Platinum Group (i.e., Ru, Rh, Pd, Os, Ir, Pt) Patents (Class 502/223)
  • Patent number: 11786885
    Abstract: A method of manufacturing a catalyst article, the method comprising: providing a slurry comprising a support material, palladium ions, alkaline-earth-metal ions and an organic compound, wherein the organic compound comprises a functional group selected from a sulfo group (—SO3H), a sulfonyl group (—S(?O)2—) and a sulfinyl group (—S(?O)—); disposing the slurry on a substrate; and heating the slurry to form nanoparticles of the palladium and nanoparticles of a sulfate of the alkaline earth metal on the support material.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: October 17, 2023
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Daniel Peter DePuccio, Kevin Charles Kistler, Dongxia Liu
  • Patent number: 11446637
    Abstract: Bimetallic three-way catalyst devices include a support body, one or more Rh bulk deposits disposed on the support body, and a plurality of Pt atomic clusters disposed on the surface of each of the Rh bulk deposits. Substantially no Pt is deposited on the support body. At least 85% by weight of the Pt atomic clusters comprise up to 10 atoms and the maximum Pt atomic cluster size is 200 Pt atoms. The combined loading of Rh and Pt can be less than 1.5% by weight relative to the weight of the support body. The molar ratio of Rh in a bulk Rh deposit to Pt disposed on the surface of that deposit is at least 5:1.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: September 20, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Ming Yang, Se H. Oh, Wei Li
  • Patent number: 11420190
    Abstract: The present invention relates to a porous iron oxide-zirconia composite catalyst, a preparation method thereof, and a method for producing alcohol using the same, and the iron oxide-zirconia composite catalyst having a porous structure may produce alcohol at low cost by carrying out an excellent methane reforming reaction even under room temperature and room pressure conditions through an electrochemical reaction.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: August 23, 2022
    Assignee: SOGANG UNIVERSITY RESEARCH FOUNDATION
    Inventors: Jun Hyuk Moon, Jae Hyun Lee
  • Patent number: 10322405
    Abstract: Supported catalysts having an atomic level single atom structure are provided such that substantially all the catalyst is available for catalytic function. Processes of forming a catalyst unto a porous catalyst support is also provided.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 18, 2019
    Assignee: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventors: Xin Xiao, William D. Rhodes
  • Patent number: 10099212
    Abstract: An oxidation catalyst may include hydrocarbon storage material. One implementation relates to a diesel oxidation catalyst that includes a catalyst having a front zone and a rear zone and a gradient of hydrocarbon storage material on the catalyst extending from the front zone to the rear zone. The gradient of hydrocarbon storage material, may comprise a linear gradient, a step gradient, a parabolic gradient, a logarithmic gradient, or other forms thereof.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: October 16, 2018
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Shirish S. Punde, Arvind V. Harinath, Changsheng C. Su, Aravindh K. Kanakamedala
  • Patent number: 9040447
    Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 9040446
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 9018126
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 28, 2015
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8987165
    Abstract: The present invention relates to a synthesis method for unsupported and supported ruthenium base (RuS2) catalysts from a ruthenium complex precursor, which is decomposed and activated by a simple activation process; these steps provide a catalyst with very high catalytic activity, in addition the incorporation of ruthenium complex precursor to a support by methods of incipient and wet impregnating is described; the obtained catalytic activities in this invention are in the order of 100 times the molybdenum sulfide catalyst without support and without promoter, 14 times the industrial supported catalyst, and 5 times the activity of the currently most active commercial unsupported catalyst.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: March 24, 2015
    Assignee: Centro de Investigacion en Materiales Avanzados, S.C.
    Inventors: Carlos Elias Ornelas Gutierrez, Lorena Alvarez Contreras, Jose Rurik Farias Mancilla, Alfredo Aguilar Elguezabal
  • Publication number: 20150051066
    Abstract: An apparatus and process for passivating catalysts wherein an inert gas is used to administer a precise, measurable amount of passivating agent to a catalyst in a substantially safer manner than conventional means. The inventive apparatus at least includes a first container comprising at least one inert gas, a second container comprising at least one passivating agent, and a reactor comprising at least one catalyst, the first container, second container, and reactor being fluidly connected by a plurality of conduits. The inventive process at least includes pressurizing a first container with an inert gas, filling a second container with passivating agent, providing a reactor containing a passivatable catalyst, mixing the inert with the passivating agent, forming a mixture of passivating agent and inert gas, and introducing the mixture of passivating agent and inert gas into the reactor.
    Type: Application
    Filed: July 18, 2014
    Publication date: February 19, 2015
    Inventors: Robert G. Tinger, John J. Monson
  • Patent number: 8894842
    Abstract: The present invention concerns an optimized reforming catalyst comprising at least platinum, at least one promoter metal selected from the group formed by rhenium and iridium, at least one halogen, and at least one alumina support with a low sulphur and phosphorus content.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: November 25, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Sylvie Lacombe, Malika Boualleg, Eric Sanchez
  • Publication number: 20140323785
    Abstract: The present invention provides a dehydrogenation catalyst composite that is capable of providing a dehydrogenated hydrocarbon product characterized by a bromine number of at least 19. for hydrocarbons. The dehydrogenation catalyst of the present invention comprises a nano-sized complex containing a Group VIII component; a group IVA component and a sulfur containing capping agent; an alkali component; a halogen component; and a support with an inner core of alpha alumina and an outer layer comprising a mixture of gamma alumina and delta alumina.
    Type: Application
    Filed: November 20, 2012
    Publication date: October 30, 2014
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Sharad Vasuderao Lande, Venkata Satya Bhaskara Sita Rama Murthy Katravulapalli Veera, Sreedharan Unnikrishnan, Nagesh Sharma, Shashank Vaidya, Rajeshwer Dongara, Krishnamurthy Ramaswamy Konda
  • Patent number: 8858784
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal to produce a second hydrocarbon-containing product.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Patent number: 8853119
    Abstract: The present invention relates to synthesis method of a family of ruthenium sulfide catalysts promoted with an added additional metal, unsupported (M/RuS2) and supported (M/RuS2/support). The obtained catalysts exhibit a high catalytic activity in hydrotreating or hydroprocessing (HDT) of hydrocarbons, mainly hydrodesulfuration, hydrodenitrogenation, and hydrodeoxigenation. The impact of the present invention for application in the commercial context, lies in the high catalytic activity of the obtained catalysts, which is far superior to the existing commercial catalysts, as well as the simplicity of the synthesis method, which will affect the quality of the products obtained in the oil industry, allowing to meet the environmental standards imposed by current legislations.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 7, 2014
    Assignee: Centro de Investigacion en Materiales Avanzados, S.C
    Inventors: Carlos Elias Ornelas Gutierrez, Lorena Alvarez Contreras, Jose Rurik Farias Mancilla, Alfredo Aguilar Elguezabal
  • Patent number: 8846560
    Abstract: A process for preparing a slurry catalyst is provided. The slurry catalyst is prepared from at least a Group VIB metal precursor and optionally at least a Promoter metal precursor selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof. The slurry catalyst comprises a plurality of dispersed particles in a hydrocarbon medium having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is then mixed with a hydrogen feed at a pressure from 1435 psig (10 MPa) to 3610 psig (25 MPa) and a temperature from 200-800° F. at 500 to 15,000 scf hydrogen per bbl of slurry catalyst for a minute to 20 hours, for the slurry catalyst to be saturated with hydrogen providing an increase of k-values in terms of HDS, HDN, and HDMCR of at least 15% compared to a slurry catalyst that is not saturated with hydrogen.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 30, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Shuwu Yang, Bruce Edward Reynolds, Julie Chabot, Bo Kou
  • Publication number: 20140272642
    Abstract: In some examples, a method for treating a reforming catalyst, the method comprising heating a catalyst metal used for reforming hydrocarbon in a reducing gas mixture environment. The reducing gas mixture comprises hydrogen and at least one sulfur-containing compound. The at least one sulfur-containing compound includes one or more of hydrogen sulfide, carbonyl sulfide, carbonyl disulfide and organic sulfur-containing compounds such as thiophenes, thiophanes, sulfides (RSH), disulfides (RS2R?), tri-sulfides (RS3R?) and mercaptans (RSR?).
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: LG FUEL CELL SYSTEMS, INC.
    Inventor: John R. Budge
  • Patent number: 8815765
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 26, 2014
    Assignee: Intevep, S.A.
