolds
-
Patent number: 8500992Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.Type: GrantFiled: January 21, 2011Date of Patent: August 6, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Patent number: 8496803Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.Type: GrantFiled: January 21, 2011Date of Patent: July 30, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Publication number: 20130186806Abstract: Preparation of a catalyst having at least one metal from group VIII, at least one metal from group VIB and at least one support; in succession: i) one of i1) contacting a pre-catalyst with metal from group VIII, metal from group VIB and support with a cyclic oligosaccharide naming at least 6 ?-(1,4)-bonded glucopyranose subunits; i2) contacting support with a solution containing a precursor of metal from group VIII, a precursor of said metal from group VIB and a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; or i3) contacting support with a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits followed by contacting solid derived therefrom with a precursor of metal from group VIII and a precursor of metal from group VIB.Type: ApplicationFiled: June 24, 2011Publication date: July 25, 2013Applicant: IFP ENERGIES NOUVELLESInventors: Fabrice Diehl, Elodie Devers, Karin Marchand, Bertrand Guichard
-
Patent number: 8491784Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is prepared by mixing a first salt and a second salt in an aqueous mixture under anaerobic conditions at a temperature of from 15° C. to 150° C., where the first salt comprises a cationic component in any non-zero oxidation state selected from the group consisting of Cu, Fe, Ag, Co, Mn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ni, Zn, Bi, Sn, Pb, and Sb, and where the second salt comprises an anionic component selected from the group consisting of MoS42?, WS42?, SnS44?, and SbS43.Type: GrantFiled: January 21, 2011Date of Patent: July 23, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Patent number: 8491782Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product.Type: GrantFiled: January 21, 2011Date of Patent: July 23, 2013Assignee: Shell Oil CompanyInventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
-
Patent number: 8491783Abstract: A process for treating a hydrocarbon-containing feed in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product, where hydrogen sulfide is provided at a mole ratio relative to hydrogen of at least 0.5:9.5. The catalyst is comprised of a bimetallic tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ph, and Sb and the second metal is Mo, W, V, Sn, and Sb.Type: GrantFiled: January 21, 2011Date of Patent: July 23, 2013Assignee: Shell Oil CompanyInventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott-Lee Wellington
-
Patent number: 8476182Abstract: A method to obtain a catalyst of transition metals supported on a carbonaceous material, via impregnation, with a solution of metal-thiourea complex, obtained from precursor salts. The formation of the sulfur on the surface of the support occurs through the thermal decomposition of the complex. The obtained catalysts are applicable toward the direct liquefaction of coal.Type: GrantFiled: March 1, 2011Date of Patent: July 2, 2013Inventors: Jose De Jesus Diaz Velasquez, Yazmin Yaneth Agamez Pertuz, Luis Ignacio Rodriguez Varela, Orlando Hernandez Fandino, Oscar Andres Villaba Varon, Jose Alexandre Jimenez Sanchez
-
Patent number: 8475650Abstract: The present invention relates to a pre-passivation process for a continuous reforming apparatus prior to the reaction, or a passivation process for a continuous reforming apparatus during the initial reaction, comprising loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, injecting sulfide into the gas at a reactor temperature ranging from 100-650° C., controlling the sulfur amount in the recycle gas within a range of 0.5-100×10?6 L/L so as to passivate the apparatus.Type: GrantFiled: October 30, 2008Date of Patent: July 2, 2013Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SinopecInventors: Jieguang Wang, Aizeng Ma, Jianqiang Ren, Changqing Ji, Xinkuan Zhang, Hengfang Chen, Yajun Zhao
-
Publication number: 20130130893Abstract: Methods are provided for liquid phase activation of dewaxing and/or hydrofinishing catalysts that include a molecular sieve or other acidic crystalline support. The methods are compatible with activating the catalysts as part of a catalyst system that also includes a hydrotreating catalyst.Type: ApplicationFiled: November 15, 2012Publication date: May 23, 2013Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventor: ExxonMobil Research and Engineering Company
-
Patent number: 8431511Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.Type: GrantFiled: November 24, 2009Date of Patent: April 30, 2013Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
-
Patent number: 8431510Abstract: A hydrocarbon oil-impregnated composition that comprises a support material having incorporated therein a metal component and impregnated with a hydrocarbon oil. The hydrocarbon oil-impregnated composition is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the hydrocarbon oil-impregnated composition is first treated with hot hydrogen, and, optionally, a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.Type: GrantFiled: August 4, 2008Date of Patent: April 30, 2013Assignee: Shell Oil CompanyInventors: Alexei Grigorievich Gabrielov, John Anthony Smegal, Salvatore Philip Torrisi
-
Patent number: 8420565Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.Type: GrantFiled: November 24, 2009Date of Patent: April 16, 2013Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman
-
Patent number: 8399715Abstract: The present invention provides methods and compositions for the chemical conversion of syngas to alcohols. The invention includes catalyst compositions, methods of making the catalyst compositions, and methods of using the catalyst compositions. Certain embodiments teach compositions for catalyzing the conversion of syngas into products comprising at least one C1-C4 alcohol, such as ethanol. These compositions generally include cobalt, molybdenum, and sulfur. Preferred catalyst compositions for converting syngas into alcohols include cobalt associated with sulfide in certain preferred stoichiometries as described and taught herein.Type: GrantFiled: March 2, 2011Date of Patent: March 19, 2013Assignee: Albemarle CorporationInventors: Karl Kharas, Jason P. Durand
-
Patent number: 8389433Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.Type: GrantFiled: November 24, 2009Date of Patent: March 5, 2013Assignee: Chevron U.S.A.Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
-
Patent number: 8383543Abstract: The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.Type: GrantFiled: April 29, 2010Date of Patent: February 26, 2013Assignee: Chevron U.S.A. Inc.Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
-
Patent number: 8372775Abstract: A method of producing a catalyst for oxygen reduction and a gas diffusion electrode.Type: GrantFiled: April 26, 2007Date of Patent: February 12, 2013Assignee: Industrie de Nora S.p.A.Inventors: Andrea F. Gulla, Robert J. Allen, Emory S. De Castro
-
Patent number: 8372266Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones and an interstage solvent deasphalting unit. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones which operates at a temperature within 20° F. and a pressure within 10 psi of the pressure in the contacting zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is sent to the interstage solvent deasphalting unit, for separating unconverted heavy oil feedstock into deasphalted oil and asphaltenes. The deasphalted oil stream is sent to one of the contacting zones for further upgrade.Type: GrantFiled: September 18, 2008Date of Patent: February 12, 2013Assignee: Chevron U.S.A. Inc.Inventors: Goutam Biswas, Darush Farshid
-
Patent number: 8372776Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0 <e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.Type: GrantFiled: November 24, 2009Date of Patent: February 12, 2013Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman
-
Patent number: 8343887Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.Type: GrantFiled: October 28, 2008Date of Patent: January 1, 2013Assignee: Chevron U.S.A. Inc.Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
-
Publication number: 20120322653Abstract: A sulfidable catalyst containing at least one metal or metal oxide is sulfided under aqueous conditions.Type: ApplicationFiled: June 13, 2012Publication date: December 20, 2012Applicant: SHELL OIL COMPANYInventors: Kimberly Ann JOHNSON, Joseph Broun Powell, John Anthony SMEGAL
-
Patent number: 8329610Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.Type: GrantFiled: November 14, 2006Date of Patent: December 11, 2012Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec Corp.Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
-
Patent number: 8304363Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.Type: GrantFiled: January 10, 2011Date of Patent: November 6, 2012Assignee: University of CalgaryInventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
-
Patent number: 8298982Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.Type: GrantFiled: January 10, 2011Date of Patent: October 30, 2012Assignee: University of CalgaryInventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
-
Patent number: 8283279Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.Type: GrantFiled: January 7, 2011Date of Patent: October 9, 2012Assignee: University of CalgaryInventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
-
Patent number: 8258072Abstract: The invention relates to a sulphide catalyst for electrochemical reduction of oxygen particularly stable in chemically aggressive environments such as chlorinated hydrochloric acid. The catalyst of the invention comprises a noble metal sulphide single crystalline phase supported on a conductive carbon essentially free of zerovalent metal and of metal oxide phases, obtainable by reduction of metal precursor salts and thio-precursors with a borohydride or other strong reducing agent.Type: GrantFiled: January 31, 2011Date of Patent: September 4, 2012Assignee: Industrie de Nora S.p.A.Inventors: Andrea F. Gulla, Robert J. Allen
-
Publication number: 20120208904Abstract: The present invention relates to a sulphided multi-metallic catalyst, a process for obtaining it by preparing a metal mixture and subsequent sulphidation thereof and its use in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.Type: ApplicationFiled: August 12, 2010Publication date: August 16, 2012Applicant: ABENGOA BIOENERGIA NUEVAS TECNOLOGLAS S.A.Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martínez Feliu, Juan Luis Yagüe, José Caraballo Bello, Ricardo Arjona Antolín