And Group Viii Metal (i.e., Iron Or Platinum Group) Patents (Class 502/229)
-
Patent number: 9636671Abstract: A homogenous process for the hydrogenation of the carboxylic acids and/or derivatives thereof in the presence of a catalyst comprising ruthenium, rhodium, iron, osmium or palladium, and an organic phosphine is described in which the hydrogenation is carried out in the presence of at least about 1% by weight water. A process for regenerating a catalyst comprising ruthenium, rhodium, iron, osmium or palladium and an organic phosphine is also described in which the regeneration is carried out in the presence of hydrogen and water.Type: GrantFiled: August 17, 2012Date of Patent: May 2, 2017Assignee: Davy Process Technology LimitedInventors: Melvyn Kilner, Derek Vincent Tyers, Simon Peter Crabtree, Michael Anthony Wood
-
Publication number: 20150096900Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.Type: ApplicationFiled: April 26, 2013Publication date: April 9, 2015Inventors: Robert Schulz, Sylvio Savoie
-
Patent number: 9000242Abstract: The invention is directed to a catalyst for the gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene with HF to give 1-chloro-2,2-difluoroethane which catalyst is prepared by co-depositing FeCl3 and MgCl2 on chromia-alumina, or co-depositing Cr(NO3)3 and Ni(NO3)2 on active carbon, or by doping alumina with ZnCl2, and to a process for the preparation of 1-chloro-2,2-difluoroethane comprising a catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene wherein one of the catalysts according to claim 2 or 3 is used.Type: GrantFiled: October 11, 2012Date of Patent: April 7, 2015Assignee: Bayer Intellectual PropertyInventors: Norbert Lui, Shanthan Rao Pamulaparthy, Srinivas Pvss, Thomas Vijaya, Sridhar Madabhushi, Rambabu Yadla, Narsaiah Banda, Sergii Pazenok
-
Patent number: 8993474Abstract: This invention relates to a dehydrogenation catalyst having a macropore size and a high active density of platinum, suitable for use in dehydrogenation of a hydrocarbon gas. This dehydrogenation catalyst having a macropore size and a high active density of platinum is highly active, has high active density per unit catalytic surface area, facilitates material transfer of reactants and products, delays deactivation due to coke formation, keeps the initial activity constant after being regenerated thanks to the disposal of coke, has high strength and so is resistant to external impact, and undergoes neither structural changes due to heat nor changes in the properties of active materials.Type: GrantFiled: May 25, 2009Date of Patent: March 31, 2015Assignee: Hyosung CorporationInventors: Jin Soon Choi, Won Il Kim, Hyong Lim Koh, Young Gyo Choi
-
Patent number: 8987163Abstract: Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer-Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise an ?-alumina support, and a catalytically active component that comprises iron-containing particles dispersed onto the support in at least 1 wt. %. The majority of the iron-containing particles is in direct contact with the ?-alumina and is well-distributed thereon. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.Type: GrantFiled: March 12, 2014Date of Patent: March 24, 2015Assignee: Nederlandse organisatie voor wetenschappelijk onderzoek (NWO)Inventors: Hirsa Maria Torres Galvis, Johannes Hendrik Bitter, Krijn Pieter de Jong
-
Publication number: 20150005156Abstract: Intermetallic compounds, such as metal silicides, e.g., PdSi and/or Pd2Si, can be selectively prepared in a two step process including the steps of (1) vacuum impregnating silicon with a metal halide, and (2) ball milling the product of step (1).Type: ApplicationFiled: March 7, 2013Publication date: January 1, 2015Applicant: Dow Corning CorporationInventors: Aswini Dash, Dimitris Katsoulis
-
Publication number: 20140357471Abstract: The present invention concerns spheroidal alumina particles, catalysts comprising such particles as a support and a process for the production of spheroidal alumina particles, comprising the following steps: a) preparing a suspension comprising water, an acid and at least one boehmite powder for which the ratio of the crystallite dimensions in the [020] and [120] directions obtained using the Scherrer X-ray diffraction formula is in the range 0.7 to 1; b) adding a pore-forming agent, a surfactant and optionally water, or an emulsion comprising at least one pore-forming agent, a surfactant and water to the suspension of step a); c) mixing the suspension obtained in step b); d) shaping the spheroidal particles by the oil-drop method using the suspension obtained in step c); e) drying the particles obtained in step d); f) calcining the particles obtained in step e).Type: ApplicationFiled: November 16, 2012Publication date: December 4, 2014Applicant: IFP ENERGIES NOUVELLESInventors: Sylvie Lacombe, Priscilla Avenier, Malika Boualleg, Delphine Bazer-Bachi, Patrick Euzen, Joseph Lopez
-
Publication number: 20140206916Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.Type: ApplicationFiled: March 25, 2014Publication date: July 24, 2014Applicant: Chevron Phillips Chemical Company LPInventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
-
Publication number: 20140113805Abstract: There is provided methods for making a catalyst composition represented by the formula MX/M?F2 wherein MX is an alkali metal halide; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F?, Cl?, Br?, and I?; M?F2 is a bivalent metal fluoride; and M? is a bivalent metal ion. One method has the following steps: (a) dissolving an amount of the alkali metal halide in an amount of solvent sufficient to substantially dissolve or solubilize the alkali metal halide to form an alkali metal halide solution; (b) adding an amount of the bi-valent metal fluoride to the alkali metal halide solution to form a slurry of the alkali metal halide and bi-valent metal fluoride; and (c) removing substantially all of the solvent from the slurry to form a solid mass of the alkali metal halide and bi-valent metal fluoride.Type: ApplicationFiled: January 2, 2014Publication date: April 24, 2014Inventors: HAIYOU WANG, HSUEH SUNG TUNG
-
Patent number: 8664144Abstract: A method of reactivating a spent catalyst comprising a metal and a catalyst support, the method comprising redispersing the metal in the spent catalyst to produce a redispersed spent catalyst, contacting the redispersed spent catalyst with a reactivating composition to produce a redispersed, reactivated spent catalyst, and thermally treating the redispersed, reactivated spent catalyst to produce a reactivated catalyst.Type: GrantFiled: November 12, 2009Date of Patent: March 4, 2014Assignee: Chevron Phillips Chemical Company LPInventor: An-Hsiang Wu
-
Patent number: 8664145Abstract: A method of preparing a fresh catalyst comprising impregnating a metal into a catalyst support to produce an impregnated catalyst, dispersing the metal in the impregnated catalyst to produce an impregnated, dispersed catalyst, contacting the impregnated, dispersed catalyst with an activating composition to produce an impregnated, dispersed, activated catalyst, and thermally treating the impregnated, dispersed, activated catalyst to produce a fresh catalyst wherein the activating composition is in the liquid phase.Type: GrantFiled: November 12, 2009Date of Patent: March 4, 2014Assignee: Chevron Phillips Chemical Company LPInventor: An-Hsiang Wu
-
Patent number: 8647431Abstract: A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.Type: GrantFiled: August 15, 2012Date of Patent: February 11, 2014Assignee: MEGA-TECH Holding B.V.Inventor: Robin De La Roij
-
Publication number: 20140005449Abstract: A composition comprising a support formed from a high surface area alumina and having a low angularity particle shape; and at least one catalytically active metal, wherein the support has pores, a total pore volume, and a pore size distribution; wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum; wherein a first peak has a first maximum of pore diameters of equal to or greater than about 200 nm and a second peak has a second maximum of pore diameters of less than about 200 nm; and wherein greater than or equal to about 5% of a total pore volume of the support is contained within the first peak of pore diameters.Type: ApplicationFiled: September 6, 2013Publication date: January 2, 2014Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly, Michael Joseph Breen, Joseph C. Dellamorte, Danna Rehms Mooney
-
Publication number: 20140000490Abstract: A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.Type: ApplicationFiled: August 15, 2012Publication date: January 2, 2014Applicant: MEGA-TECH HOLDING B.V.Inventor: Robin DE LA ROIJ
-
Patent number: 8552223Abstract: A method of making a heterogeneous catalyst, the catalyst produced therefrom, and the use of the catalyst, comprising mixing a dried ion exchange resin with a solution of a ketone and a metal, swelling the ion exchange resin, distributing the metal in the resin, and transforming without reducing agents the metal to zero valent at a temperature below 120° C.Type: GrantFiled: June 24, 2011Date of Patent: October 8, 2013Assignee: Rohm and Haas CompanyInventors: James Tate, Jose Antonio Trejo-O'Reilly
-
Patent number: 8536082Abstract: The invention relates to a method of preparing a dehydrogenation catalyst comprising a group VIII metal, a group IVA metal and a refractory oxide support. The method comprises stages of preparing the dry impregnation aqueous solution containing said group VIII metal, ammonia, either in solution or in gas form, and a complexing agent. It then comprises stages of aging the aqueous solution, of dry impregnation of the support, of maturing the impregnated support, of drying the impregnated support and of calcining the dried support.Type: GrantFiled: May 7, 2010Date of Patent: September 17, 2013Assignee: IFP Energies NouvellesInventors: Alexandre Chambard, Yohan Oudart
-
Publication number: 20130237729Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.Type: ApplicationFiled: March 7, 2012Publication date: September 12, 2013Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
-
Patent number: 8471069Abstract: A mixed bed polymeric catalyst, and use of that catalyst, comprising 10-90% by weight of a first catalyst having ion exchange resin loaded with metal of palladium, platinum, iridium, rhodium, ruthenium, copper, gold, and/or silver and 10-90% by weight of a second catalyst having strong acidic ion exchange resin devoid of metal, where the metal is uniformly distributed throughout a mixed bed.Type: GrantFiled: June 29, 2011Date of Patent: June 25, 2013Assignee: Rohm and Haas CompanyInventors: John Kramer, Jose Antonio Trejo-O'Reilly
-
Patent number: 8435923Abstract: Compositions, materials incorporating the compositions, and methods of use thereof, for the protection and/or decontamination of contaminants are disclosed.Type: GrantFiled: March 29, 2007Date of Patent: May 7, 2013Assignee: Emory UniversityInventors: Nelya Okun, Craig Hill, Zhen Luo
-
Publication number: 20130104698Abstract: The proposed methods are exemplarily utilized in uranium hydrometallurgy for selective extraction of uranium out of ore by in situ or heap leaching. According to the disclosure, the methods encompass catalytic oxidation of U4+ to U6+ using a proposed oxidizing catalyst “Muhamedzhan-1”, filtration of this solution through ore, transferring hexavalent uranium, trivalent iron, and other metal ions into a production solution, extraction of uranium yielding a barren solution and re-circulation of this solution back for ore leaching. The methods essentially improve known technologies by employing “Muhamedzhan-1”, being a solution of d- and f-mixed valence metal salts (MLn, wherein M=Fe, U, Cu, Mn, and L=NO3?, SO42?Cl?, Br?, I?) and alkali metal halogenides (MX, wherein M=Na+, Na+, K+, and X=Cl?, Br?, I?) used as an oxidizing agent, with the weight ratio of MLn: 0.01-25.0%, MX: 0.01-12.5%, and solvent: balance.Type: ApplicationFiled: November 1, 2011Publication date: May 2, 2013Inventors: Yerkin Aibassov, Saltanat Aibassova, Gizatulla Aibassov, Zhaken Aibassov, Mukhamejan Aibassov, Bakhyt Abenov
-
Publication number: 20130071318Abstract: Provided is a catalyst for fuel reformation that causes carbon monoxide contained in hydrogen gas, which is produced from a variety of hydrocarbon fuels, to react with hydrogen and thereby to be transformed into methane, while inhibiting methanation of carbon dioxide contained in the hydrogen gas. The selective CO methanation catalyst includes at least one of a halogen, an inorganic acid, and a metal oxo-acid adsorbed or bonded as a carbon dioxide reaction inhibitor to a carbon monoxide methanation active component.Type: ApplicationFiled: November 13, 2012Publication date: March 21, 2013Applicant: UNIVERSITY OF YAMANASHIInventor: University of Yamanashi
-
Publication number: 20130030194Abstract: The present invention relates to a metal catalyst composition for producing furfural derivatives from raw materials of lignocellulosic biomass, and method for producing furfural derivatives using the composition. The present invention comprises ruthenium chloride (RuCl3) and chromium chloride (CrCl2). The chromium chloride (CrCl2) is from 300 to 500 parts by weight on the basis of 100 parts by weight of the ruthenium chloride (RuCl3). Unlike conventional furfural derivatives producing process that should go through multi step processes such as pre-process, saccharification process, etc, the present invention has an advantage of producing furfural derivatives from lignocellulosic raw material only through simple reaction process in one reaction apparatus by mixing various kinds of metal catalyst at an optimum ratio.Type: ApplicationFiled: April 14, 2011Publication date: January 31, 2013Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGYInventors: Jin Ku Cho, Sangyong Kim, Dohoon Lee, Bora Kim, Jaewon Jeong
-
Publication number: 20120316340Abstract: The use of metal-accumulating plants for implementing chemical reactions.Type: ApplicationFiled: November 18, 2010Publication date: December 13, 2012Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUEInventors: Claude Grison, Jose Escarre
-
Patent number: 8309782Abstract: The invention relates to a process for dehydrogenation of a hydrocarbon feedstock in the presence of a catalyst that comprises a noble metal M that is selected from the group that consists of platinum, palladium, rhodium, and iridium, at least one promoter X1 that is selected from the group that consists of tin, germanium, and lead, and optionally a promoter X2 that is selected from the group that consists of gallium, indium and thallium, an alkaline or alkaline-earth compound and a porous substrate, in which the atomic ratio X1/M and optionally X2/M is between 0.3 and 8, the Hir/M ratio that is measured by hydrogen adsorption is greater than 0.40, and the bimetallicity index BMI that is measured by hydrogen/oxygen titration is greater than 108.Type: GrantFiled: December 7, 2007Date of Patent: November 13, 2012Assignee: IFP Energies nouvellesInventors: Fabienne Le Peltier, Sylvie Lacombe, Christophe Chau, Stephane Morin, Lars Fischer, Renaud Revel
-
Patent number: 8283280Abstract: The invention relates to a method of preparing a reforming catalyst comprising a group VIII metal, a halogen, at least one metal selected from the group made up of the group VIIB metals and group IVA metals, a refractory oxide support. The method comprises stages of preparing a dry impregnation aqueous solution containing ammonia, either in solution or in gas form and a complexing agent, of aging the aqueous solution, of dry impregnation of the support, of maturing the impregnated support, of drying and of calcination.Type: GrantFiled: May 5, 2010Date of Patent: October 9, 2012Assignee: IFP Energies nouvellesInventor: Yohan Oudart
-
Publication number: 20120226057Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.Type: ApplicationFiled: May 14, 2012Publication date: September 6, 2012Inventors: Randall Clayton YEATES, John Robert Lockemeyer, Marek Matusz
-
Patent number: 8236726Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.Type: GrantFiled: September 20, 2007Date of Patent: August 7, 2012Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology SinopecInventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
-
Publication number: 20120149787Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.Type: ApplicationFiled: August 31, 2010Publication date: June 14, 2012Applicant: GTL.F1 AGInventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
-
Publication number: 20120046159Abstract: Disclosed is a method for recovering cobalt and manganese from a spent cobalt-manganese-bromine (CMB) catalyst. The method includes (a) continuously leaching a spent CMB catalyst with sulfuric acid, (b) separating the leachate into a solution and a residue, (c) extracting the solution with a solvent, and (d) washing the extract with water. According to the method, high-purity cobalt and manganese can be recovered in high yield from a spent CMB catalyst while minimizing the amount of impurities. Further disclosed is a method for producing a CMB liquid catalyst from the extract containing cobalt and manganese obtained by the recovery method.Type: ApplicationFiled: August 16, 2011Publication date: February 23, 2012Inventors: Shun Myung SHIN, Sung Ho Ju, Jin Gu Kang, Han Kwon Chang, Jeong Soo Sohn
-
Publication number: 20120016143Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.Type: ApplicationFiled: July 11, 2011Publication date: January 19, 2012Applicant: SHELL OIL COMPANYInventor: Marek MATUSZ
-
Publication number: 20110060172Abstract: A support of metal oxyfluoride or metal halide for a metal-based hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.Type: ApplicationFiled: September 4, 2009Publication date: March 10, 2011Applicant: HONEYWELL INTERNATIONAL INC.Inventors: HAIYOU WANG, HSUEH S. TUNG
-
Publication number: 20100285950Abstract: Co-catalysts comprising yttria-stabilized aluminum oxide having nickel oxide loaded thereon, their uses and methods of preparing are described. Also, hybrid catalysts comprising these co-catalysts along with main catalyst components, and their uses and methods of preparing are described. Monocomponent catalysts having nickel oxide loaded thereon, their uses and methods of preparing are also described.Type: ApplicationFiled: June 17, 2008Publication date: November 11, 2010Inventor: Raymond Le Van Mao
-
Publication number: 20100240936Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.Type: ApplicationFiled: June 1, 2010Publication date: September 23, 2010Inventors: Yongqing Zhang, Stephen J. Golden
-
Patent number: 7776776Abstract: The present invention relates to a method for preparing catalyst platinum supported on lithium cobalt oxide for sodium borohydride hydrolysis. The catalyst with crystalline platinum is produced by mixing dihydrogen hexachloroplatinumate and black lithium-cobalt-oxide powder with the impregnation method, and then by a two-step sintering. Platinum is the major catalytic activity site, and lithium cobalt oxide is the support thereof. The manufacturing process of the present invention is simple, and can be applied to catalytic reactions or electrocatalytic reactions in fuel cells. Thereby, the present method is very practical to industry.Type: GrantFiled: August 29, 2006Date of Patent: August 17, 2010Assignee: Chung Shan Institute of Science and Technology, Armaments Bureau, M.N.D.Inventors: Hung-Chun Lai, Ru-Shi Liu, Biing-Jyh Weng, Ming-Chen Hwang, Ching-Yuan Hsieh
-
Patent number: 7763564Abstract: The invention relates to a process for the preparation of a titanium catalyst which process comprises: (a) drying a silica carrier at a temperature of from 300 to 800° C. to obtain a dried carrier; (b) contacting the dried carrier obtained in step (a) with a gas stream containing titanium halide at a temperature in the range from 125° C. lower to 125° C. higher than the drying temperature of step (a) and at a pressure higher than 0.8 bar to obtain an impregnated carrier; (c) calcining the impregnated carrier obtained in step (b) to obtain the titanium catalyst.Type: GrantFiled: May 1, 2007Date of Patent: July 27, 2010Assignee: Shell Oil CompanyInventors: Jan Karel Frederik Buijink, Johannes Jacobus Maria Van Vlaanderen
-
Publication number: 20090299107Abstract: A process for making a fluorinated olefin. The process has the step of dehydrochlorinating a hydrochlorofluorocarbon having at least one hydrogen atom and at least one chlorine atom on adjacent carbon atoms in the presence of a catalytically effective amount of a catalyst composition. The catalyst composition is represented by the following: n wt. % MX/M?OyFz, wherein 0<y<1 and 0<z<2 and wherein y+z/2=1; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F?, Cl?, Br?, and I?, M? is a bivalent metal ion; wherein n is a weight percentage of about 0.05% to about 50% MX based on the total weight of the MX and M?OyFz, and wherein y and z are the mole fractions of oxygen and fluorine in M?OyFz, respectively. There are also methods for making catalyst compositions.Type: ApplicationFiled: May 27, 2009Publication date: December 3, 2009Inventors: Haiyou Wang, Hsueh Sung Tung
-
Publication number: 20090270608Abstract: Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120° C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.Type: ApplicationFiled: April 28, 2008Publication date: October 29, 2009Inventors: Zongchao C. Zhang, Heather M. Brown, Yu Su
-
Publication number: 20090246109Abstract: A composite single phase crystalline mixed metal oxide NOx scavenger formed of a solid solution, wherein the solid solution has a well defined single phase crystalline structure, as determined by conventional x-ray Diffraction method; and, a NOx scavenger disposed within the single phase oxide structure, without formation of additional X-ray discrete phase, wherein the NOx scavenger is formed from oxides of an element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, rare earth metals and mixtures thereof. The aforementioned single phase oxide may further posses a cubic fluorite structure and said composite cubic oxide NOx scavenger may be advantageously applied to the control of emissions, of both gaseous and solid or particulate nature, from internal combustions especially engines operating under the principle of compression ignition.Type: ApplicationFiled: September 29, 2008Publication date: October 1, 2009Inventor: Barry W.L. Southward
-
Publication number: 20090208403Abstract: This invention relates primarily to a novel method to manufacture single/multi/fibers carbon filaments (nano tubes) in pure form optionally with antiferromagnetic and electrical property wherein the byproduct is hydrogen gas resulting in reduction of environmental carbon emissions by at least 20%; both carbon filaments and resultant exhaust are useful products.Type: ApplicationFiled: February 17, 2008Publication date: August 20, 2009Applicant: Quaid-e-Azam UniversityInventors: Syed Tajammul Hussain, Mohammed Mazhar, Sheraz Gul, M. Abdullah Khan
-
Publication number: 20090149680Abstract: There is provided methods for making a catalyst composition represented by the formula MX/M?F2 wherein MX is an alkali metal halide; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F?, Cl?, Br?, and I?; M?F2 is a bivalent metal fluoride; and M? is a bivalent metal ion. One method has the following steps: (a) dissolving an amount of the alkali metal halide in an amount of solvent sufficient to substantially dissolve or solubilize the alkali metal halide to form an alkali metal halide solution; (b) adding an amount of the bi-valent metal fluoride to the alkali metal halide solution to form a slurry of the alkali metal halide and bi-valent metal fluoride; and (c) removing substantially all of the solvent from the slurry to form a solid mass of the alkali metal halide and bi-valent metal fluoride.Type: ApplicationFiled: November 21, 2008Publication date: June 11, 2009Inventors: Haiyou Wang, Hsueh Sung Tung
-
Patent number: 7485598Abstract: A process for the activation of a fluorination catalyst in which a catalyst precursor compound, supported or unsupported is first dried and thereafter activated by exposure to an activating agent at a pressure greater that about 100 psig and a temperature grater than about 100° C. The process is particularly suited to the activation of chromium (III) compounds, such as Cr2O3. The resulted dry, high-pressure activated catalyst was found to provide increase fluorination conversion, with higher selectivity of the desired product.Type: GrantFiled: June 21, 2006Date of Patent: February 3, 2009Assignee: Arkema Inc.Inventors: Maher Y. Elsheikh, Beatrice Boussand
-
Patent number: 7462577Abstract: A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.Type: GrantFiled: May 12, 2006Date of Patent: December 9, 2008Assignee: Ovonic Battery Company, Inc.Inventors: Michael A. Fetcenko, Stanford R. Ovshinsky, Kwo Young
-
Patent number: 7402546Abstract: The invention relates to supports comprising inorganic oxide particles coated with magnesium chloride and a method for making them. The inorganic oxide has a mean particle diameter of less than 5 microns and is used as a seed to crystallize magnesium chloride from solution. The magnesium chloride-coated inorganic oxide is useful for supporting transition metal compounds; the supported transition metal compounds are used as catalysts for polymerizing olefins.Type: GrantFiled: September 23, 2004Date of Patent: July 22, 2008Assignee: Equistar Chemicals, LPInventors: Douglas D. Klendworth, Mark K. Reinking, Edward D. Kist
-
Publication number: 20080127631Abstract: Disclosed herein is a catalyst composition comprising a halide of a Group Ib element and an inert powder. Disclosed herein too is a composition comprising a reaction product of a halide of a Group Ib element, an inert powder and mercury. Disclosed herein too is a method comprising injecting a catalyst composition comprising a halide of a Group Ib element and an inert powder into an emissions stream of a thermoelectric power plant; converting an elemental form of mercury present in the emissions stream into an oxidized form, an amalgamated form and/or a particulate bound form of mercury; and collecting the oxidized form, the amalgamated form and/or the particulate bound form of mercury prior to the entry of the emissions stream into the atmosphere.Type: ApplicationFiled: November 30, 2006Publication date: June 5, 2008Applicant: General Electric CompanyInventors: Deborah Ann Haitko, Vitali Lissianski, Alison Liana Palmatier
-
Patent number: 7371316Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.Type: GrantFiled: July 24, 2003Date of Patent: May 13, 2008Inventor: Jeffrey P. Newton
-
Publication number: 20070299286Abstract: A process for the activation of a fluorination catalyst in which a catalyst precursor compound, supported or unsupported is first dried and thereafter activated by exposure to an activating agent at a pressure greater that about 100 psig and a temperature grater than about 100° C. The process is particularly suited to the activation of chromium (III) compounds, such as Cr2O3. The resulted dry, high-pressure activated catalyst was found to provide increase fluorination conversion, with higher selectivity of the desired product.Type: ApplicationFiled: June 21, 2006Publication date: December 27, 2007Inventor: Maher Y. Elsheikh
-
Patent number: 7199076Abstract: In an embodiment, a method of hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon includes contacting the highly unsaturated hydrocarbon with a catalyst in the presence of hydrogen. The catalyst comprises palladium and an inorganic support having a surface area of from about 4.5 to about 20 m2/g, or alternatively 5 to 14.5 m2/g. The inorganic support may comprise ?-alumina treated with a fluoride source. The palladium may be primarily disposed near the surface of the support. In addition, the catalyst may comprise silver distributed throughout the support. In another embodiment, a method of making the foregoing selective hydrogenation catalyst includes contacting a fluorine-containing compound with an inorganic support, heating the support, and adding palladium to the inorganic support. After adding palladium to the support, the support can then be heated again, followed by adding silver to and then heating the support once again.Type: GrantFiled: December 19, 2003Date of Patent: April 3, 2007Assignee: Chevron Phillips Chemical Company LPInventors: Joseph Bergmeister, III, Tin-Tack Peter Cheung
-
Patent number: 7060652Abstract: A liquid electrode mixture for use in a gas sensor having from about 60 to about 240 milligrams of platinum black catalyst; from about 900 to about 1100 milligrams of water; from about 300 to about 400 microliters of 1-propanol; and from about 100 microliters to about 150 microliters of a polymer mixture comprising from about 40% to about 80% PTFE by weight and water.Type: GrantFiled: November 15, 2005Date of Patent: June 13, 2006Assignees: OmegaPoint Systems, LLC, Transducer Technology, Inc.Inventors: Edward L. Gollar, III, Joseph R. Stetter, Nathan Schattke
-
Patent number: 7053022Abstract: Hydrothermally synthesized catalysts comprising a mixed metal oxide are utilized to produce unsaturated carboxylic acids by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, in the presence thereof; or to produce unsaturated nitriles by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, and ammonia in the presence thereof.Type: GrantFiled: September 30, 2003Date of Patent: May 30, 2006Assignee: Rohm and Haas CompanyInventors: Anne Mae Gaffney, Ruozhi Song
-
Patent number: 7005059Abstract: The invention relates to a catalyst for the transformation of hydrocarbon-containing feedstocks, in particular hydrotreatment, comprising at least one metal of group VIIB and at least one hydro-dehydrogenating metal (of the non-noble metals of group VIII and/or the metals of group VIB, preferably molybdenum or tungsten) and at least one porous matrix, generally of the amorphous oxide or poorly crystallized type. The catalyst also contains silicon, boron, or phosphorus. It can also optionally contain at least one halogen.Type: GrantFiled: November 7, 1997Date of Patent: February 28, 2006Assignee: Institut Francais du PetroleInventors: Juliette Quartararo, Samuel Mignard, Slavie Kasztelan