Platinum Group (i.e., Ru, Rh, Pd, Os, Ir, Pt) Patents (Class 502/223)
  • Patent number: 8258072
    Abstract: The invention relates to a sulphide catalyst for electrochemical reduction of oxygen particularly stable in chemically aggressive environments such as chlorinated hydrochloric acid. The catalyst of the invention comprises a noble metal sulphide single crystalline phase supported on a conductive carbon essentially free of zerovalent metal and of metal oxide phases, obtainable by reduction of metal precursor salts and thio-precursors with a borohydride or other strong reducing agent.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 4, 2012
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Patent number: 8242043
    Abstract: A process for production of a supported catalyst that, when used for production of lower aliphatic carboxylic acids from oxygen and lower olefins, improves yields of the lower aliphatic carboxylic acids and minimizes production of carbon dioxide gas (CO2) by-product compared to the prior art. A compound comprising at least one element selected from elements of Groups 8, 9 and 10 of the Periodic Table, at least one chloride of an element selected from copper, silver and zinc, and a chloroauric acid salt, are loaded on a carrier, after which there are further loaded a compound comprising at least one element selected from gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulfur, selenium, tellurium and polonium, and a heteropoly acid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 14, 2012
    Assignee: Showa Denko K.K.
    Inventor: Atsuyuki Miyaji
  • Patent number: 8207081
    Abstract: A novel M—Pd—Cr2O3 (M?Pt, Ru, Rh, Os, Au and Ag) nanocomposite cocatalysts and its preparation method. The cocatalysts loaded on CdS photocatalyst enhances the photocatalytic activities toward H2 evolution from aqueous solutions (NH4)2SO3, a regenerable electron donor, under sunlight radiation. An embodiment provides a new and facile method and system for the preparation of M—Pd—Cr2O3 nanocomposite cocatalysts at room temperature. Pd—Cr2O3 loaded CdS photocatalyst has higher hydrogen evolution activity than that of a plain Pd metal loaded CdS and its performance is comparable to that of Pt/CdS photocatalyst. Formation of a Pd—Cr2O3 composite with reduced size of nanoparticles results in an increase in the photocatalyst activity for H2 evolution.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 26, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Cunping Huang, Weifeng Yao, Nazim Muradov, Ali Raissi
  • Publication number: 20120115714
    Abstract: The present invention provides the catalyst precursor that has excellent safety and stability, has high stable activity retention rate, can be recycled, increases yield resulted from a reaction, and is easily processed into various forms. The catalyst precursor comprises a structure in which the entire structure is composed of gold or a gold-based alloy and the surface of the structure is modified with elemental sulfur, or at least the surface of the structure is composed of gold or a gold-based alloy and the surface of the structure is modified with elemental sulfur, and a catalytic metal compound supported on the structure, wherein the catalyst precursor has peaks derived from the catalytic metal compound and also sulfur as analyzed by photoelectron spectroscopy, and wherein the peak derived from sulfur is of the sulfur 1s orbital observed within a range of 2470 eV±2 eV in terms of the peak top position.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 10, 2012
    Applicant: FURUYA METAL CO., LTD.
    Inventors: Mitsuhiro Arisawa, Satoshi Shuto, Naoyuki Hoshiya
  • Patent number: 8168562
    Abstract: A new method for preparing supported palladium-gold catalysts is disclosed. The method comprises sulfating a titanium dioxide support, calcining the sulfated support, impregnating the calcined support with a palladium salt, a gold salt, and an alkali metal or ammonium compound, calcining the impregnated support, and reducing the calcined support. The resultant supported palladium-gold catalysts have increased activity and stability in the acetoxylation.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: May 1, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Steven M. Augustine
  • Publication number: 20120091038
    Abstract: The present invention concerns an optimized reforming catalyst comprising at least platinum, at least one promoter metal selected from the group formed by rhenium and iridium, at least one halogen, and at least one alumina support with a low sulphur and phosphorus content.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Applicant: IFP Energies nouvelles
    Inventors: Sylvie LACOMBE, Malika Boualleg, Eric Sanchez
  • Publication number: 20110318662
    Abstract: The present disclosure relates to a catalyst including platinum phosphide having a cubic structure, a method of making the catalyst, and a fuel cell utilizing the catalyst. The present disclosure also relates to method of making electrical power utilizing a PEMFC incorporating the catalyst. Also disclosed herein is a catalyst including a platinum complex wherein platinum is complexed with a nonmetal or metalloid. The catalyst with the platinum complex can exhibit good electro-chemically active properties.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 29, 2011
