Of Group V (i.e., V, Nb, Ta, As, Sb Or Bi) Patents (Class 502/246)
-
Patent number: 12243740Abstract: A perovskite material that has a perovskite crystal lattice having a formula of CxMyXz, where x, y, and z, are real numbers. Bulky organic cations reside near a surface or a grain boundary of the perovskite crystal lattice. C includes one or more cations selected from the group consisting of Group 1 metals, Group 2 metals, methylammonium, formamidinium, guanidinium, and ethene tetramine. M includes one or more metals each selected from the group consisting of Be, Mg, Ca, Sr, Ba, Fe, Cd, Co, Ni, Cu, Ag, Au, Hg, Sn, Ge, Ga, Pb, In, Tl, Sb, Bi, Ti, Zn, Cd, Hg, and Zr and combinations thereof. X includes one or more anions each selected from the group consisting of halides, sulfides, selenides, and combinations thereof.Type: GrantFiled: October 28, 2019Date of Patent: March 4, 2025Assignee: CubicPV Inc.Inventors: Michael D. Irwin, Michael Holland, Nicholas Anderson
-
Patent number: 10975000Abstract: The invention relates to a catalyst that comprises at least the tantalum element, at least an aldolizing element and at least a mesoporous oxide matrix, with the tantalum mass being between 0.1 and 30% of the mesoporous oxide matrix mass, the mass of the at least one aldolizing element being between 0.02 and 4% of the mesoporous oxide matrix mass, and use thereof.Type: GrantFiled: July 5, 2016Date of Patent: April 13, 2021Assignees: IFP Energies Nouvelles, Compagnie Generale Des Etablissements MichelinInventors: Nicolas Cadran, Alexandra Chaumonnot
-
Patent number: 9464039Abstract: A method for producing an unsaturated nitrile by subjecting propane to a vapor-phase catalytic ammoxidation reaction using a fluidized bed reactor in the presence of a composite oxide catalyst containing Mo, V, and Nb, the method comprising the step of: adding a tungsten compound into the fluidized bed reactor to adjust a molar ratio (W/Mo ratio) of tungsten contained in a tungsten compound to molybdenum contained in the composite oxide catalyst that exist within the fluidized bed reactor so that the molar ratio is in the range of 0.0001 to 0.1.Type: GrantFiled: October 13, 2011Date of Patent: October 11, 2016Assignee: ASAHI KASEI CHEMICALS CORPORATIONInventors: Sho Tamura, Sadao Shoji
-
Patent number: 9199921Abstract: A silica-supported catalyst used when producing a corresponding unsaturated nitrile in a vapor-phase catalytic ammoxidation reaction of propane or isobutane, the catalyst including a metal oxide represented by the following formula (1), MoVaNbbXcTdZeOn??(1) (wherein X represents at least one or more elements selected from Sb and Te; T represents at least one or more elements selected from Ti, W, Mn, and Bi; Z represents at least one or more elements selected from La, Ce, Yb, and Y; and a, b, c, d, e, and n are in the range of 0.05?a?0.5, 0.01?b?0.5, 0.001?c?0.5, 0?d?1, and 0?e?1, respectively, and n denotes a value that satisfies an atomic valence) wherein the silica-supported catalyst has an average pore size of 60 to 120 nm, a total pore volume of 0.15 cm3/g or more, a specific surface area of 5 to 25 m2/g, and a crystallite size of 40 to 250 nm as determined from half width of a (001) peak by X-ray diffraction.Type: GrantFiled: April 9, 2012Date of Patent: December 1, 2015Assignee: ASAHI KASEI CHEMICALS CORPORATIONInventors: Satoshi Endo, Takaaki Kato
-
Patent number: 9180427Abstract: Disclosed is a calcination apparatus, including: a calcination tube having open ends at both terminals; a pair of hoods, each hood covering each open end of the calcination tube; and a pair of rings, each ring sealing a gap between the calcination tube and the hood, wherein the rings are directly or indirectly fixed on an outer surface of the calcination tube; a groove is provided along a circumferential direction of the ring at a contact surface side between the ring and the hood; a sealed chamber surrounded by the hood and the groove is formed; and both the calcination tube and the rings rotate in a circumferential direction of the calcination tube while keeping the hood in contact with both sides of the groove.Type: GrantFiled: February 10, 2012Date of Patent: November 10, 2015Assignee: ASAHI KASEI CHEMICALS CORPORATIONInventors: Eri Tateno, Masatoshi Kaneta, Toshihiko Fukuzono, Haruhiko Watanabe
-
Patent number: 9090710Abstract: A method of selectively arraying ferritin and inorganic particles on a silicon oxide substrate at regions having vanadium, niobium or tantalum. An aspect of the method includes steps of: preparing a solution which contains ferritin modified at an N-terminal part of a subunit with a peptide set out in SEQ ID NO: 1, and from 0.01 v/v % to 10 v/v % of a nonionic surfactant and having a pH of from 7.4 to 8.2; and a binding step of bringing the solution in contact with regions of the substrate having vanadium, niobium, or tantalum to selectively array peptide-modified ferritin to vanadium, niobium or, tantalum portion. The method may also include a step of selectively arraying ferritin modified with the peptide set out in SEQ ID NO: 1, and the inorganic particles contained in ferritin at the vanadium, niobium, or tantalum portion by removing the solution.Type: GrantFiled: November 18, 2011Date of Patent: July 28, 2015Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventor: Nozomu Matsukawa
-
Publication number: 20150096900Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.Type: ApplicationFiled: April 26, 2013Publication date: April 9, 2015Inventors: Robert Schulz, Sylvio Savoie
-
Publication number: 20150011385Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.Type: ApplicationFiled: September 8, 2014Publication date: January 8, 2015Applicant: Catalytic Distillation TechnologiesInventor: J. Yong Ryu
-
Patent number: 8912115Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.Type: GrantFiled: May 8, 2009Date of Patent: December 16, 2014Assignee: Dow Global Technologies LLCInventors: Michael M. Olken, Edward M. Calverley
-
Publication number: 20140364303Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.Type: ApplicationFiled: June 6, 2013Publication date: December 11, 2014Applicant: CDTIInventor: Randal L. Hatfield
-
Patent number: 8907150Abstract: A method of producing from a biomass mesitylene-isopentane fuel is provided. A biomass may be fermented to form acetone. The acetone is converted in a catalytic reactor to mesitylene and mesityl oxide. The mesitylene is separated in a phase separator and the organic face containing mesityl oxide is sent to a dehydration reactor, then to a demethylation reactor, and finally to a hydrogenation reactor from which isopentane is recovered. This isopentane is then mixed with the mesitylene to form the final mesitylene-isopentane fuel. The catalytic reaction with acetone employs catalysts of either niobium, vanadium or tantalum.Type: GrantFiled: August 25, 2011Date of Patent: December 9, 2014Assignee: Swift Fuels, LLCInventor: John J. Rusek
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Publication number: 20140302982Abstract: The present invention relates to catalysts and methods for efficient conversion of carbohydrates into 5-hydroxymethylfurfural (HMF), which shows good activity and high selectivity for HMF preparation from saccharides. The catalyst is stable in aqueous system which makes it as an ideal catalyst for HMF production. High HMF yield was obtained even in mild condition. The catalysts of the invention are advantageous in that they are environment-friendly, easy separation and recovery, can be re-used in subsequent reactions, do not corrode reaction reactors. These features make the catalyst as a suitable catalyst for HMF preparation and have strong industrial application significance.Type: ApplicationFiled: June 18, 2014Publication date: October 9, 2014Inventors: Qishun LIU, Heng YIN, Yuguang DU, Fengli YANG, Wenxia WANG
-
Patent number: 8853436Abstract: Method for transesterification of fatty acid esters. The method includes contacting (i) a catalyst comprising at least one of barium oxide and apatite with (ii) a reaction medium comprising at least one of vegetable oil and fats.Type: GrantFiled: October 18, 2013Date of Patent: October 7, 2014Assignee: Petroleo Brasileiro S.A.-PetrobrasInventors: Márcio de Figueiredo Portilho, Alexander Rangel Bastos
-
Publication number: 20140271446Abstract: A catalyst comprising: a platinum group metal, silver or gold, and a carrier containing niobium or tantalum oxide or niobium or tantalum phosphate, and an oxide other than niobium or tantalum oxide, as well as its use in production of hydrogen peroxide. A process for producing hydrogen peroxide, comprising reacting hydrogen and oxygen in the presence of such catalyst in a reactor, and a process for producing such catalyst.Type: ApplicationFiled: November 6, 2012Publication date: September 18, 2014Inventors: Frédérique J. Desmedt, Jean-Pierre Ganhy, Yves Vlasselaer, Pierre Miquel
-
Patent number: 8772195Abstract: To produce a silica-supported catalyst having an excellent yield of a target product and excellent catalyst attrition resistance. A method for producing a silica-supported catalyst comprising Mo, V, Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of propane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.Type: GrantFiled: January 21, 2010Date of Patent: July 8, 2014Assignee: Asahi Kasei Chemicals CorporationInventors: Yusuke Ishii, Takaaki Kato
-
Patent number: 8734743Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.Type: GrantFiled: June 9, 2011Date of Patent: May 27, 2014Assignee: BASF SEInventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
-
Patent number: 8481448Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.Type: GrantFiled: July 19, 2010Date of Patent: July 9, 2013Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
-
Patent number: 8455389Abstract: The invention provides an amorphous hydrocracking catalyst for conversion of a hydrocarbon feed having a fraction above the diesel boiling range to diesel and a process using said catalyst. The catalyst includes Al203—SiO2 support, a noble catalytically active metal which is active for hydrocracking of a hydrocarbon above the diesel boiling range and a transition metal oxide selected from group V, VI and VII.Type: GrantFiled: May 24, 2001Date of Patent: June 4, 2013Assignee: Sasol Technology (Pty) Ltd.Inventors: Aubin-Maurice Liwanga-Ehumbu, Jacobus Lucas Visagie, Dieter Otto Leckel
-
Patent number: 8435912Abstract: A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.Type: GrantFiled: July 6, 2007Date of Patent: May 7, 2013Assignee: IFP Energies NoevellesInventors: Alexandra Chaumonnot, Denis Guillaume, Benoit Fremon, Karin Marchand, Renaud Revel
-
Patent number: 8415267Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.Type: GrantFiled: June 4, 2012Date of Patent: April 9, 2013Assignee: Korea University Research and Business FoundationInventor: Kwangyeol Lee
-
Patent number: 8357625Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.Type: GrantFiled: June 18, 2009Date of Patent: January 22, 2013Assignee: Mitsubishi Gas Chemical Company, Inc.Inventor: Atsushi Okamoto
-
Patent number: 8288306Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.Type: GrantFiled: January 20, 2010Date of Patent: October 16, 2012Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
-
Publication number: 20120258037Abstract: A catalytic membrane reactor assembly for producing a hydrogen stream from a feed stream having liquid hydrocarbons, steam, and an oxygen source through the use of an autothermal reforming reaction, a water-gas-shift reaction, and a hydrogen permeable membrane.Type: ApplicationFiled: April 11, 2011Publication date: October 11, 2012Applicant: Saudi Arabian Oil CompanyInventors: Thang V. Pham, Sai P. Katikaneni, Jorge N. Beltramini, Moses O. Adebajo, Joao Carlos Diniz Da Costa, G.Q. Lu
-
Patent number: 8263290Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterized by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.Type: GrantFiled: June 1, 2011Date of Patent: September 11, 2012Assignee: Umicore AG & Co. KGInventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
-
Patent number: 8216961Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.Type: GrantFiled: August 27, 2008Date of Patent: July 10, 2012Assignee: Korea University Research and Business FoundationInventor: Kwangyeol Lee
-
