Halogen Or Compound Containing Same Patents (Class 502/224)
-
Patent number: 11905241Abstract: Methods and systems for treating an olefin-containing stream are disclosed. The disclosed methods and systems are particularly suitable for treating an off-gas stream in a refining or petrochemical process, such as from a fluid catalytic cracker (FCC), coker, steam cracker, and the like. The stream is treated in an absorber column to reject lighter stream components and to absorb ethylene and/or propylene into a solvent. The solvent is typically isobutane. The enriched solvent stream from the absorber column is fed to an alkylation reactor, which reacts the dissolved olefin with the isobutane solvent to produce an alkylate product.Type: GrantFiled: December 22, 2020Date of Patent: February 20, 2024Assignee: KELLOGG BROWN & ROOT LLCInventors: Gautham Krishnaiah, Brian Heasley, John Lewis Webb, Jr., Rahul Radhakrishna Pillai, Vijender K. Verma, Narinder Singh Duggal
-
Patent number: 11858886Abstract: Disclosed is a process for converting methane into value-added compounds. In this process, a gas mixture containing hydrogen as well as high-concentration acetylene formed through methane pyrolysis (e.g. non-oxidative coupling of methane) is selectively hydrogenated in the presence of a bimetallic supported catalyst. This process obtains ethylene from acetylene in the gas mixture while unreacted methane and hydrogen are recovered as byproducts and/or additionally recycled.Type: GrantFiled: October 26, 2022Date of Patent: January 2, 2024Assignee: SK Innovation Co., Ltd.Inventors: Dong Min Yun, Ju Hwan Im, Hee Soo Kim, Do Kyoung Kim, Dae Hyun Choo
-
Patent number: 11849718Abstract: Various embodiments include particles comprising an antimicrobial surface and a layer comprising antimony-tin oxide and manganese oxide.Type: GrantFiled: February 28, 2019Date of Patent: December 26, 2023Assignee: SIEMENS AKTIENGESELLSCHAFTInventors: Gabriele Winkler, Christian Doye, Jens Dahl Jensen, Manuela Schneider
-
Patent number: 11833489Abstract: Disclosed is a catalyst for preparing 2,3,3,3-tetrafluoropropene by gas-phase hydrodechlorination, which solves the problem of the high costs and easy deactivation of traditional chlorofluorocarbon hydrodechlorination catalysts. The disclosed catalyst is characterized in consisting of an active component and a carrier, wherein the active component is a combination of one or more of the metals: Ni, Mo, W, Co, Cr, Cu, Ce, La, Mn and Fe. The catalyst in the present invention has excellent performance, high activity, good stability and a low reaction temperature, effectively reduces reaction energy consumption, and has industrial application value.Type: GrantFiled: June 1, 2020Date of Patent: December 5, 2023Assignee: XI'AN MODERN CHEMISTRY RESEARCH INSTITUTEInventors: Song Tian, Jian Lv, Wei Mao, Yanbo Bai, Zhaohua Jia, Bo Wang, Yue Qin, Hui Ma
-
Patent number: 11827654Abstract: The disclosure provides a process for preparing bis(monoalkyl-substituted cyclopentadiene) tungsten hydride compounds, for example bis(isopropylcyclopentadienyl)tungsten dihydride, via the corresponding magnesium compound and tungsten hexachloride, followed by treatment with a hydride reagent. Also provided is a process for preparing bis(monoalkyl-substituted cyclopentadiene) metal halide compounds. This latter aspect is achieved by reaction of the corresponding magnesium compound with a metal halide. Exemplary metals in this process include hafnium, zirconium, titanium, tantalum, niobium, tungsten, and molybdenum.Type: GrantFiled: November 15, 2022Date of Patent: November 28, 2023Assignee: ENTEGRIS, INC.Inventors: Vagulejan Balasanthiran, Scott A. Laneman
-
Patent number: 11469424Abstract: A fuel cell catalyst which has high power output characteristics and suppresses degradation of power generation performance due to starting, stopping or load variation; a manufacturing method thereof; a membrane electrode assembly for fuel cell; and a fuel cell including the same. The fuel cell catalyst includes at least catalytically active species and a carrier supporting the catalytically active species. The catalytically active species are at least one selected from the group consisting of platinum, a platinum alloy, and a core-shell catalyst in which a core of a metal different from platinum is coated with a shell containing platinum, the carrier is a carbon material, and at least one of the catalytically active species and the carrier contain(s) fluorine atoms.Type: GrantFiled: April 15, 2019Date of Patent: October 11, 2022Inventors: Sojiro Kon, Natsuki Mine, Yoshinori Sato, Masashi Yamamoto, Tetsuo Nishida
-
Patent number: 11359098Abstract: A process for the preparation of an antimicrobial coating solution is described. The process comprises the steps of: (i) mixing a chelating agent with titanium alkoxide and fluoroacetic acid; and (ii) adding an aqueous solution to the mixture from step (i). The antimicrobial coating described is visible light activated. The coating is applied to surfaces and then heat treated to form a transparent layer on the surface. This is particularly advantageous where the surface is glass.Type: GrantFiled: December 12, 2014Date of Patent: June 14, 2022Assignee: Kastus Technologies Designated Activity CompanyInventors: Darragh Ryan, Suresh Pillai, Joanna Carroll
-
Patent number: 11050063Abstract: The invention includes a method of making a catalytic electrode for a metal-air cell in which a carbon-catalyst composite is produced by heating a manganese compound in the presence of a particulate carbon material to form manganese oxide catalyst on the surfaces of the particulate carbon, and then adding virgin particulate carbon material to the carbon-catalyst composite to produce a catalytic mixture that is formed into a catalytic layer. A current collector and an air diffusion layer are added to the catalytic layer to produce the catalytic electrode. The catalytic electrode can be combined with a separator and a negative electrode in a cell housing including an air entry port through which air from outside the container can reach the catalytic electrode.Type: GrantFiled: December 3, 2019Date of Patent: June 29, 2021Assignee: Energizer Brands, LLCInventor: Diana Dreher
-
Patent number: 10604417Abstract: The present application provides a method for preparing lanthanide fluoride two-dimensional porous nanosheets and belongs to the field of novel materials. In the present application, mixing a water-soluble lanthanide metal salt and an aqueous solution of sodium acetate in a nitrogen atmosphere to obtain a mixed solution, and adding an aqueous solution of fluorine-containing salt to the mixed solution obtained for precipitation reaction to produce lanthanide fluoride two-dimensional porous nanosheets. In the preparation process provided by the present application, no additional surfactant or template agent needs to be added, the pollution of the surfactant to the surface of the prepared material is avoided and the tedious after-treatment steps to template agent are reduced. Accordingly, the large-scale production can be realized, and the lanthanide fluoride two-dimensional porous nanosheets constructed by nanoparticles are prepared in large scale by one step.Type: GrantFiled: June 28, 2019Date of Patent: March 31, 2020Assignee: TIANJIN POLYTECHNIC UNIVERSITYInventors: Yuzhong Zhang, Leitao Zhang, Hong Li
-
Patent number: 10336947Abstract: The present invention relates to a process for conversion of a hydrocarbon feed comprising saturated hydrocarbon compounds to olefin products comprising contacting a hydrocarbon feed stream with a catalyst in an oxidic form of the formula M1M2M3M4O comprising metals M1, M2, M3 and M4, wherein: M1 is selected from Si, Al, Zr, and mixtures thereof; M2 is selected from Pt, Cr, and mixtures thereof; M3 is selected from W, Mo, Re, and mixtures thereof; and M4 is selected from Sn, K, Y, Yb and mixtures thereof; wherein: mass fraction of M1 is in the range of 0.1 to 0.8; mass fraction of M2 is in the range of 0.001 to 0.2; mass fraction of M3 is in the range of 0.001 to 0.2; mass fraction of M4 is in the range of 0.0001 to 0.2; and mass fraction of oxygen is in the range of 0.1 to 0.8.Type: GrantFiled: June 29, 2016Date of Patent: July 2, 2019Assignee: SMH Co., LtdInventors: Kongkiat Suriye, Amnart Jantharasuk, Wuttithep Jareewatchara
-
Patent number: 10053400Abstract: Fluidizable catalysts for the gas phase oxygen-free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene. The catalysts comprise 1-15% by weight per total catalyst weight of one or more vanadium oxides (VOx), such as V2O5. The catalysts are disposed on an alumina support that is modified with cerium to influence catalyst acidity and characteristics of lattice oxygen at the catalyst surface. Various methods of preparing and characterizing the catalyst as well as methods for the gas phase oxygen free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene with improved alkane conversion and olefins product selectivity are also disclosed.Type: GrantFiled: August 15, 2016Date of Patent: August 21, 2018Assignee: King Kahd University of Petroleum and MineralsInventors: Mohammad Mozahar Hossain, AbdAlwadood Hassan Elbadawi, Muhammad Yasir Khan, Shaikh Abdur Razzak
-
Patent number: 10022702Abstract: The present invention concerns spheroidal alumina particles characterized by a BET specific surface area in the range 150 to 300 m2/g, a mean particle diameter in the range 1.2 to 3 mm and a particle diameter dispersion, expressed as the standard deviation, not exceeding 0.1, a total pore volume, measured by mercury porosimetry, in the range 0.50 to 0.85 mL/g, a degree of macroporosity within a particle of less than 30%, and in which the dispersion of the diameters of the macropores, expressed as the ratio D90/D50, does not exceed 8. The invention also concerns processes for the preparation of said particles as well as catalysts comprising said particles as a support, and their use in catalytic hydrocarbon treatment processes, in particular in a catalytic reforming process.Type: GrantFiled: May 6, 2016Date of Patent: July 17, 2018Assignee: IFP Energies NouvellesInventors: Delphine Bazer-Bachi, Christine Dalmazzone, Aurelie Dandeu, Fabrice Diehl, Vincent Le Corre, Joseph Lopez, Anne Lise Taleb
-
Patent number: 9815752Abstract: Fluidizable catalysts for the oxygen-free oxidative dehydrogenation of alkanes to corresponding olefins. The catalysts comprise 10-20% by weight per total catalyst weight of one or more vanadium oxides (VOx) such as V2O5 as well as 1-5% by weight per total catalyst weight of niobium as a promoter. The dehydrogenation catalysts are mounted on an alumina support that is modified with lanthanum to stabilize bulk phase transformation of the alumina. Various methods of preparing and characterizing the catalysts as well as methods for the oxygen-free oxidative dehydrogenation of alkanes to corresponding olefins with improved alkane conversion and olefin selectivity are also disclosed.Type: GrantFiled: February 12, 2016Date of Patent: November 14, 2017Assignee: King Fahd University of Petroleum and MineralsInventors: Mohammad Mozahar Hossain, AbdAlwadood Hassan Elbadawi, Shaikh Abdur Razzak
-
Patent number: 9758449Abstract: The invention relates to a fluorination process, alternately comprising reaction stages and regeneration stages, wherein the reaction stages comprise reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of a fluorination catalyst to produce a fluorinated compound, and the regeneration stages comprise contacting the fluorination catalyst with an oxidizing agent-containing gas flow.Type: GrantFiled: February 29, 2016Date of Patent: September 12, 2017Assignee: Arkema FranceInventors: Anne Pigamo, Laurent Wendlinger, Nicolas Doucet
-
Patent number: 9669387Abstract: The present invention concerns spheroidal alumina particles, catalysts comprising such particles as a support and a process for the production of spheroidal alumina particles, comprising the following steps: a) preparing a suspension comprising water, an acid and at least one boehmite powder for which the ratio of the crystallite dimensions in the [020] and [120] directions obtained using the Scherrer X-ray diffraction formula is in the range 0.7 to 1; b) adding a pore-forming agent, a surfactant and optionally water, or an emulsion comprising at least one pore-forming agent, a surfactant and water to the suspension of step a); c) mixing the suspension obtained in step b); d) shaping the spheroidal particles by the oil-drop method using the suspension obtained in step c); e) drying the particles obtained in step d); f) calcining the particles obtained in step e).Type: GrantFiled: November 16, 2012Date of Patent: June 6, 2017Assignee: IFP ENERGIES NOUVELLESInventors: Sylvie Lacombe, Priscilla Avenier, Malika Boualleg, Delphine Bazer-Bachi, Patrick Euzen, Joseph Lopez
-
Patent number: 9356293Abstract: An object of the present invention is to provide composite carbon fibers in which multiwalled carbon nanotubes are homogeneously dispersed between graphitized carbon nanofibers and near the surface of the graphitized carbon nanofibers, the composite carbon fibers being capable of easily being dispersed in a matrix such as resin without leaving aggregates, and also imparting low resistance. Disclosed are composite carbon fibers comprising multiwalled carbon nanotubes having a fiber diameter of 5 nm or more and 30 nm or less and graphitized carbon nanofibers having a fiber diameter of 50 nm or more and 300 nm or less, wherein the multiwalled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and near the surface of the graphitized carbon nanofibers.Type: GrantFiled: July 3, 2013Date of Patent: May 31, 2016Assignee: SHOWA DENKO K.K.Inventors: Ryuji Yamamoto, Takeshi Nakamura
-
Patent number: 9210934Abstract: A process for the preparation of an antimicrobial coating solution is described. The process comprises the steps of: (i) mixing a chelating agent with titanium alkoxide and fluoroacetic acid; and (ii) adding an aqueous solution to the mixture from step (i). The antimicrobial coating described is visible light activated. The coating is applied to surfaces and then heat treated to form a transparent layer on the surface. This is particularly advantageous where the surface is glass.Type: GrantFiled: December 12, 2014Date of Patent: December 15, 2015Assignee: Dublin Institute of TechnologyInventors: Darragh Ryan, Suresh Pillai, Joanna Carroll
-
Patent number: 8999882Abstract: A process for treating a carrier, or a precursor thereof, to at least partly remove impurities from the carrier, or the precursor thereof, comprising: contacting the carrier, or the precursor thereof, with a treatment solution comprising a salt in a concentration of at most 0.05 molar, wherein the salt comprises a cation and an anion, and wherein the cation is selected from ammonium, phosphonium, organic cations and combinations thereof, and wherein the anion is selected from organic anions, inorganic carboxylates, oxyanions of elements from Groups IIIA through VIIA of the Periodic Table of Elements, and combinations thereof; and separating at least part of the treatment solution from the carrier, or the precursor thereof.Type: GrantFiled: June 28, 2013Date of Patent: April 7, 2015Assignee: Shell Oil CompanyInventors: John Robert Lockemeyer, Randall Clayton Yeates
-
Patent number: 8956525Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.Type: GrantFiled: November 29, 2010Date of Patent: February 17, 2015Assignee: Wisconsin Alumni Research FoundationInventors: James B. Gerken, Shannon S. Stahl
-
Publication number: 20150027927Abstract: Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content.Type: ApplicationFiled: January 17, 2013Publication date: January 29, 2015Applicant: INTRAMICRON, INC.Inventors: Hongyun Yang, Paul S. Dimick
-
Publication number: 20150005156Abstract: Intermetallic compounds, such as metal silicides, e.g., PdSi and/or Pd2Si, can be selectively prepared in a two step process including the steps of (1) vacuum impregnating silicon with a metal halide, and (2) ball milling the product of step (1).Type: ApplicationFiled: March 7, 2013Publication date: January 1, 2015Applicant: Dow Corning CorporationInventors: Aswini Dash, Dimitris Katsoulis
-
Patent number: 8894842Abstract: The present invention concerns an optimized reforming catalyst comprising at least platinum, at least one promoter metal selected from the group formed by rhenium and iridium, at least one halogen, and at least one alumina support with a low sulphur and phosphorus content.Type: GrantFiled: October 17, 2011Date of Patent: November 25, 2014Assignee: IFP Energies NouvellesInventors: Sylvie Lacombe, Malika Boualleg, Eric Sanchez
-
Publication number: 20140343306Abstract: A method for lowering the sodium content of different carriers which may have different physical properties as well as varying degrees of sodium is provided. The method, which lowers the sodium content from the surface, subsurface as well as the binding layer of the carrier, includes contacting a carrier with water. A rinse solution is recovered from the contacting. The rinse solution includes leached sodium from the carrier. The sodium content in the rinse solution is then determined. The contacting, recovering and determining are repeated until a steady state in the sodium content is achieved.Type: ApplicationFiled: May 16, 2014Publication date: November 20, 2014Applicant: SCIENTIFIC DESIGN COMPANY, INC.Inventors: Nabil Rizkalla, Andrzej Rokicki
-
Patent number: 8859452Abstract: A metal cyanide complex catalyst and its preparation and application are disclosed. The formula of this catalyst is M1a[M2(CN)bL1c]d(X)m(L2)n.xSu.yL3.zH2O and its preparation method comprises: (A) adjusting pH of a mixed solution I? of L3, M3e[M2(CN)bL1c]f, de-ionized water I, alcohol and/or ether solvent to less than 7.0, and adding it into a mixed solution II? of M1(X)g salt, Su or Su precursor, de-ionized water II, stirring for reaction under 20° C.-120° C. for 0.5-200 hours, separating and drying to obtain a solid product; and (B) repeatedly dispersing the solid into an anhydrous organic solvent containing L2 to form a slurry, distilling, separating and drying to obtain the metal cyanide complex catalyst. The catalyst is useful in preparing polyethers, polycarbonates and polyesters by homopolymerization of epoxides, or copolymerization of epoxides with carbon dioxide or anhydrides.Type: GrantFiled: December 13, 2010Date of Patent: October 14, 2014Assignee: Zhejiang UniversityInventors: Xinghong Zhang, Guorong Qi, Binyang Du, Renjian Wei, Xueke Sun
-
Patent number: 8840769Abstract: A catalyst precursor resin composition includes an organic polymer resin; a fluorinated-organic complex of silver ion; a monomer having multifunctional ethylene-unsaturated bonds; a photoinitiator; and an organic solvent. The metallic pattern is formed by forming catalyst pattern on a base using the catalyst precursor resin composition reducing the formed catalyst pattern, and electroless plating the reduced catalyst pattern. In the case of forming metallic pattern using the catalyst precursor resin composition, a compatibility of catalyst is good enough not to make precipitation, chemical resistance and adhesive force of the formed catalyst layer are good, catalyst loss is reduced during wet process such as development or plating process, depositing speed is improved, and thus a metallic pattern having good homogeneous and micro pattern property may be formed after electroless plating.Type: GrantFiled: July 23, 2013Date of Patent: September 23, 2014Assignee: LG Chem, Ltd.Inventors: Min Kyoun Kim, Min Jin Ko, Sang Chul Lee, Jeong Im Roh
-
Publication number: 20140274667Abstract: Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO2), alumina (Al2O3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: TDA RESEARCH, INC.Inventor: Gokhan Alptekin
-
Patent number: 8828544Abstract: A process for depositing nanostructured material onto a particulate substrate material comprising the steps of: a) preparing a precursor material; b) forming an atomized dispersion containing nanophased material when subjecting said precursor material to elevated temperature; and c) contacting the atomized dispersion with the substrate material to deposit the nanophased material on the substrate material. The substrate material is in mobile and particulate form for contacting step (c). An apparatus for carrying out the process is also disclosed.Type: GrantFiled: April 19, 2010Date of Patent: September 9, 2014Assignee: Commonwealth Scientific And Industrial Research OrganisationInventors: Kok Seng Lim, Jonian Ivanov Nikolav
-
Publication number: 20140248544Abstract: This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.Type: ApplicationFiled: February 7, 2014Publication date: September 4, 2014Inventors: Weibing Xing, Joshua Buettner-Garrett
-
Patent number: 8772035Abstract: A process for determining ionic liquid catalyst deactivation including (a) collecting at least one sample of an ionic liquid catalyst; (b) hydrolyzing the at least one sample to provide at least one hydrolyzed sample; (c) titrating the at least one hydrolyzed sample with a basic reagent to determine a volume of the basic reagent necessary to neutralize a Lewis acid species of the ionic liquid catalyst; and (d) calculating the acid content of the at least one sample from the volume of basic reagent determined in step (c) is described. Processes incorporating such a process for determining ionic liquid catalyst deactivation are also described. These processes are an alkylation process, a process for controlling ionic liquid catalyst activity in a reaction producing by-product conjunct polymers, and a continuous process for maintaining the acid content of an ionic liquid catalyst at a target acid content in a reaction producing by-product conjunct polymers.Type: GrantFiled: January 18, 2011Date of Patent: July 8, 2014Assignee: Chevron U.S.A. Inc.Inventors: Hye Kyung Timken, Annie T. Pathiparampil
-
Patent number: 8741248Abstract: The present method describes the absorbing and desorbing of a gaseous reactant on a solid reactant. The solid reactant is an ammonia salt selected from the group consisting of alkali ammonium salts, alkali ammonium earth salts or a combination thereof.Type: GrantFiled: April 8, 2011Date of Patent: June 3, 2014Assignee: Phillips 66 CompanyInventor: Roland Schmidt
-
Publication number: 20140113805Abstract: There is provided methods for making a catalyst composition represented by the formula MX/M?F2 wherein MX is an alkali metal halide; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F?, Cl?, Br?, and I?; M?F2 is a bivalent metal fluoride; and M? is a bivalent metal ion. One method has the following steps: (a) dissolving an amount of the alkali metal halide in an amount of solvent sufficient to substantially dissolve or solubilize the alkali metal halide to form an alkali metal halide solution; (b) adding an amount of the bi-valent metal fluoride to the alkali metal halide solution to form a slurry of the alkali metal halide and bi-valent metal fluoride; and (c) removing substantially all of the solvent from the slurry to form a solid mass of the alkali metal halide and bi-valent metal fluoride.Type: ApplicationFiled: January 2, 2014Publication date: April 24, 2014Inventors: HAIYOU WANG, HSUEH SUNG TUNG
-
Patent number: 8697595Abstract: A precipitated film and the fabricating method thereof are disclosed. The precipitated film includes a supporting layer having columnar crystals, and a functional layer formed on the supporting layer and having granular crystals. The precipitated film is fabricated by phase-changing one of two aqueous solutions, which are able to react with each other to form a solid precipitate inherently, into solid-state and then reacting with the other aqueous solution to form the precipitated film by a precipitation reaction.Type: GrantFiled: September 6, 2011Date of Patent: April 15, 2014Assignee: Tamkang UniversityInventors: Ching-Bin Lin, Chang-Ching You, Hui-Chung Hsueh
-
Patent number: 8691720Abstract: A process for making a fluorinated olefin and/or catalyst composition. The process has the step of dehydrochlorinating a hydrochlorofluorocarbon having at least one hydrogen atom and at least one chlorine atom on adjacent carbon atoms in the presence of a catalytically effective amount of a catalyst composition. The catalyst composition is represented by the following: n wt. % MX/M?OyFz, wherein 0<y<1 and 0<z<2 and wherein y+z/2=1; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F?, Cl?, Br?, and I?, M? is a bivalent metal ion; wherein n is a weight percentage of about 0.05% to about 50% MX based on the total weight of the MX and M?OyFz, and wherein y and z are the mole fractions of oxygen and fluorine in M?OyFz, respectively.Type: GrantFiled: October 12, 2011Date of Patent: April 8, 2014Assignee: Honeywell International Inc.Inventors: Haiyou Wang, Hsueh Sung Tung
-
Patent number: 8691719Abstract: The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for reducing or preventing the poisoning and/or contamination of an SCR catalyst. In another embodiment, the method and apparatus of the present invention is designed to protect the SCR catalyst. In still another embodiment, the present invention relates to a method and apparatus for increasing the service life and/or catalytic activity of an SCR catalyst while simultaneously controlling various emissions.Type: GrantFiled: May 27, 2011Date of Patent: April 8, 2014Assignee: Babcock & Wilcox Power Generation Group, Inc.Inventors: Mandar R. Gadgil, S. Behrooz Ghorishi
-
Publication number: 20140058054Abstract: Methods for the vapor phase preparation of fluorided solid oxide activator-supports, using certain calcining temperatures and fluoriding temperatures, are disclosed.Type: ApplicationFiled: August 27, 2012Publication date: February 27, 2014Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Max P. McDaniel, Kathy S. Collins, Qing Yang, Tony R. Crain
-
Patent number: 8658426Abstract: A process for determining ionic liquid catalyst deactivation including (a) collecting at least one sample of an ionic liquid catalyst; (b) hydrolyzing the at least one sample to provide at least one hydrolyzed sample; (c) titrating the at least one hydrolyzed sample with a basic reagent to determine a volume of the basic reagent necessary to neutralize a Lewis acid species of the ionic liquid catalyst; and (d) calculating the acid content of the at least one sample from the volume of basic reagent determined in step (c) is described. Processes incorporating such a process for determining ionic liquid catalyst deactivation are also described. These processes are an alkylation process, a process for controlling ionic liquid catalyst activity in a reaction producing by-product conjunct polymers, and a continuous process for maintaining the acid content of an ionic liquid catalyst at a target acid content in a reaction producing by-product conjunct polymers.Type: GrantFiled: May 7, 2009Date of Patent: February 25, 2014Assignee: Chevron U.S.A. Inc.Inventors: Hye-Kyung Timken, Annie T. Pathiparampil
-
Patent number: 8647431Abstract: A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.Type: GrantFiled: August 15, 2012Date of Patent: February 11, 2014Assignee: MEGA-TECH Holding B.V.Inventor: Robin De La Roij
-
Publication number: 20130334145Abstract: Mixed chloride-bromide bismuth oxyhalide compounds, with the molar ratio chloride:bromide being equal to or greater than 1:1, in the form of microspheres exhibiting flower-like surface morphology, are disclosed. Processes for preparing the compounds, formulations of the compounds and a method for purifying water using said compounds are also disclosed.Type: ApplicationFiled: November 16, 2011Publication date: December 19, 2013Applicant: Yissum Research Development Company of The Hebrew University of Jerusalem LTD.Inventors: Hani Gnayem, Yoel Sasson, Sanaa Shenawi-Khalil
-
Patent number: 8575285Abstract: Provided is a catalyst used for a living radical polymerization method, which contains a central element consisting of carbon and at least one halogen atom binding to the central element. Further, a hydrocarbon compound can be used as a catalyst precursor. A monomer having a radical-reactive unsaturated bond is subjected to a radical polymerization reaction in the presence of the catalyst, consequently a polymer having narrow molecular weight distribution can be obtained, and thus the cost of the living radical polymerization can be remarkably reduced. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages such as low toxicity of the catalyst, low amount of the catalyst used, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (no need of any post-treatments for a molded article), and the like.Type: GrantFiled: September 8, 2009Date of Patent: November 5, 2013Assignee: Kyoto UniversityInventors: Atsushi Goto, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 8575407Abstract: A support of metal oxyfluoride or metal halide for a metal-based hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.Type: GrantFiled: March 20, 2012Date of Patent: November 5, 2013Assignee: Honeywell International Inc.Inventors: Haiyou Wang, Hsueh Sung Tung
-
Publication number: 20130273458Abstract: The present disclosure relates to an electrocatalyst for oxygen reduction including a silver/silver halide composite, a fuel cell including the electrocatalyst for oxygen reduction, and a method for preparing the electrocatalyst for oxygen reduction.Type: ApplicationFiled: April 11, 2013Publication date: October 17, 2013Applicant: Ewha University - Industry Collaboration FoundationInventors: Youngmi LEE, Chongmok LEE, Jun Ho SHIM, Su-jin KIM
-
Patent number: 8552223Abstract: A method of making a heterogeneous catalyst, the catalyst produced therefrom, and the use of the catalyst, comprising mixing a dried ion exchange resin with a solution of a ketone and a metal, swelling the ion exchange resin, distributing the metal in the resin, and transforming without reducing agents the metal to zero valent at a temperature below 120° C.Type: GrantFiled: June 24, 2011Date of Patent: October 8, 2013Assignee: Rohm and Haas CompanyInventors: James Tate, Jose Antonio Trejo-O'Reilly
-
Patent number: 8541638Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.Type: GrantFiled: November 26, 2008Date of Patent: September 24, 2013Assignee: Chevron U.S.A. Inc.Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
-
Publication number: 20130237729Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.Type: ApplicationFiled: March 7, 2012Publication date: September 12, 2013Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
-
Patent number: 8518848Abstract: A titanium oxide photocatalyst that is capable of improving a decomposition rate, and a method for producing the same are provided. The titanium oxide photocatalyst of the present invention is a titanium oxide photocatalyst containing at least an anatase-type titanium oxide and fluorine, wherein a content of the fluorine is 2.5 wt % to 3.5 wt %, and 90 wt % or more of the fluorine is chemically bonded to the anatase-type titanium oxide.Type: GrantFiled: February 29, 2012Date of Patent: August 27, 2013Assignees: Panasonic Corporation, Sakai Chemical Industry Co., Ltd.Inventors: Noboru Taniguchi, Shuzo Tokumitsu, Tomohiro Kuroha, Kenichi Tokuhiro, Akio Nakashima, Keita Kobayashi, Shinji Nakahara
-
Patent number: 8519017Abstract: A catalyst precursor resin composition includes an organic polymer resin; a fluorinated-organic complex of silver ion; a monomer having multifunctional ethylene-unsaturated bonds; a photoinitiator; and an organic solvent. The metallic pattern is formed by forming catalyst pattern on a base using the catalyst precursor resin composition reducing the formed catalyst pattern, and electroless plating the reduced catalyst pattern. In the case of forming metallic pattern using the catalyst precursor resin composition, a compatibility of catalyst is good enough not to make precipitation, chemical resistance and adhesive force of the formed catalyst layer are good, catalyst loss is reduced during wet process such as development or plating process, depositing speed is improved, and thus a metallic pattern having good homogeneous and micro pattern property may be formed after electroless plating.Type: GrantFiled: May 15, 2008Date of Patent: August 27, 2013Assignee: LG Chem, Ltd.Inventors: Min Kyoun Kim, Min Jin Ko, Sang Chul Lee, Jeong Im Roh
-
Patent number: 8501664Abstract: A process for treating a carrier, or a precursor thereof, to at least partly remove impurities comprising contacting the carrier, or the precursor thereof, with a treatment solution comprising a salt; a process for preparing a catalyst; the catalyst; a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether or an alkanolamine.Type: GrantFiled: November 15, 2007Date of Patent: August 6, 2013Assignee: Shell Oil CompanyInventors: John Robert Lockemeyer, Randall Clayton Yeates
-
Publication number: 20130184414Abstract: The present invention relates to a process for preparation of polyester resin in the presence of a novel catalyst system comprising an antimony compound and inorganic tin compound. The present invention also relates to a catalyst system for the preparation of polyester comprising an antimony compound and inorganic tin compound which reduces the polymerization time at all stages of polyester synthesis and reduces the generation of degradation product. This invention further relates to polyester resin with improved L color having significant importance in end-use applications.Type: ApplicationFiled: January 27, 2011Publication date: July 18, 2013Applicant: RELIANCE INDUSTRIES LIMITEDInventors: Srinivasacharya Ramacharya Ayodhya, Sudan Pushap, Shivamurthy Padadayya Jadimath, Nandkumar Gopal Pawashe, Vikas Kadu Bhangale
-
Publication number: 20130178666Abstract: The present invention relates to catalysts, to processes for making catalysts with halide containing precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.Type: ApplicationFiled: August 27, 2012Publication date: July 11, 2013Applicant: CELANESE INTERNATIONAL CORPORATIONInventors: Zhenhua Zhou, Heiko Weiner
-
Publication number: 20130168228Abstract: A photoactive material including nanoparticles of photoactive first and second constituents. The first and second constituents have respective conduction band energies, valence band energies and electronic band gap energies to enable photon-driven generation and separation of charge carriers in each of the first and second constituents by absorption of light in the solar spectrum. The first and second constituents are provided in an alternating layered arrangement of respective first and second layers or are mixed together in a single layer. The nanoparticles have diameters smaller than wavelengths of light in the solar spectrum, to provide optical transparency for absorption of light. The charge carriers, upon photoactivation, are able to participate in redox reactions occurring in the photoactive material. The photoactive material may enable redox reactions of carbon dioxide with at least one of hydrogen and water to produce a fuel.Type: ApplicationFiled: September 9, 2011Publication date: July 4, 2013Inventors: Geoffrey A. Ozin, Engelbert Redel