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Natalia Kremliakova, Scott McDermid, Stephen Campbell
  • Patent number: 8080492
    Abstract: A catalyst precursor for preparing a bulk multi-metallic catalyst upon sulfidation is provided. The precursor has an essentially monomodal pore volume distribution with at least 90% of the pores being macropores, and a total pore volume of at least 0.08 g/cc. The bulk multi-metallic prepared from the precursor is particularly suitable for hydrotreating heavy oil feeds having a boiling point in the range of 343° C. (650° F.)—to 454° C. (850° F.), an average molecular weight Mn ranging from 300 to 400, and an average molecular diameter ranging from 0.9 nm to 1.7 nm.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: December 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Soy Uckung, Darren Fong
  • Patent number: 8058203
    Abstract: A method for preparing a bulk multi-metallic suitable for hydrotreating heavy oil feeds is provided. In the process of preparing the catalyst precursor which is subsequently sulfided to form the bulk catalyst, non-agglomerative drying is employed to keep the catalyst precursor from aggregating/clumping, resulting in a catalyst precursor with optimum porosity with at least 90% of the pores being macropores, and having a total pore volume of at least 0.08 g/cc.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: November 15, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis Dykstra, Theodorus Maesen, Alexander E. Kuperman, Soy Uckung, Darren Fong
  • Patent number: 7989385
    Abstract: Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180° C. at a heating rate of from 1-20°/min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: August 2, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Anatoly Sobolevskiy, Joseph A. Rossin, Michael J. Knapke
  • Patent number: 7989386
    Abstract: The invention relates to a multi-layer catalyst made from niobium for the catalytic conversion of hydrocarbons, comprising a) a support component made from a doped or undoped oxide or hydroxide of an element of the V sub-group of the periodic table, or mixtures thereof, b) a layer of a promoter compound, selected from oxygen, sulphur or phosphorus compounds of an element of the VI, VII and VIII sub-group or a phosphoxy compound and mixtures thereof and c) a layer comprising a compound of platinum metal. The invention further relates to a method for production of the catalyst and the use thereof.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: August 2, 2011
    Assignee: Sud Chemie AG
    Inventor: Friedrich Schmidt
  • Patent number: 7985706
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 26, 2011
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Takako Nishijima
  • Patent number: 7964524
    Abstract: A catalyst and a process for making a catalyst from a precursor composition containing rework materials are disclosed. The catalyst is made by sulfiding a catalyst precursor containing 5-95 wt. % rework material. The catalyst precursor employing rework materials can be a hydroxide or oxide material. Rework can be materials generated in the forming or shaping of the catalyst precursor, or formed upon the breakage or handling of the shaped catalyst precursor. Rework can also be in the form of catalyst precursor feed material to the shaping process, e.g., extrusion process, or catalyst precursor material generated as reject or scrap in the shaping process. In some embodiment, rework may be of the consistency of shapeable dough. In another embodiment, rework is in the form of small pieces or particles, e.g., fines, powder.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 7956004
    Abstract: The invention relates to a sulphide catalyst for electrochemical reduction of oxygen particularly stable in chemically aggressive environments such as chlorinated hydrochloric acid. The catalyst of the invention comprises a noble metal sulphide single crystalline phase supported on a conductive carbon essentially free of zerovalent metal and of metal oxide phases, obtainable by reduction of metal precursor salts and thio-precursors with a borohydride or other strong reducing agent.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: June 7, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Patent number: 7947623
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h,, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 24, 2011
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Publication number: 20110105313
    Abstract: The invention concerns a process for preparing a catalyst comprising at least one metal from group VIII, rhenium or iridium and a sulphur-containing support, said catalyst having a sodium content which is strictly less than 50 ppm by weight and a sulphur content in the range 1500 to 3000 ppm by weight. The invention also concerns the use of said catalyst in a catalytic reforming reaction.
    Type: Application
    Filed: May 20, 2009
    Publication date: May 5, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Yohan Oudart, Sylvie Lacombe, Herve Cauffriez, Pierre-Yves LE-Goff, Renaud Revel
  • Patent number: 7923171
    Abstract: A cathode catalyst of the present invention includes an A-B-Ch compound, where A is a metal selected from the group consisting of Pt, Ru, Rh, and combinations thereof, B is a metal selected from the group consisting of Bi, Pb, Tl, Sb, Sn, In, Ga, Ge, and combinations thereof, and Ch is an element selected from the group consisting of S, Se, Te, and combinations thereof. The cathode catalyst may be used in a membrane-electrode assembly and a fuel cell.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: April 12, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Si-Hyun Lee
  • Patent number: 7897537
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: March 1, 2011
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Patent number: 7883806
    Abstract: A fuel cell reforming catalyst includes a platinum-group metal; an inorganic oxide selected from CeO2, Pr6O11, and combinations thereof; a strong acid ion; and a carrier. The fuel cell reforming catalyst has high activity for the reforming reaction at low temperatures and low space velocities.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 8, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Leonid Gorobinskiy, Norboru Sato, Ju-Yong Kim, Myoung-Ki Min, Jin-Goo Ahn, Elena Alekseeva
  • Patent number: 7879753
    Abstract: Ruthenium sulfide catalyst and gas diffusion electrodes incorporating the same for reduction of oxygen in industrial electrolyzers which catalyst is highly resistant to corrosion making it useful for oxygen-depolarized aqueous hydrochloric acid electrolysis.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 1, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen, Emory S. De Castro
  • Publication number: 20100323274
    Abstract: This invention provides a fuel cell electrode catalyst in which at least one transition metal element and at least one chalcogen element are supported on a conductive support, wherein the fuel cell electrode catalyst comprises a core portion comprising a transition metal crystal and a shell portion comprising surface atoms of the transition metal crystal particle and chalcogen elements coordinating to the surface atoms, and the outer circumference of the core portion is being partially covered with the shell portion. The fuel cell electrode catalyst has a high level of oxygen reduction performance, high activity as a fuel cell catalyst and comprises a transition metal element and a chalcogen element.
    Type: Application
    Filed: July 9, 2008
    Publication date: December 23, 2010
    Inventors: Yukiyoshi Ueno, Hirofumi Iisaka
  • Publication number: 20100267973
    Abstract: A method for enhancing the efficiency of a rhenium-promoted epoxidation catalyst is provided. Advantageously, the method may be carried out in situ, i.e., within the epoxidation process, and in fact, may be carried out during production of the desired epoxide. As such, a method for the epoxidation of alkylenes incorporating the efficiency-enhancing method is also provided, as is a method for using the alkylene oxides so produced for the production of 1,2-diols, 1,2-carbonates, 1,2-diol ethers, or alkanolamines.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Albert C. Liu, Liping Zhang
  • Patent number: 7816298
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. The catalyst precursor comprises at least one of a Group IIB metal compound, a Group IVA metal compound, a Group IIA metal compound, and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and optionally a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 19, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7807599
    Abstract: A process for making a catalyst precursor is disclosed. In one embodiment, the process comprises co-precipitating at reaction conditions forming a precipitate or cogel: at least a promoter metal compounds selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one of Group VIB metal compounds, at least an organic oxygen-containing ligand L. The precursor is represented by the formula Av[(MP) (OH)x(L)ny]z(MVIBO4), wherein A comprises an alkali metal cation, an ammonium, an organic ammonium or a phosphonium cation, MP is at least one of Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, L is the organic, oxygen-containing co-ordinating ligand, MVIB is at least one of Group VIB metals, and the atomic ratio of MP:MVIB is between 100:1 and 1:100.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7803735
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor are disclosed. The catalyst precursor comprises at least a metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds. In one embodiment, the sulfidation is carried out by contacting the catalyst precursor with hydrogen and a sulfur containing compound in a “slow” process with the sulfidation taking place over a few days up to two weeks, e.g., for at least over 96 hours. In another embodiment, the sulfidation is in a “quick” process with the sulfidation taking place in less than 72 hours. The catalyst prepared from the slow sulfidation process gives a 700° F.+ conversion rate of at least 25% higher than the 700° F.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 28, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman, Darren Fong
  • Patent number: 7795166
    Abstract: A functional group-selective hydrogenation catalyst is provided, which is capable of selectively hydrogenating an aliphatic carbon-carbon double bond, aliphatic carbon-carbon triple bond, aromatic formyl group or aromatic nitro group contained in an organic compound. The catalyst includes a carrier, and palladium and an organic sulfur compound supported jointly thereon.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 14, 2010
    Assignee: N.E. Chemcat Corporation
    Inventors: Hironao Sajiki, Tomohiro Maegawa, Kosaku Hirota
  • Patent number: 7781364
    Abstract: A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 24, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Piotr Zelenay, Jong-Ho Choi, Nicolas Alonso-Vante, Andrzej Wieckowski, Dianxue Cao
  • Publication number: 20100209814
    Abstract: There is provided a composite catalyst in which metal particles having catalytic activity are supported at a high density on a surface of an inorganic oxide, and the supported metal particles are strongly fixed to the surface of the inorganic oxide to improve the durability of the composite catalyst. The composite catalyst includes the inorganic oxide and the metal particles. A compound having a functional group including an amino group or a thiol group is bonded to a surface of the inorganic oxide. The metal particles are bonded to the functional group.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Inventors: Shuichi SUZUKI, Jun Kawaji, Yoshiyuki Takamori, Makoto Morishima, Hideo Daimon, Taigo Onodera
  • Publication number: 20100203420
    Abstract: According to the present invention, a fuel cell electrode catalyst comprising a transition metal element and a chalcogen element and having high activity is provided with an index for performance evaluation that is useful for good catalyst design. Also, a fuel cell electrode catalyst is provided, such catalyst comprising at least one transition metal element and at least one chalcogen element, wherein the value of (transition metal element?chalcogen element coordination number)/(transition metal element?transition metal element coordination number) is 0.9 to 2.5.
    Type: Application
    Filed: July 23, 2008
    Publication date: August 12, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukiyoshi Ueno, Hirofumi Iisaka
  • Patent number: 7763564
    Abstract: The invention relates to a process for the preparation of a titanium catalyst which process comprises: (a) drying a silica carrier at a temperature of from 300 to 800° C. to obtain a dried carrier; (b) contacting the dried carrier obtained in step (a) with a gas stream containing titanium halide at a temperature in the range from 125° C. lower to 125° C. higher than the drying temperature of step (a) and at a pressure higher than 0.8 bar to obtain an impregnated carrier; (c) calcining the impregnated carrier obtained in step (b) to obtain the titanium catalyst.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 27, 2010
    Assignee: Shell Oil Company
    Inventors: Jan Karel Frederik Buijink, Johannes Jacobus Maria Van Vlaanderen
  • Patent number: 7754645
    Abstract: A process to prepare hydroprocessing bulk catalysts is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least at least a metal compound selected from a non-noble Group VIII metal, a Group VIIIB metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal (“Promoter Metal”); t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 13, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Jaime Lopez, Oleg Mironov, Axel Brait
  • Patent number: 7737073
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: June 15, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7737072
    Abstract: A hydroprocessing catalyst is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale). In one embodiment, the at least one diffraction peak is greater than 2 degrees wide at ½ height.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 15, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Publication number: 20100130350
    Abstract: There is provided an oxygen storage/release material using a rare earth oxysulfate or oxysulfide, which has a high oxygen storage/release capacity even at lower temperatures. The oxygen storage/release material of the present invention comprises a compound consisting of Pr2O2SO4 and/or Pr2O2S and at least one metal selected from the group consisting of Pt, Rh and Fe supported thereon.
    Type: Application
    Filed: May 19, 2008
    Publication date: May 27, 2010
    Applicants: National University Corporation Kumamoto University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Machida, Keita Ikeue, Masahide Miura
  • Patent number: 7718051
    Abstract: Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Lucia M. Petkovic, David N. Thompson
  • Patent number: 7713905
    Abstract: The present invention concerns a process for “ex situ” treatment of a hydrogenation catalyst containing nickel prior to use, consisting of carrying out three steps, namely bringing the catalyst into contact with at least one sulphur-containing compound or agent (the step termed selectivation), treating said catalyst with hydrogen at a temperature of more than 250° C. (the step termed reduction) and passivation of said catalyst.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: May 11, 2010
    Assignee: Eurecat S.A.
    Inventors: Pierre Dufresne, Franck Labruyere, François Locatelli
  • Publication number: 20100086457
    Abstract: Disclosed herein is a catalyst composition comprising a bimetallic complex of silver and a second metal; the bimetallic complex being disposed upon a porous substrate; where the second metal is platinum, palladium, iron, cobalt, nickel, copper, cadmium or mercury and where atoms of silver and the second metal are bound by one or more bridging ligands.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Grigorii Lev Soloveichik, Oltea Puica Siclovan
  • Patent number: 7691774
    Abstract: A process for producing a catalyst for hydrodesulfurization and isomerization of a sulfur-containing hydrocarbon oil, which comprises supporting palladium on a composition comprising a platinum-supported sulfated zirconia and alumina.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: April 6, 2010
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Katsuya Watanabe, Takao Kimura, Takahito Kawakami, Kouji Baba
  • Patent number: 7678731
    Abstract: An improved hydroprocessing catalyst having improved morphology/dispersion characteristics is provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst is prepared by a process in which at least a sulfur additive is added to the sulfidation process in forming the catalyst precursor.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 7678730
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20100034717
    Abstract: Selective catalytic reduction with ammonia or a compound that decomposes to ammonia is a known method for the removal of nitrogen oxides from the exhaust gas of primarily lean-burn internal combustion engines. The vanadium-containing SCR catalysts that have long been generally used for this are characterized by a good conversion profile. However, the volatility of vanadium oxide can, at higher exhaust gas temperatures, lead to the emission of toxic vanadium compounds. Zeolite-based SCR catalysts, which are used in particular in discontinuous SCR systems, constitute a very cost-intensive solution for the problem. A method is proposed by which a homogeneous cerium-zirconium mixed oxide is activated for the SCR reaction in a defined manner by the introduction of sulphur and/or transition metal.
    Type: Application
    Filed: September 17, 2007
    Publication date: February 11, 2010
    Inventors: Katja Adelmann, Nicola Soeger, Lothar Mussmann, Marcus Pfeifer, Gerald Jeske
  • Patent number: 7608557
    Abstract: Provided are a photocatalyst which is high in catalytic activity, is nontoxic, has a long life, allows visible light to be used directly for its photocatalytic reaction and is especially useful for hydrogen generation, and a process for producing it. It contains a cadmium compound, has a capsular structure, has an average particle diameter of 100 nm or less and can be manufactured by dropping a solution of a cadmium salt into a solution of a sodium compound or admixing a solution of a sodium compound in a suspension of particles of a cadmium compound.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: October 27, 2009
    Assignee: Nittetsu Mining Co., Ltd.
    Inventors: Kazuyuki Tohji, Akira Kishimoto, Takafumi Atarashi
  • Patent number: 7591942
    Abstract: Bulk bi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor containing an organic agent.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Zhiguo Hou
  • Publication number: 20090208403
    Abstract: This invention relates primarily to a novel method to manufacture single/multi/fibers carbon filaments (nano tubes) in pure form optionally with antiferromagnetic and electrical property wherein the byproduct is hydrogen gas resulting in reduction of environmental carbon emissions by at least 20%; both carbon filaments and resultant exhaust are useful products.
    Type: Application
    Filed: February 17, 2008
    Publication date: August 20, 2009
    Applicant: Quaid-e-Azam University
    Inventors: Syed Tajammul Hussain, Mohammed Mazhar, Sheraz Gul, M. Abdullah Khan
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Publication number: 20090143224
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Application
    Filed: November 24, 2008
    Publication date: June 4, 2009
    Inventor: Yohan Oudart
  • Publication number: 20090105511
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Application
    Filed: June 19, 2006
    Publication date: April 23, 2009
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Takako Nishijima
  • Patent number: 7514476
    Abstract: Metal-containing colloids are manufactured by reacting a plurality of metal ions and a plurality of organic agent molecules to form metal complexes in a mixture having a pH greater than about 4.25. The metal complexes are reduced for at least 0.5 hour to form stable colloidal nanoparticles. The extended reduction time improves the stability of the colloidal particles as compared to shorter reduction times. The stability of the colloidal particles allows for colloids with higher concentrations of metal to be formed. The concentration of metal in the colloid is preferably at least about 150 ppm by weight.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 7, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Sukesh Parasher, Cheng Zhang, Michael A. Rueter, Bing Zhou
  • Publication number: 20090075139
    Abstract: The present invention provides a catalytic system comprising a catalyst comprising nanoporous or mesoporous palladium and an ion-exchange electrolyte, processes for manufacturing the catalytic system and catalyst, and processes for oxidising or reducing organic and/or inorganic molecules using the catalyst or catalytic system.
    Type: Application
    Filed: January 5, 2005
    Publication date: March 19, 2009
    Applicant: IC INNOVATIONS LIMITED
    Inventors: Anthony Kucernak, Junhua Jiang
  • Patent number: 7501376
    Abstract: This invention relates to a process of ex-situ oxidizing passivation of catalysts for hydroconversion of hydrocarbons and especially of hydrotreating, in their sulfide state, process in which the sulfurized catalyst is brought into contact with an oxidizing gas flow that can be dry or wet, during heat treatment at more than 50° C. This invention, for passivation of sulfide phases, can be equally well implemented for a process that takes place in a fixed bed or a fluidized bed, for example a moving bed.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 10, 2009
    Assignee: Eurecat S.A.
    Inventors: Pierre Dufresne, Franck Labruyere