Publication number: 20120122669Abstract: A method of selectively arraying ferritin and inorganic particles on a silicon oxide substrate having a chromium, niobium or tungsten portion. An aspect of the method includes steps of: preparing a solution which contains ferritin modified at an N-terminal part of a subunit with a peptide set out in SEQ ID NO: 1, and a nonionic surfactant; and a binding step of bringing the solution in contact with the silicon oxide substrate to selectively array peptide-modified ferritin to the chromium, niobium or, tungsten portion. Another aspect of the method includes selectively arraying ferritin modified with the peptide set out in SEQ ID NO: 1, and the inorganic particles contained in ferritin at the chromium, niobium, or tungsten portion by removing the solution.Type: ApplicationFiled: November 21, 2011Publication date: May 17, 2012Applicant: PANASONIC CORPORATIONInventor: Nozomu MATSUKAWA
-
Publication number: 20120058884Abstract: Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.Type: ApplicationFiled: November 9, 2011Publication date: March 8, 2012Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATIONInventor: Kwangyeol Lee
-
Publication number: 20120021898Abstract: A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.Type: ApplicationFiled: July 22, 2010Publication date: January 26, 2012Inventors: Jeffrey W. Elam, Christopher L. Marshall, Joseph A. Libera, James A. Dumesic, Yomaira J. Pagan-Torres
-
Publication number: 20110295048Abstract: A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.Type: ApplicationFiled: May 31, 2010Publication date: December 1, 2011Applicant: Fina Technology, Inc.Inventors: James Butler, Olga Khabashesku, Darek Wachowicz, Callum Bailey
-
Publication number: 20110237758Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.Type: ApplicationFiled: September 16, 2009Publication date: September 29, 2011Applicant: DIC CorporationInventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
-
Publication number: 20110212829Abstract: A process for making a ceramic catalyst material includes mixing a catalyst precursor material with a mineral particulate to form a mixture; adding a binder, silicon carbide, and a parting agent to the mixture to form unfired spheroids; and heating the unfired spheroids at a temperature effective to oxidize the silicon carbide and the catalyst precursor material to form the ceramic catalyst material. In another embodiment, the process includes the addition of a catalyst metal oxide salt to an aluminosilicate hydrogel aggregate mixture. Once the mixture sets, the set mixture is heated to a temperature to effective to produce a high surface area ceramic catalyst material.Type: ApplicationFiled: March 16, 2011Publication date: September 1, 2011Inventor: Felice DiMascio
-
Patent number: 7976989Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.Type: GrantFiled: October 29, 2004Date of Patent: July 12, 2011Assignee: Umicore AG & Co. KGInventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
-
Publication number: 20110065572Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.Type: ApplicationFiled: May 8, 2009Publication date: March 17, 2011Applicant: DOW GLOBAL TECHNOLOGIES INC.Inventors: Michael M. Olken, Edward M. Calverley
-
Patent number: 7858201Abstract: A titanium oxide-based photocatalyst which can exhibit excellent photocatalytic properties in response to visible light while maintaining its inherent activity in response to ultraviolet light and which is suitable for mass production contains bismuth as a first additional metal component and at least one metal element selected from silicon, zirconium, aluminum, and hafnium as a second additional metal component in titanium oxide. The Bi/Ti atomic ratio is preferably at least 0.0001 and at most 1.0, the atomic ratio of the second additional metal to Ti is preferably at least 0.0001 and at most 0.8, and a portion of bismuth is preferably present in the form of lower valence (Bi2+ or Bi0). The presence of lower valence bismuth can be ascertained by XPS analysis.Type: GrantFiled: March 28, 2008Date of Patent: December 28, 2010Assignee: Sumitomo Metal Industries, Ltd.Inventors: Yasuhiro Masaki, Tadashi Fukuda, Katsuhiro Nishihara, Rie Katsui
-
Patent number: 7846867Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.Type: GrantFiled: August 30, 2007Date of Patent: December 7, 2010Assignee: China Petroleum & Chemical CorporationInventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
-
Patent number: 7790650Abstract: The present invention relates to catalysts comprising at least one support and at least one layer applied to said support, said layer containing a) 20 to 95% by weight of at least one aluminum, silicon, titanium or magnesium oxide compound or a silicon carbide or a carbon support or mixtures thereof, and b) 5 to 50% by weight of at least one nanocarbon. The catalysts can be used to produce unsaturated hydrocarbons by means of the oxidative dehydrogenation of alkylaromatics, alkenes and alkanes in the gas phase.Type: GrantFiled: July 13, 2005Date of Patent: September 7, 2010Assignee: NanoC Sdn. Bhd.Inventors: Robert Schlogl, Gerhard Mestl
-
Patent number: 7759277Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.Type: GrantFiled: March 19, 2009Date of Patent: July 20, 2010Assignee: Kabushiki Kaisha ToshibaInventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
-
Patent number: 7745369Abstract: A catalyst that one or more metals from Column 5 of the Periodic Table and/or one or more compounds of one or more metals from Column 5 of the Periodic Table is described. The catalyst exhibits one or more bands in a range from 650 cm?1 to 1000 cm?1, as determined by Raman Spectroscopy. Methods of contacting a crude feed with hydrogen with the catalyst to produce a crude product with minimal hydrogen uptake are also described.Type: GrantFiled: June 22, 2006Date of Patent: June 29, 2010Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Publication number: 20100120610Abstract: A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.Type: ApplicationFiled: January 15, 2010Publication date: May 13, 2010Applicant: CARRIER CORPORATIONInventors: Wayde R. Schmidt, Treese Campbell-Hugener, Tania Bhatia
-
Publication number: 20100111796Abstract: Catalysts, methods of preparing catalyst, and methods for treating exhaust gas streams are described. In one or more embodiments, a catalyst system includes an upstream zone effective to catalyze the conversion of a mixture of NOx and NH3 to N2, and a downstream zone effective for the conversion of ammonia to N2 in the presence or absence of NOx. In an embodiment, a method for preparing a catalyst system includes: first coating one end of a substrate along at least 5% of its length with an undercoat washcoat layer containing a material composition effective to catalyze the removal of ammonia; second coating with an overcoat layer containing a material composition effective to catalyze the conversion of a mixture of NOx and NH3 to N2.Type: ApplicationFiled: November 3, 2008Publication date: May 6, 2010Applicant: BASF Catalysts LLCInventors: Matthew Tyler Caudle, Martin Dieterle, Scott E. Buzby
-
Publication number: 20100094070Abstract: Bimetallic, supported catalysts for production of 1-hexene from ethylene are manufactured by impregnating a porous, solid support material with at least one catalytic chromium compound and at least one catalytic tantalum compound. The bimetallic, supported catalysts have high catalytic turnover, high selectivity for 1-hexene production, a low tendency for metals to leach from the catalysts during manufacturing and use compared to catalysts manufactured using known techniques. Moreover, the catalysts can be reused in multiple synthesis runs. High turnover, high selectivity, and reusability improve yields and reduce the costs associated with producing 1-hexene from ethylene, while the absence of metal leaching reduces the potential environmental impacts of using toxic metal catalysts (e.g., chromium).Type: ApplicationFiled: October 15, 2008Publication date: April 15, 2010Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLCInventors: He Qiu, Bing Zhou
-
Patent number: 7696119Abstract: A process for producing various organic carbonates by performing transesterification and disproportionation reactions in dual vapor/liquid phase mode preferably in the presence of solid catalyst composition selected from the group consisting of oxides, hydroxides, oxyhydroxides or alkoxides of two to four elements from Group IV, V and VI of the Periodic Table supported on porous material which has surface hydroxyl groups and the method of reactivating catalyst deactivated by polymer deposition by contacting the deactivated catalyst with a solution of hydroxy containing compound in a solvent such as benzene or THF.Type: GrantFiled: December 14, 2007Date of Patent: April 13, 2010Assignee: Catalytic Distillation TechnologiesInventor: J. Yong Ryu
-
Patent number: 7655594Abstract: Briefly described, compositions, materials including the compositions, methods of using the compositions, and methods of degrading contaminants, are described herein. The composition can include a polyoxometalate/ cationic silica material. In addition, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, and a nitrate salts. Further, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, a compound selected from tetraethylammonium (TEA) nitrate, tetra-n-butylammonium (TBA) nitrate, and combinations thereof.Type: GrantFiled: May 5, 2003Date of Patent: February 2, 2010Assignee: Emory UniversityInventors: Neyla Okun, Craig L. Hill
-
Publication number: 20090305880Abstract: A process for producing various organic carbonates by performing transesterification and disproportionation reactions in dual vapor/liquid phase mode preferably in the presence of solid catalyst composition selected from the group consisting of oxides, hydroxides, oxyhydroxides or alkoxides of two to four elements from Group IV, V and VI of the Periodic Table supported on porous material which has surface hydroxyl groups and the method of reactivating catalyst deactivated by polymer deposition by contacting the deactivated catalyst with a solution of hydroxy containing compound in a solvent such as benzene or THF.Type: ApplicationFiled: August 11, 2009Publication date: December 10, 2009Applicant: Catalytic Distillation TechnologiesInventor: J. Yong Ryu
-
Patent number: 7625837Abstract: A composition, containing vanadium, potassium and a support is disclosed. A method of preparing such composition is also disclosed. The composition is employed in a process to remove a heavy metal from a gaseous feed stream which can optionally include a separate heavy metal adsorption stage.Type: GrantFiled: June 21, 2005Date of Patent: December 1, 2009Assignee: ConocoPhillips CompanyInventors: Glenn W. Dodwell, Joseph B. Cross, Marvin M. Johnson, Edward L. Sughrue, II, Jianhua Yao
-
Publication number: 20090178955Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.Type: ApplicationFiled: October 29, 2008Publication date: July 16, 2009Applicant: CATALYTIC DISTILLATION TECHNOLOGIESInventor: J. Yong Ryu
-
Publication number: 20090054538Abstract: Chemical production processes are provided than can include exposing a reactant composition to a catalyst composition to form a product composition, with the reactant composition including a multihydric alcohol compound and product composition including a carbonyl compound. The catalyst composition can include one or more elements of groups 5 and 6 of the periodic table of elements. Catalyst compositions are provided that can include one or more of niobia, hydrated niobia, tungstic acid, phosphotungstic acid, and phosphomolybdic acid.Type: ApplicationFiled: August 24, 2007Publication date: February 26, 2009Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Johnathon E. Holladay, Todd A. Werpy
-
Publication number: 20080241639Abstract: There is provided a catalyst for a fuel cell, which simultaneously realizes excellent catalytic activity and catalytic stability. The catalyst for a fuel cell comprises a fine particle of a metal represented by formula: PtxRuySizT1u wherein T1 represents at least one element selected from the group consisting of nickel (Ni), tungsten (W), vanadium (V), and molybdenum (Mo); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %, or comprises a fine particle of a metal represented by formula: PtxRuySizT2u wherein T2 represents at least one element selected from the group consisting of hafnium (Hf), tin (Sn), zirconium (Zr), niobium (Nb), titanium (Ti), tantalum (Ta), chromium (Cr), and aluminum (Al); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %.Type: ApplicationFiled: March 17, 2008Publication date: October 2, 2008Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Wu MEI, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Yoshihiko Nakano
-
Catalysts For Co Oxidation,Voc Combustion And Nox Reduction And Methods Of Making And Using The Same
Publication number: 20080233039Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.Type: ApplicationFiled: June 1, 2006Publication date: September 25, 2008Applicant: SYMYX TECHNOLOGIES, INC.Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens