Of Group Vi (i.e., Cr, Mo, W Or Po) Patents (Class 502/254)
  • Patent number: 10793784
    Abstract: The present invention relates to the process for preparing improved solid hydrogen transfer agents obtained from a polymer with units containing the structure of naphthalene, phenanthrene or anthracene, which exhibit activity as hydrogen transfer agents in any chemical reduction reaction involving the breaking of double bonds and in treatment, hydrotreatment and hydrodisintegration reactions of heavy and extra-heavy crude oils and of cuts and currents derived therefrom. These improved solid hydrogen transfer agents can be supported and not supported on metal oxides such as boehmite, alumina, silica, titania, kaolin and/or mixture thereof, in the presence of reducing agents such as hydrogen, methane, or natural gas.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Laura Olivia Alemán Vázquez, León Pablo Torres Mancera, Jorge Ancheyta Juárez
  • Patent number: 10703991
    Abstract: An ebullated bed process for the hydroconversion of heavy hydrocarbon feedstocks that provides for high conversion of the heavy hydrocarbon with a low sediment yield. The process uses for its catalyst bed an impregnated shaped ebullated bed catalyst having a low macroporosity and a geometry such that its characteristic cross section perimeter-to-cross sectional area is within a specifically defined range.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Shell Oil Company
    Inventor: Josiane Marie-Rose Ginestra
  • Patent number: 10544076
    Abstract: We have discovered that a di-epoxide can be converted to a dialdehyde using an amorphous silica-alumina catalyst. The method comprises contacting a di-epoxide mixed in an organic solvent with a silica-alumina catalyst to form a solvent and dialdehyde reaction product mixture and separating said dialdehyde from said reaction mixture. The dialdehydes have utility as chemical intermediates, and particular utility in processes to make enol ether compounds which can be used in applications as plasticizers, diluents, wetting agents, coalescing aids and as intermediates in chemical processes.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: January 28, 2020
    Assignee: Eastman Chemical Company
    Inventors: Matthew Allen Boone, William Christopher Ketchie
  • Patent number: 10252247
    Abstract: This invention relates to a hydrodesulfurization catalyst, a method for preparing the catalyst, and a method for the preparation of low sulfur gasoline fuel with minimal loss of RON. The catalyst particles include a group VIB metal and a support material having relatively high surface area, and optionally includes one or more group VIIIB metal. The method for preparing the catalyst allows for greater loading of the active metal species on the surface of the support material under aqueous reaction conditions.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: April 9, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Sameer Ali Al-Ghamdi, Ali H. Al-Shareef, Ali H. Al-Hamadah
  • Patent number: 10221366
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 5, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari
  • Patent number: 9937485
    Abstract: The present invention relates to a hydrocracking catalyst, a process for preparing the same and use thereof. The present catalyst comprises a cracking component and a hydrogenation component, wherein the cracking component comprises from 0 to 20 wt. % of a molecular sieve and from 20 wt. % to 60 wt. % of an amorphous silica-alumina, the hydrogenation component comprises at least one hydrogenation metal in a total amount of from 34 wt. % to 75 wt. % calculated by the mass of oxides, each amount is based on the total weight of the catalyst. The present catalyst is prepared by directly mixing an acidic component powder material with an impregnating solution, impregnating, filtering, drying, molding, and drying and calcining.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: April 10, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Yanze Du, Minghua Guan, Fenglai Wang, Chang Liu
  • Patent number: 9000207
    Abstract: A method for producing a silica-supported catalyst comprising Mo, V. Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of proprane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 7, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20150018572
    Abstract: The purpose of the present invention is to solve various problems with fatty acid alkyl ester methods using conventional homogenous-phase catalysts, and to provide a solid acid catalyst for fatty acid alkyl ester manufacturing that can be used to manufacture high-quality fatty acid alkyl esters and high-purity glycerin from various oils at low cost and with high yield.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 15, 2015
    Inventor: Shosei Oh
  • Patent number: 8912115
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Michael M. Olken, Edward M. Calverley
  • Publication number: 20140364303
    Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Applicant: CDTI
    Inventor: Randal L. Hatfield
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883669
    Abstract: The present invention relates to a hydrocracking catalyst comprising an acidic silica-alumina, an optional alumina, an effective quantity of at least one VIII Group metal component(s), an effective quantity of at least one VIB Group metal component(s) and an organic additive, wherein the organic additive is one or more selected from the group consisting of an oxygen-containing or nitrogen-containing organic compound, and the molar ratio of the organic additive to the VIII Group metal component(s) is 0.01-10. The present invention relates further to a process for producing the hydrocracking catalyst and use of the catalyst in a process for hydrocracking hydrocarbon oils. The hydrocracking catalyst provided according to the present invention shows a higher activity for aromatic hydrosaturating and ring-opening reaction, as compared with the prior art hydrocracking catalyst.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 11, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yichao Mao, Hong Nie, Jianwei Dong, Zhenlin Xiong, Zhihai Hu, Yahua Shi, Dadong Li
  • Patent number: 8815194
    Abstract: A NOx removal catalyst for high-temperature flue gas according to the present invention is a NOx removal catalyst for high-temperature flue gas that contains nitrogen oxide in which tungsten oxide with the number of molecular layers of tungsten oxide (WO3) being five or less is supported on a complex oxide carrier containing titanium oxide. Even when high-temperature denitration is continued, a bonding force with a carrier of WO3 can be properly maintained and volatilization can be suppressed while maintaining a high NOx removal performance. For example, the NOx removal catalyst is particularly suitable for reducing and removing nitrogen oxide contained in high-temperature gas discharged from a thermal power plant and a high-temperature boiler.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Toshinobu Yasutake, Masanao Yonemura
  • Patent number: 8815768
    Abstract: The present invention relates to catalysts, to processes for making catalysts with acidic precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: August 26, 2014
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Publication number: 20140235914
    Abstract: Provided are catalyst composites useful for the production of olefins during a metathesis reaction, as well as methods of making and using the same. Certain methods comprise a support comprising at least about 90% by weight silica; and an eggshell layer on the support comprising about 0.25 to about 10 wt. % tungsten in the form of tungsten oxide or tungsten oxide hydrate, based on the total weight of the catalyst composite.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 21, 2014
    Applicant: BASF Corporation
    Inventor: Joseph C. Dellamorte
  • Patent number: 8785707
    Abstract: A catalyst that comprises at least one binder and at least one crystallized material with hierarchized and organized porosity in the fields of microporosity and mesoporosity is described, whereby said crystallized material consists of at least two elementary spherical particles, each of said particles comprising a mesostructured silicon-oxide-based matrix that has a mesopore diameter of between 1.5 and 30 nm and that has microporous and crystallized walls with a thickness of between 1 and 60 nm, whereby said elementary spherical particles have a maximum diameter of 200 microns. Said catalyst is used in a process for oligomerization of an olefinic feedstock that contains hydrocarbon molecules that have 2 to 12 carbon atoms per molecule.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 22, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Amandine Cabiac, Alexandra Chaumonnot, Laurent Simon
  • Patent number: 8772195
    Abstract: To produce a silica-supported catalyst having an excellent yield of a target product and excellent catalyst attrition resistance. A method for producing a silica-supported catalyst comprising Mo, V, Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of propane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 8, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Publication number: 20140183098
    Abstract: A process for preparing a hydrocarbon conversion catalyst that comprises a specially made silica-alumina composition and a metal or metal compound selected from Group VIB and Group VIII metals. The silica-alumina composition is made by preparing an aqueous mixture containing aluminum sulfate followed by adding alkali metal aluminate to the mixture to inhance the pH to within specified range and then adding aluminum sulfate to the mixture to lower the pH. Then alkali metal silicate is added followed by several other pH swings to provide a mixture containing silica-alumina. The resulting mixture is treated with an alkaline solution to provide a precipitate solid that is recovered to obtain a silica-alumina composition containing of from 30 to 70% wt silica and of from 70 to 30% wt of alumina.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 3, 2014
    Applicant: Shell Oil Company
    Inventors: David Allen COOPER, Sjoerd ALKEMA, Lay Hwa ONG, Bart PELGRIM, Laszlo DOMOKOS, Ferry WINTER
  • Publication number: 20140171299
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Publication number: 20140171298
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8722568
    Abstract: Silica supports having a surface area from about 250 m2/g to about 600 m2/g and an average pore diameter from about 45 ? to about 170 ?, used for supported tungsten catalysts, improves the activity of the resulting catalyst (i.e., its conversion level at a given temperature) for the metathesis of olefins, without compromising its selectivity to the desired conversion product(s). Exemplary catalysts and processes include those for the production of valuable light olefins such as propylene from a hydrocarbon feedstock comprising ethylene and butylene.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: May 13, 2014
    Assignee: UOP LLC
    Inventors: Kristoffer E. Popp, Mark A. Krawczyk, Christopher P. Nicholas, Jennifer F. Abrahamian
  • Patent number: 8716504
    Abstract: The present invention provides rhenium-promoted epoxidation catalysts based upon shaped porous bodies comprising a minimized percentage of their total pore volume being present in pores having diameters of less than one micron, and a surface area of at least about 1.0 m2/g. Processes of making the catalysts and using them in epoxidation processes are also provided.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 6, 2014
    Assignee: Dow Technology Investments LLC
    Inventors: Albert C. Liu, Hwaili Soo
  • Patent number: 8685354
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 1, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Siva Sankar Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20140027346