    Inventors: Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias
  • Patent number: 8809223
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Patent number: 8809222
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
  • Patent number: 8802586
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ling Jiao, Julie Chabot, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 8802587
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. The sulfiding of the metal precursor/catalyst precursor is carried out at least twice (“enhanced sulfiding”) in the improved process to form a slurry catalyst with improved surface area and porosity value. The slurry catalyst under an enhanced sulfiding scheme is characterized as having increased catalytic activities over a slurry catalyst without an enhanced sulfidation step.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang
  • Publication number: 20140221197
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Patent number: 8778828
    Abstract: A process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a pressure leach solution obtained from a metal recovery process as part of the metal precursor feed. In one embodiment, the process comprises: sulfiding a pressure leach solution having at least a Group VIB metal precursor compound in solution forming a catalyst precursor, and mixing the sulfided catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the pressure leach solution is mixed with a hydrocarbon diluent under high shear mixing conditions to form an emulsion, which emulsion can be sulfided in-situ upon contact with a heavy oil feedstock in the heavy oil upgrade process.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Rahul Shankar Bhaduri, Julie Chabot, Shuwu Yang, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8703637
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Shuwu Yang, Julie Chabot, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8697594
    Abstract: A single metal slurry catalyst for the upgrade of heavy oil feedstock is provided. The slurry catalyst is prepared by sulfiding a Primary metal precursor, then mixing the sulfided metal precursor with a hydrocarbon diluent to form the slurry catalyst. The single-metal slurry catalyst has the formula (Mt)a(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one of a non-noble Group VIII metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal; 0.5a<=d<=4a; 0<=e<=11a; 0<=f<=18a; 0<=g<=2a; 0<=h<=3a; t, v, w, x, y, z, each representing total charge for each of: M, S, C, H, O, and N; and ta+vd+we+xf+yg+zh=0. The slurry catalyst has a particle size ranging from 1 to 300 ?m.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Axel Brait, Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8685594
    Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Patent number: 8658558
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8630687
    Abstract: In one aspect, a method is disclosed of making a material, the method including synthesizing a composition Sr2RuO4-ySy where y is in the range of, e.g., 0.1-1.2. In some embodiments y is in the range of 0.1-0.6. In some such embodiments, the material may exhibit a strong diamagnetic signal, e.g. of up to 5% of absolute diamagnetism (?=?¼?) or more (e.g., at temperatures ranging from 4K-300K). In some embodiments, the material may exhibit high temperature superconductivity.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 14, 2014
    Assignee: AVD Conduction
    Inventors: Armen Gulian, Vahan Nikoghosyan, Dennis Winegarner
  • Patent number: 8569197
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Yohan Oudart
  • Patent number: 8551907
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Guaicaipuro Rivas, Jose Cordova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarias
  • Publication number: 20130239469
    Abstract: The present invention provides a transition metal chalcogenide photocatalyst, a reactor using the transition metal chalcogenide photocatalyst, and methods of making and using a transition metal chalcogenide photocatalyst for reforming CH4 with CO2.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventors: Russell R. Chianelli, Brenda Torres
  • Patent number: 8530370
    Abstract: The present invention is directed to a composition comprising a solid material comprised of a first metal/metalloid comprised of a metal or metalloid selected from the group consisting of Cu, Fe, Ag, Co, Mn, Zr, Zn, Sn, Re, Rh, Ru, Pd, Ir, Pt, B, Al, Ce, La, Pb, Cd, Sb, Ge, Ga, In, Bi, and Au; and a second metal selected from molybdenum, tungsten, or vanadium, where the first metal/metalloid and the second metal form a bimetallic tetrathiometallate or a bimetallic tetraselenometallate with sulfur or with selenium. The solid material is comprised of particles and has a particle size distribution, where the mean particle size of the particle size distribution is from about 50 nm to about 5 ?m.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Shell Oil Company
    Inventors: Charles Roy Donaho, Michael Anthony Reynolds
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 8475650
    Abstract: The present invention relates to a pre-passivation process for a continuous reforming apparatus prior to the reaction, or a passivation process for a continuous reforming apparatus during the initial reaction, comprising loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, injecting sulfide into the gas at a reactor temperature ranging from 100-650° C., controlling the sulfur amount in the recycle gas within a range of 0.5-100×10?6 L/L so as to passivate the apparatus.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 2, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jieguang Wang, Aizeng Ma, Jianqiang Ren, Changqing Ji, Xinkuan Zhang, Hengfang Chen, Yajun Zhao
  • Publication number: 20130157842
    Abstract: The present invention relates to synthesis method of a family of ruthenium sulfide catalysts promoted with an added additional metal, unsupported (M/RuS2) and supported (M/RuS2/support). The obtained catalysts exhibit a high catalytic activity in hydrotreating or hydroprocessing (HDT) of hydrocarbons, mainly hydrodesulfuration, hydrodenitrogenation, and hydrodeoxigenation. The impact of the present invention for application in the commercial context, lies in the high catalytic activity of the obtained catalysts, which is far superior to the existing commercial catalysts, as well as the simplicity of the synthesis method, which will affect the quality of the products obtained in the oil industry, allowing to meet the environmental standards imposed by current legislations.
    Type: Application
    Filed: April 11, 2012
    Publication date: June 20, 2013
    Inventors: Carlos Elias Ornelas Gutierrez, Lorena Alvarez Contreras, Jose Rurik Farias Mancilla, Alfredo Aguilar Elguezabal
  • Publication number: 20130153468
    Abstract: The present invention relates to a synthesis method for unsupported and supported ruthenium base (RuS2) catalysts from a ruthenium complex precursor, which is decomposed and activated by a simple activation process; these steps provide a catalyst with very high catalytic activity, in addition the incorporation of ruthenium complex precursor to a support by methods of incipient and wet impregnating is described; the obtained catalytic activities in this invention are in the order of 100 times the molybdenum sulfide catalyst without support and without promoter, 14 times the industrial supported catalyst, and 5 times the activity of the currently most active commercial unsupported catalyst.
    Type: Application
    Filed: April 11, 2012
    Publication date: June 20, 2013
    Inventors: Carlos Elias Ornelas Gutierrez, Lorena Alvarez Contreras, Jose Rurik Farias Mancilla, Alfredo Aguilar Elguezabal
  • Publication number: 20130130893
    Abstract: Methods are provided for liquid phase activation of dewaxing and/or hydrofinishing catalysts that include a molecular sieve or other acidic crystalline support. The methods are compatible with activating the catalysts as part of a catalyst system that also includes a hydrotreating catalyst.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: ExxonMobil Research and Engineering Company
  • Patent number: 8431511
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 30, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
  • Patent number: 8420565
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 16, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8404615
    Abstract: The cathode catalyst for a mixed reactant fuel cell includes a mixed catalyst that includes a first catalyst including a Ru—Ch1 compound where Ch1 is a chalcogens selected from the group consisting of S, Se, Te, and combinations thereof, and a second catalyst including a Pt—Ch2 compound where Ch2 is a chalcogens selected from the group consisting of S, Se, Te, and combinations thereof. The cathode catalyst can improve excellent power characteristics of a fuel cell due to excellent catalyst activity and selectivity.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: March 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan Kwak, Alexey Alexandrovichserov, Geun-Seok Chai, Soon-Ki Kang
  • Patent number: 8389433
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0<e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 5, 2013
    Assignee: Chevron U.S.A.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jinyi Han
  • Publication number: 20130048541
    Abstract: Additive particles for use in a fluid catalytic cracking system are provided for reducing the opacity of flue gas that is generated from a regenerator within the system. Particles are supplied to the unit to catalyze the cracking of hydrocarbon feeds, and to react with sulfur oxides that are produced during regeneration of catalysts supplied for the cracking reactions. At least a portion of the supplied particles include active particulates and a binder, with at least a portion of the active particulates being in a size range from 0.5 to 40 microns.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 28, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventor: Dong X. Li
  • Patent number: 8383543
    Abstract: The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra
  • Patent number: 8372775
    Abstract: A method of producing a catalyst for oxygen reduction and a gas diffusion electrode.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 12, 2013
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen, Emory S. De Castro
  • Patent number: 8372776
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0<=i<=1; pi+ta+ub+vd+we+xf+yg+zh=0; 0<b; 0<b/a=<5; 0.5(a+b)<=d<=5(a+b); 0 <e<=11(a+b); 0<f<=7(a+b); 0<g<=5(a+b); 0<h<=2(a+b). The catalyst has an X-ray powder diffraction pattern with at least three diffractions peak located at 2-? angles of greater than 25°.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8357626
    Abstract: There is provided an oxygen storage/release material using a rare earth oxysulfate or oxysulfide, which has a high oxygen storage/release capacity even at lower temperatures. The oxygen storage/release material of the present invention comprises a compound consisting of Pr2O2SO4 and/or Pr2O2S and at least one metal selected from the group consisting of Pt, Rh and Fe supported thereon.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: January 22, 2013
    Assignees: National University Corporation Kumamoto University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Machida, Keita Ikeue, Masahide Miura
  • Patent number: 8343887
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 8309782
    Abstract: The invention relates to a process for dehydrogenation of a hydrocarbon feedstock in the presence of a catalyst that comprises a noble metal M that is selected from the group that consists of platinum, palladium, rhodium, and iridium, at least one promoter X1 that is selected from the group that consists of tin, germanium, and lead, and optionally a promoter X2 that is selected from the group that consists of gallium, indium and thallium, an alkaline or alkaline-earth compound and a porous substrate, in which the atomic ratio X1/M and optionally X2/M is between 0.3 and 8, the Hir/M ratio that is measured by hydrogen adsorption is greater than 0.40, and the bimetallicity index BMI that is measured by hydrogen/oxygen titration is greater than 108.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 13, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Fabienne Le Peltier, Sylvie Lacombe, Christophe Chau, Stephane Morin, Lars Fischer, Renaud Revel
  • Patent number: 8283279
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 9, 2012
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez