And Group Iv Metal (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/227)
  • Patent number: 6177381
    Abstract: This invention relates to a layered catalyst composition, a process for preparing the composition and processes for using the composition. The catalyst composition comprises an inner core such as alpha-alumina, and an outer layer bonded to the inner core composed of an outer refractory inorganic oxide such as gamma-alumina. The outer layer has uniformly dispersed thereon a platinum group metal such as platinum and a promoter metal such as tin. The composition also contains a modifier metal such as lithium. The catalyst composition shows improved durability and selectivity for dehydrogenating hydrocarbons.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: January 23, 2001
    Assignee: UOP LLC
    Inventors: Robert H Jensen, Jeffrey C. Bricker, Qianjun Chen, Masaru Tatsushima, Kenji Kikuchi, Masao Takayama, Koji Hara, Isao Tsunokuma, Hiroyuki Serizawa
  • Patent number: 6177380
    Abstract: A carbon supported solid catalyst suitable for the vapor phase carbonylation of lower aliphatic alcohols, ethers, ester, and ester-alcohol mixtures, and desirably, methanol, to produce carboxylic acid, esters and mixtures thereof. The solid supported catalyst includes an effective amount of iridium and gold associated with a solid carbon support, and a halogen promoter.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: January 23, 2001
    Assignee: Eastman Chemical Company
    Inventors: Joseph Robert Zoeller, Andy Hugh Singleton, Gerald Charles Tustin, Donald Lee Carver
  • Patent number: 6159894
    Abstract: Catalyst for dehydrogenating amino alcohols to aminocarboxylic acids or ethylene glycol (derivatives) to oxycarboxylic acids, said catalyst containing zirconium, copper and possibly an additional metal, whereby the cited metals are precipitated as hydroxides, washed, dried, calcined, and reduced, preparable in that zirconium hydroxide is precipitated from an aqueous zirconium salt solution using a base until a pH of 4 to 10 is attained, the aqueous solution of a copper salt and possibly of an additional salt is added to the zirconium hydroxide suspension, and by adding further base copper hydroxide and possibly the hydroxide of the metal contained in the additional salt is precipitated until a pH of 8 to 14 is attained, the suspension obtained is filtered, washed, dried, calcined in air at 450 to 600.degree. C. for 2 to 4 hours and finally reduced at 200 to 250.degree. C. in a hydrogen stream for 2 to 4 hours.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: December 12, 2000
    Assignee: Akzo Nobel NV
    Inventors: Ludwig Eisenhuth, Manfred F. Bergfeld
  • Patent number: 6130183
    Abstract: Disclosed is a novel catalyst and process using the novel catalyst for the oxidative dehydrogenation and cracking of C.sub.2 to C.sub.5 paraffins (homogeneous hydrocarbons or mixtures such as liquified gas to C.sub.2 to C.sub.5 olefins in the presence of an oxygen-containing gas and water vapor. The novel catalyst has the following formulaX.sub.a Y.sub.b Z.sub.c A.sub.d O.sub.x,where, referring to the Periodic System,X is an element of Group II and/or IV b (Mg, Ca, Za, Ti, Zr . . . )Y is a Lanthanide and/or an element of Group IVa or Va (Ce, La, Nd, Dy, Sn, Pr, Sb, Pb . . . );Z is an element of Group I (Li, Na, K . . . );A is an element of Group VII (Cl, Br, I . . . );O is oxygen; anda is 0.4 to 0.9,b is 0.005 to 0.3,c is 0.05 to 1.5,d is 0.05 to 0.8, andx is determined by the valance requirements of metals and halogens.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: October 10, 2000
    Assignees: Mannesmann Aktiengesellschaft, K.T.I. Group B.V.
    Inventors: Mordechay Herskowitz, Miron Landau, Mark Kaliya
  • Patent number: 6127309
    Abstract: A catalyst useful for the alkylation of isoalkanes is disclosed along with a process therefor the same. The catalyst comprises a zirconium halide and at least one member of the group consisting of sulfate basic sulfate, copper halide, copper nitrate and copper salt of an organic acid. The process for the alkylation of isoalkanes with alkenes is carried out in the presence of a catalyst comprising a zirconium halide and at least one member of the group consisting of sulfate, basic sulfate, copper halide, copper nitrate and copper salt of an organic acid at a temperature of room temperature--200.degree. C. and a pressure of atmospheric -5 MPa.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: October 3, 2000
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Fuyuki Aida, Yoshio Tajima, Mitsuo Matsuno
  • Patent number: 6114276
    Abstract: A heterogeneous catalyst system comprising a novel titanium catalyst component, the product of a sequential reaction of titanium halide with carbodiimide compound and an organometallic aluminum compound, supported on such an inorganic carrier as magnesium halide and an organometallic aluminum cocatalyst component which is not methylaluminoxane, and a process for polymerization of olefin using the said catalyst system. The catalyst system has an excellent (co)polymerization properties and produces copolymers having a narrow compositional distribution, a broad molecular weight distribution and excellent morphological properties such as spherical shape and a high bulk density.
    Type: Grant
    Filed: September 5, 1998
    Date of Patent: September 5, 2000
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Gap-Goung Kong, Gyo-Hyun Hwang
  • Patent number: 6103655
    Abstract: Procedure for the preparation of a solid carrier for olefin polymerization catalysts, comprising the steps:a) impregnating a silica with Mg-chloride solubilized in ethylbenzoate, in the presence of further electron donors,b) optionally drying the impregnated silica obtained in (a) and impregnating it with a solution of Mg-alkyls in SiCl.sub.4 at a temperature from -10 to 20.degree. C. and subsequently treating the obtained slurry at a temperature from 40.degree. C. to reflux temperature, optionally adding a further amount of electron donors,c) drying the obtained carrier.The carrier which is obtained according to the above procedure is advantageously used for the preparation of supported catalysts for the polymerization of olefins.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 15, 2000
    Assignee: Borealis GmbH
    Inventors: Luciano Luciani, Wolfgang Neissl, Norbert Hafner
  • Patent number: 6090992
    Abstract: A catalyst system comprising alumina, at least one carburized transition metal, and at least one halogen component, and a method of preparing such catalyst system which comprises incorporating at least one transition metal compound into alumina thereby forming a transition metal-alumina compound; carburizing the transition metal-alumina compound thereby forming a carburized transition metal-alumina compound; and incorporating at least one halogen component into the carburized transition metal-alumina compound, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the isomerization of a hydrocarbon feedstock comprising saturated hydrocarbons.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: July 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6087294
    Abstract: Particulate metal oxide compositions having reactive atoms stabilized on particulate surfaces and methods for reacting the compositions with saturated and unsaturated species are provided. The preferred particulate metal oxides of the compositions are nanocrystalline MgO and CaO with an average crystallite size of up to about 20 nm. The preferred reactive atoms of the compositions are atoms of the halogens and Group IA metals. In one embodiment, chlorine atoms are stabilized on the surface of nanocrystalline MgO thus forming a composition which is capable of halogenating compounds, both saturated and unsaturated, in the absence of UV light and elevated reaction temperatures.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: July 11, 2000
    Assignee: Kansas State University Research Foundation
    Inventors: Kenneth J. Klabunde, Naijian Sun
  • Patent number: 6083870
    Abstract: Propylene is oxidized to propylene oxide in the vapor phase using an oxygen-containing gas and a supported silver catalyst comprising silver and a support comprised in whole or in substantial part of certain alkaline earth metal compounds. The alkaline earth metal compound may, for example, be a calcium compound such as calcium titanate, tribasic calcium phosphate, calcium molybdate, or calcium fluoride, a magnesium compound such as magnesium aluminate, or a strontium compound such as strontium titanate. Such supports provide significantly higher selectivity to the desired epoxide than would be expected from the performance of related materials. Propylene oxide selectivity may be further enhanced through the introduction of nitrogen oxide species such as NO, alkyl halides such as ethyl chloride, and carbon dioxide into the oxygen-containing gas.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: July 4, 2000
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Andrew P. Kahn, Anne M. Gaffney, Rangasamy Pitchai
  • Patent number: 6077487
    Abstract: A process and composition for removing metal carbonyls and moisture from a gas wherein the gas is contacted with a metal oxide, an organometallic oxide or mixtures thereof having a reduction potential greater than about 0.175 volts and a composition capable of removing moisture from the gas.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: June 20, 2000
    Assignee: Millipore Corporation
    Inventor: James T. Snow
  • Patent number: 6074985
    Abstract: A supported Lewis acid catalyst such as antimony V on a fluorine-treated moisture-free activated carbon support is provided, as are fluorination processes using such a catalyst.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: June 13, 2000
    Assignee: Elf Atochem North America, Inc.
    Inventors: Maher Y. Elsheikh, Bin Chen
  • Patent number: 6074981
    Abstract: Fluorine contained within a photocatalyst layer containing titanium oxide and other metallic oxide semiconductors increases the metallic oxide's photocatalytic activity. The described photocatalyst may be in the form of either film, flake, particulate, or fiber. In addition, it can be used for coating the surface of a base material of various forms, such as sheet, film, flake, particulate, bar, or fiber. When using a base material that has an alkaline-containing glass composition, establishing a fluorine-containing layer, such as a layer of fluorine-containing silicon dioxide and other metallic oxide, between the photocatalyst film and the base material can prevent the deterioration of photocatalytic activity of the photocatalyst layer. The fluorine-containing layer functions as an alkaline barrier that controls the diffusion and migration of alkali metallic ions in the glass fibers, such as Na ions, into the photocatalyst layer.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: June 13, 2000
    Assignees: Nippon Sheet Glass Co., Ltd., NSG Techno-Research Co., Ltd.
    Inventors: Hiroaki Tada, Koji Shimoda, Toshiya Ito, Akihiko Hattori
  • Patent number: 6057258
    Abstract: The invention relates to a process for the preparation of a solid catalytic component of metallocene type for the polymerization of olefins comprising a stage of reaction between a support and a derivative of formula R.sup.1 M.sup.1 X.sup.1.sub.3, in which R.sup.1 represents a hydrocarbon radical, M.sup.1 represents a silicon, germanium or tin atom and X.sup.1 represents a halogen atom. The solid catalytic component according to the invention exhibits a high activity in the polymerization or copolymerization of olefins and can lead to polymers or copolymers of high molecular mass and of low polydispersity, for example less than 2.5.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: May 2, 2000
    Assignee: Elf Atochem S.A.
    Inventors: Roger Spitz, Thierry Saudemont, Jean Malinge
  • Patent number: 6046126
    Abstract: The present invention provides a novel process for preparing a catalyst, preferably free of electron donor, useful in gas phase polymerization of olefins having a broad polydispersity.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: April 4, 2000
    Inventors: Mark Kelly, Dusan Jeremic, Victoria Ker, Charles Russell
  • Patent number: 6042796
    Abstract: A process and composition for removing metal carbonyls and moisture from a gas wherein the gas is contacted with a metal oxide, an organometallic oxide or mixtures thereof having a reduction potential greater than about 0.175 volts and a composition capable of removing moisture from the gas.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: March 28, 2000
    Assignee: Millipore Corporation
    Inventor: James T. Snow
  • Patent number: 6034016
    Abstract: A method for removing high molecular weight solid and liquid tars and oligomers from halogenated Lewis acids catalysts is disclosed. The Lewis acids incorporating such tars and oligomers are treated with an oxidizing agent such as chlorine, a halogen fluoride or mixtures thereof for a time and at a temperature sufficient to oxidize said solid tars and oligomers. The oxidation causes such tars and oligomers to form oxidation products, which can be separated from the halogenated Lewis acid.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: March 7, 2000
    Assignee: LaRoche Industries Inc.
    Inventors: C. Bradford Boyce, Randolph K. Belter
  • Patent number: 6034202
    Abstract: The invention provides non-antimony containing polymerization catalysts for the condensation of polyesters. The catalyst is in the form of a clear chlorine and/or bromine containing solution of a metal glycoxide and a metal glycolate having a pH in the range of from 0 to about 1, and containing chlorine and/or bromine atoms at a number ratio of chlorine and/or bromine to total metal cations in the catalyst ranging from about 0.5:1 to about 3:1. Polyesters produced with this catalyst have improved melt elasticity, and higher melt viscosity. The former property is desirable for the preparation of large and complex shaped polyester containers, and the latter property is desirable for melt spinning of industrial grade fibers and tire cords.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: March 7, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Shaul Moshe Aharoni, Konstantin Nikolaev Goranov
  • Patent number: 6020283
    Abstract: The present invention relates to a novel process for the production of delayed action tin catalysts. This process comprises reacting a dialkyltin dihalide with an alkali metal sulfide, to yield the corresponding 2,2,4,4-tetrakis(alkyl)-1,3,2,4-dithia-stannetane catalyst.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: February 1, 2000
    Assignee: Bayer Corporation
    Inventors: James W. Rosthauser, Hartmut Nefzger, Robert Lee Cline
  • Patent number: 6018088
    Abstract: A method is disclosed for producing branched aliphatic ketones in hydrocarbon mixtures from isoalkanes by a superacid catalyzed formylation-rearrangement reaction. The method can be used to simultaneously isomerize, if necessary, and formylate hydrocarbons in complex hydrocarbon mixtures such as refinery streams, alkylate mixtures, and natural gas liquids. Natural gas liquids of low octane number are upgraded and oxygenated by adding to the natural gas liquids or reactively producing in the liquids branched aliphatic ketones.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: January 25, 2000
    Inventor: George A. Olah
  • Patent number: 6015841
    Abstract: This invention relates to an initiator system for the polymerization of isoolefins having 4 to 16 carbon atoms, optionally with monomers polymerizable with isoolefins, the system consisting of or one or more aromatic or heteroaromatic, polycyclic hydrocarbons and an aged, organic solution of vanadium tetrachloride, wherein the concentration of the vanadium tetrachloride is 0.01 mmol to 500 mmol per liter of solvent and the molar ratio of aged vanadium tetrachloride to polycyclic hydrocarbons is in the range from 100:1 to 1:100.It is possible by means of the initiator system according to the invention to produce polyisoolefins, in particular butyl rubbers, at relatively high temperatures with only a low gel content and of a sufficiently high molecular weight.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: January 18, 2000
    Assignee: Bayer AG
    Inventors: Gerhard Langstein, Martin Bohnenpoll, Uwe Denninger, Werner Obrecht, Peter Plesch
  • Patent number: 6015768
    Abstract: A process for the preparation of heterogeneous zirconium based catalyst for polymerization of alpha-olefins to super high molecular weight poly (alpha-olefins). The process comprises in mixing zirconium alcholate or phenolate with anhydrous magnesium chloride in the presence of a solvent. The mixture is heated, then cooled and an organoaluminum compound is added. Optionally, an electron donor compound is added and heated to obtain a black slurry, which is cooled and then washed with a hydrocarbon diluent.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: January 18, 2000
    Inventors: Sabyasachi Sinha Ray, Deepak Kumar Tuli, Meeta Sharma, Madan Mohan Rai, Sobhan Ghosh, Akhilesh Kumar Bhatnagar, Prabhat Kumar Saxena, Swaminathan Sivaram
  • Patent number: 6013173
    Abstract: A novel catalyst and the use thereof in a reforming process is disclosed. The catalyst comprises a refractory inorganic oxide, platinum-group metal, Group IVA(IUPAC 14) metal, indium and lanthanide-series metal. Utilization of this catalyst in the conversion of hydrocarbonsaromatics product.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: January 11, 2000
    Assignee: UOP LLC
    Inventor: Paula L. Bogdan
  • Patent number: 5968868
    Abstract: A catalyst useful for the alkylation of isoalkanes is disclosed along with a process therefor the same. The catalyst comprises a reaction product resulting from mutual contact of a zirconium halide and a magnesium halide and/or a magnesium oxyhalide. The process for the alkylation of isoalkanes with alkenes is carried out in the presence of a catalyst comprising a reaction product resulting from mutual contact of a zirconium halide and a magnesium halide and/or a magnesium oxyhalide at a temperature of room temperature--150.degree. C. and a pressure of atmospheric--5 MPa.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: October 19, 1999
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Yoshio Tajima, Fuyuki Aida, Mitsuo Matsuno
  • Patent number: 5965480
    Abstract: Direct oxidation of propylene to propylene oxide is accomplished using alkaline earth metal compound-supported silver catalysts containing an inorganic chloride promoter and a potassium promoter derived from a potassium salt containing a nitrogen oxyanion or precursor thereof.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: October 12, 1999
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Bernard Cooker, Anne M. Gaffney, Jennifer D. Jewson, Wilson H. Onimus
  • Patent number: 5962366
    Abstract: The durability and selectivity of a supported nobel metal hydrodeclorination catalyst can be improved by treating the supported catalyst, which comprises support and catalytic noble metal, with a late transition metal halide salt, a post transition metal containing halide salt, or a combination thereof, and with an alkali metal halide, ammonium halide, or a combination thereof. Suitable late transition metal and post transition metal halides for use herein include zinc chloride, tin chloride, and cupric chloride. A suitable alkali metal halide for use herein include lithium chloride. The novel resulting supported catalyst has its noble metal component, which is in the zero valent state, predominantly residing adjacent the surface of the support in a form which is predominantly visible under a microscope having a resolution of about 5 .ANG..
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: October 5, 1999
    Assignee: Akzo Nobel N.V.
    Inventor: Zongchao Zhang
  • Patent number: 5952258
    Abstract: Disclosed is a process for the preparation of pyridine bases by a reaction of an aliphatic aldehyde and/or ketone with ammonia under gaseous phase using a specified catalyst in which a specified metal or combined metals are carried in or onto specified zeolites, for example, such as zeolites having a specified specific density range.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: September 14, 1999
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Morihito Saitoh, Yasutaka Tanaka
  • Patent number: 5925801
    Abstract: A process for preparing high-octane gasoline components consists in that a feed stock, composed of isobutane and olefins, preferably butylenes, in a molar ratio between 1 and 40, is contacted at temperatures of from about 50 to about 160.degree. C. and at pressures of from about 1 to about 40 atm. with a heterogeneous acid catalyst, whose active component is a metal-complex or metaloxopolymeric compound of the general formula H.sub.k (Me.sup.1); (Me.sup.2).sub.m O.sub.n X.sub.p wherein k=1-6; j=1-3; m=1-5; n=1-10, p=2-10, dispersed in a porous organic or inorganic matrix, followed by the extraction regeneration of the deactivated catalyst with an organic or inorganic solvent.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: July 20, 1999
    Assignee: Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdelenia Rossiiskoi Akademii Nauk
    Inventors: Valery Kuzmich Duplyakin, Valentina Petrovna Finevich, Gleb Alexandrovich Urzhuntsev, Alexandr Ivanovich Lugovskoi
  • Patent number: 5922639
    Abstract: The present invention relates to a catalyst comprising :a matrix consisting of a mixture of .eta. transition alumina, .gamma. transition alumina, andat least one doping metal chosen from the group made up of titanium, zirconium, hafnium, cobalt, nickel, zinc, the lanthanides, the alkali metals and alkaline-earth metals,at least one halogen chosen from the group made up of fluorine, chlorine, bromine and iodine,at least one noble metal from the platinum group, andat least one promoter metal chosen from the group made up of tin, germanium, indium, gallium, thallium, antimony, lead, rhenium, manganese, chromium, molybdenum and tungsten.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: July 13, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Fabio Alario, Jean-Marie Deves, Patrick Euzen
  • Patent number: 5919726
    Abstract: A primary object of the present invention is to easily and securely fix a photocatalyst to a substrate. According to the invention, there is provided a process for preparing a photocatalyst material, the process comprising a first step of forming an undercoating containing silica gel on a substrate, a second step of bringing titanium tetrachloride into contact with the undercoating and a third step of heat-treating the coated substrate.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: July 6, 1999
    Assignees: Osaka Prefectural Government, Masahiko Takada
    Inventors: Yasuhiro Hatano, Hiroki Miyamoto, Kei Miyamoto, Atsushi Kakitsuji, Toshikazu Nosaka, Akira Aoki, Tadashi Takatuka, Takeshi Ohara, Toshiaki Oura
  • Patent number: 5858908
    Abstract: A novel catalyst and the use thereof in a reforming process is disclosed. The dual-function catalyst comprises a refractory inorganic oxide, indium, Group IVA(IUPAC 14) metal, and a platinum-group metal concentrated in the surface layer of each catalyst particle. Utilization of this catalyst in the conversion of hydrocarbons, especially in reforming, results in significantly improved selectivity to the desired gasoline or aromatics product.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Tamotsu Imai
  • Patent number: 5854167
    Abstract: A silver catalyst for ethylene oxidation to ethylene oxide is provided containing a promoter combination consisting of an alkali metal component, a sulfur component, a germanium or tin component, and a fluorine component the catalyst being essentially free of rhenium and transition metal compounds.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: December 29, 1998
    Assignee: Scientific Design Company, Inc.
    Inventors: Nabil Rizkalla, Rita Klein, Stephen Bruce Milne
  • Patent number: 5849977
    Abstract: A process for the alkylation of alkenes having from 2 to 6 carbon atoms with an alkane having from 4 to 6 carbon atoms to afford an alkylate comprises reacting in the liquid phase the alkene and alkane under alkylation conditions in the presence of a novel catalyst comprising: a) a refractory inorganic oxide, b) the reaction product of a first metal halide and bound surface hydroxyl groups of the refractory inorganic oxide, c) a second metal cation, and d) optionally a zerovalent third metal. The refractory inorganic oxide is selected form the group consisting of alumina, titania, zirconia, chromia, silica, boria, silica-alumina, and combinations thereof and the first metal halide is a fluoride, chloride, or bromide of aluminum or boron. The second metal cation is selected from the group consisting of: monovalent metal cations in an amount from 0.0026 up to about 0.20 gram atoms per 100 grams refractory inorganic oxide for lithium, potassium, cesium, rubidium, silver, and copper, and from 0.012 to about 0.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: December 15, 1998
    Assignee: UOP
    Inventors: Joseph A. Kocal, Anil R. Oroskar
  • Patent number: 5792719
    Abstract: The invention relates to a supported catalyst for gas-phase reactions having an inert support body and a surface coating comprisinga) at least 5% by weight of silicon carbide,b) from 5 to 90% by weight, calculated as oxide, of one or more titanium dioxide or zirconium oxide components or mixtures thereof,c) from 1 to 50% by weight, calculated as V.sub.2 O.sub.5, of one or more vanadium oxide components,d) from 0 to 10% by weight, calculated as oxide, of one or more compounds of elements of the 1st and 5th main groups of the Periodic Table, and also a process for its preparation and its use.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: August 11, 1998
    Assignee: Consortium Fur Elektrochenische Industrie GmbH
    Inventors: Hans-Juergen Eberle, Werner Wagner, Franz Grundei, Erich Liebisch
  • Patent number: 5789560
    Abstract: Azo dyes of the formula ##STR1## where D is the radical of a diazo component of the aniline series or the series of the aromatic heterocyclic amines,R.sup.1 and R.sup.2 are each C.sub.1 -C.sub.10 -alkyl, which may be substituted, C.sub.5 -C.sub.7 -cycloalkyl, C.sub.3 -C.sub.4 -alkenyl, substituted or unsubstituted phenyl, or are together with the nitrogen atom joining them together a heterocyclic radical, andR.sup.3 is tert-butyl or tert-pentyl,are useful for thermal transfer and for dyeing or printing synthetic materials.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: August 4, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Karl-Heinz Etzbach, Rudiger Sens
  • Patent number: 5773383
    Abstract: A method is provided for producing a solid acid catalyst having a structure including a metal core having essentially an entire outer surface covered by a layer of metal oxide including a multitude of active sites provided with Lewis Acidity. The method involves an oxidizing step to form a layer of metal oxide and a halogenating step to produce a metal oxide layer with multiple active sites exhibiting Lewis Acidity.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: June 30, 1998
    Inventor: George Dan Suciu
  • Patent number: 5763732
    Abstract: A method of isomerizing n-paraffins into isoparaffins in a cut of hydrocarbons with four carbon atoms or of hydrocarbons with five and/or six carbon atoms. The cut being processed enters at least one reactor containing a stationary catalyst bed. The charge travels over the bed. Either the rate of isomerization in the effluents or a parameter directly dependent thereon (such as the octane number) is preferably continuously measured. Some of the upstream catalyst, specifically between 1/3 and 2/3, is replaced with fresh catalyst once that rate has decreased 10 to 30% below a prescribed point. The charge is redirected through the reactor once the catalyst has been replaced.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: June 9, 1998
    Assignee: Total Raffinage Distribution , S.A.
    Inventors: Laurent Mariette, Marc Fersing, Michel Laborde, Jacques Couillard
  • Patent number: 5739074
    Abstract: A catalytic composite of a refractory inorganic oxide whose bound surface hydroxyl group has reacted with a Friedel-Crafts type metal halide and whose acidity has been modified by the deposition of a monovalent metal cation, especially an alkali metal cation, or alkaline earth metal cation shows superior selectivity and a significantly decreased cracking tendency relative to similar catalysts without the monovalent metal or alkaline earth metal cation. The resulting alkylate from an isobutane-butene feedstock shows a substantial increase in research octane number relative to the alkylate formed by a similar catalyst which has not been so modified by an alkali or alkaline earth metal cation.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: April 14, 1998
    Assignee: UOP
    Inventors: Joseph A. Kocal, Anil R. Oroskar
  • Patent number: 5650528
    Abstract: In accordance with the present invention there is provided a cyclopentadienyl-type ligand represented by the formula ZA, wherein Z is a cyclopentadienyl-type group, wherein A is --YPR.sub.2, --YNR.sub.2, or --NR.sub.2, wherein Y is an alkylene group containing 1 to 24 carbon atoms, wherein each R is individually selected from alkyl groups containing 1 to 20 carbon atoms. Another aspect of the invention is to provide a metallocene represented by the formula ZAMX.sub.3, wherein Z and A are as described above, M is a Group IVB or VB transition metal, and X is a halide. Other aspects of the present invention include catalyst systems comprising the metallocenes and an organoaluminoxane, processes for preparing the above defined ligands, metallocenes and catalyst systems, and polymerization processes employing the catalyst systems.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: July 22, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Krisztina Frey, Gabriele von Massow, Helmut G. Alt, M. Bruce Welch
  • Patent number: 5631334
    Abstract: Catalytic solid for the (co)polymerisation of at least one olefin, comprising a coprecipitate of magnesium and of at least one transition metal, obtained by means of a process comprising the preparation of a mixture of a magnesium compound, such as the chloride or a magnesium alcoholate, and of a compound denoted by one of the formulae MY.sub.x (O--R').sub.t-x and M'O.sub.y (O--R").sub.s-2y and the treatment of the resulting mixture with a complex of formula M"(A)Al.sub.2 (X',X").sub.8 where X' and X" denote halogens, M and M' transition metals of groups IVB and VB, M" a transition metal of group IVB, A an aromatic hydrocarbon, Y a halogen or a group (O--R'"), and R', R" and R'" an alkyl, aryl or cycloalkyl group.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: May 20, 1997
    Assignee: Solvay (Soci et e Anonyme)
    Inventor: Nicola Zandona
  • Patent number: 5605989
    Abstract: A process for the polymerization of at least one olefin in the presence of an activated catalyst, includes (a) providing an activated catalyst by a method including (1) mixing, in the absence of a solvent, at least one chromium salt with a support composition comprised of at least one compound (A) which is an inorganic, oxygen containing compound of at least one element selected from the group consisting of Group IVb, IIIa and IVa, and at least one compound (B) which is an inorganic compound containing at least one element selected from the group consisting of Group IVb and IIIa, the at least one compound (B) being different from the at least one compound (A), to provide a mixture; (2) preactivating the mixture by heating for a period ranging from 0.5 to 18 hours without calcining in an oxidizing atmosphere to a temperature ranging from at least 30.degree. C. above room temperature to a temperature which is lower than the decomposition temperature of the at least one chromium salt and which is 5.degree. C.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: February 25, 1997
    Assignee: Solvay (Soci et e Anonyme)
    Inventor: Beno it Koch
  • Patent number: 5600011
    Abstract: Disclosed are a novel hafnium compound represented by the formula Hf(OSO.sub.2 CF.sub.3).sub.4 and a process using a hafnium compound represented by the formula Hf(OSO.sub.2 CF.sub.3).sub.4 as a catalyst in a Friedel-Crafts reaction.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 4, 1997
    Assignee: Daicel Chemical Industries, Ltd.
    Inventor: Shu Kobayashi
  • Patent number: 5573993
    Abstract: A process for the preparation of an activated catalyst for the polymerization of olefins, includes mixing, in the absence of a solvent, at least one chromium salt with a support composition including at least one compound (A) which is an inorganic, oxygen-containing compound of at least one element selected from the group consisting of Group IVb, IIIa and IVa, and at least one compound (B) which is an inorganic compound containing at least one element selected from the group consisting of Group IVb and IIIa, the at least one compound (B) being different from the at least one compound (A); preactivating the mixture by heating in an oxidizing atmosphere at a temperature which is lower than the melting temperature of the at least one chromium salt to obtain a catalyst precursor; and activating the catalyst precursor by calcining in an oxidizing atmosphere and under conditions such that part of the chromium is converted to hexavalent chromium.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: November 12, 1996
    Assignee: Solvay(Societe Anonyme)
    Inventor: Benoit Koch
  • Patent number: 5569770
    Abstract: The present invention relates to a method for the production of N-vinyl-2-pyrrolidone by gas-phase reaction at atmospheric pressure. The method is characterized in that a gas-phase reaction is conducted by using N-.beta.-Hydroxyethyl-2-Pyrrolidones serving as raw materials, at a temperature of 300.degree.-450.degree. C., a space velocity of 500-4500 hr.sup.-1 in the presence of a mixed oxide of group IV elements, or an oxide of group IV elements, which has been modified by group I or group II elements.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: October 29, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Pine-Sci Kuo, Shiao-Jung Chu, Chu-Chang Dai, Hsi-Yen Hsu, Ching-Tang Lin, Yi-Yun Lin
  • Patent number: 5543374
    Abstract: A catalyst composition is prepared by a method comprising impregnating alumina with at least one platinum compound, followed by calcining, reducing treatment, and heating with gaseous aluminum chloride and gaseous titanium tetrachloride. The thus-prepared catalyst composition is employed in the isomerization of saturated C.sub.4 -C.sub.8 hydrocarbons (alkanes and/or cycloalkanes), preferably n-butane.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: August 6, 1996
    Assignee: Phillips Petroleum Company
    Inventor: An-hsiang Wu
  • Patent number: 5476827
    Abstract: A process for the preparation of aldehydes by hydrogen reduction of carboxylic acids, esters or anhydrides, characterized in that the reduction conducted in the vapor phase, in the presence of a bimetallic catalyst of the ruthenium/tin type.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: December 19, 1995
    Assignee: Rhone-Poulenc Chimie
    Inventors: Rose-Marie Ferrero, Roland Jacquot
  • Patent number: 5453538
    Abstract: A process for the manufacture of aromatic dicarboxylic acids is disclosed using a low bromine to metals ratio facilitated by the use of cerium along with the cobalt and manganese catalyst. Aromatic dicarboxylic acids such as terephthalic acid are useful in the manufacture of fiber, films, bottles and molded products.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: September 26, 1995
    Assignee: Amoco Corporation
    Inventors: Jeffrey L. Broeker, Walter Partenheimer, Bruce I. Rosen
  • Patent number: 5446230
    Abstract: A catalyst is provided based on chlorinated eta alumina incorporating platinum and germanium and tin, as well as chlorine. This catalyst can be used in a process for the isomerization of a charge rich in normal C.sub.4 -C.sub.6 -paraffins, without hydrogen recycling.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: August 29, 1995
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Germain Martino
  • Patent number: 5366949
    Abstract: This invention is a catalyst and a process using that catalyst for oxidizing hydrogen bromide to form elemental bromine. The inventive catalyst composition comprises cerium bromide on certain zirconia containing supports. The zirconia support, preferably largely in the baddeleyite phase, stabilizes the cerium bromide catalyst against cerium oxide formation at operating temperatures and gives the catalyst excellent activity at lower temperatures.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: November 22, 1994
    Assignee: Catalytica, Inc.
    Inventor: Paul F. Schubert
  • Patent number: 5326736
    Abstract: This invention relates to a catalyst for cleaning exhaust gas, which is prepared by dipping in hydrofluoric acid an amorphous alloy composed of 20 to 80 atom % of one or more elements selected from the group consisting of Nb, Ta, Ti and Zr (the sum of Nb and Ta being up to 70 atom %), 0.5 to 20 atom % of one or more elements selected from the group consisting of Ru, Pd, Rh, Pt and Ir, and the balance of one or two of Ni and Co. This catalyst can clean at a low temperature an exhaust gas containing NO or CO discharged from apparatuses or engines wherein various organic substances are burnt.
    Type: Grant
    Filed: April 1, 1992
    Date of Patent: July 5, 1994
    Assignees: Koji Hashimoto, Daiki Engineering Co., Ltd.
    Inventors: Koji Hashimoto, Kiyohiro Teruuchi, Hiroki Habazaki, Asahi Kawashima, Katsuhiko Asami