    Abstract: An inorganic material is described, constituted by at least two elementary spherical particles, each of said spherical particles comprising metallic nanoparticles having at least one band with a wave number in the range 750 to 1050 cm?1 in Raman spectroscopy and containing one or more metals selected from vanadium, niobium, tantalum, molybdenum and tungsten, said metallic nanoparticles being trapped in a mesostructured matrix based on an oxide of an element Y selected from silicon, aluminium, titanium, tungsten, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium. Said matrix has pores with a diameter in the range 1.5 to 50 nm and amorphous walls with a thickness in the range 1 to 30 nm. Said elementary spherical particles have a maximum diameter of 200 microns and said metallic nanoparticles have a maximum dimension strictly less than 1 nm.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 30, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Audrey Bonduelle
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Patent number: 8569549
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Celanese International Corporation
    Inventors: Heiko Weiner, Victor J. Johnston
  • Publication number: 20130261322
    Abstract: The present invention relates to an improved process for preparing mono and poly epoxy functionalized fatty acids, their esters and mixtures thereof using solid catalyst i.e. supported group VIb metal oxide, said support comprising silica, alumina and mixtures thereof, optionally with a promoter from group VA wherein the group VIB metal oxide content in the catalyst is 5-20 wt % of support.
    Type: Application
    Filed: September 22, 2011
    Publication date: October 3, 2013
    Applicant: Council of Scientific and Industrial Research
    Inventors: Srinivas Darbha, Jitendra Kumar Satyarthi
  • Patent number: 8546294
    Abstract: The present invention provides rhenium-promoted epoxidation catalysts based upon shaped porous bodies comprising a minimized percentage of their total pore volume being present in pores having diameters of less than one micron, and a surface area of at least about 1.0 m2/g. Processes of making the catalysts and using them in epoxidation processes are also provided.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 1, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Albert C. Liu, Hwaili Soo
  • Patent number: 8518852
    Abstract: The present invention provides a catalyst base material and a catalyst which have high strength, high porosity or high activity and methods of producing the catalyst base material and catalyst. The present invention relates to a method of producing a catalyst base material, the method comprising dispersing or dissolving a hydrophilic polymer coagulant as a first component, a water-soluble thickener as a second component, a colloidal inorganic binder as a third component and an inorganic fiber as a fourth component in water to form a catalytic slurry or paste, supporting the catalytic slurry or paste on a net-like substrate such that the meshes of the net-like substrate are filled up with the slurry or paste, by drying and/or calcinating the substrate.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: August 27, 2013
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Naomi Imada
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8492305
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Publication number: 20130184501
    Abstract: The present invention relates to catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises acidic sites and two or more metals. The catalyst has acidic sites on the surface and the balance favors Lewis acid sites.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 18, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Publication number: 20130178663
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises cobalt, precious metal and one or more active metals on a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Dheeraj Kumar, Xiaoyan Tu, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178670
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises an extruded modified support, and a precious metal. The processes for making the catalysts comprises modifying the catalyst, extruding the catalyst, and impregnating the precious metal onto the catalyst.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Publication number: 20130178664
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support may comprise cobalt tungstate.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor Johnston, Dheeraj Kumar, Xiaoyan Tu, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178666
    Abstract: The present invention relates to catalysts, to processes for making catalysts with halide containing precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Publication number: 20130178667
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178665
    Abstract: The present invention relates to catalysts, to processes for making catalysts with acidic precursors and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a support, optionally a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner
  • Publication number: 20130178668
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8455389
    Abstract: The invention provides an amorphous hydrocracking catalyst for conversion of a hydrocarbon feed having a fraction above the diesel boiling range to diesel and a process using said catalyst. The catalyst includes Al203—SiO2 support, a noble catalytically active metal which is active for hydrocracking of a hydrocarbon above the diesel boiling range and a transition metal oxide selected from group V, VI and VII.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: June 4, 2013
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: Aubin-Maurice Liwanga-Ehumbu, Jacobus Lucas Visagie, Dieter Otto Leckel
  • Publication number: 20130090500
    Abstract: A process hydrogenating alkanoic acids in the presence of a catalyst that comprises supports, one or more metals, tungsten oxide, and at least one alkaline earth metal oxide or metasilicate. The molar ratio of the at least one alkaline earth metal oxide or metasilicate to tungsten oxide, based on the metals, is from 1:3 to 5:1.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: Celanese International Corporation
    Inventors: Radmila Jevtic, Victor Johnston, Heiko Weiner, Zhenhua Zhou
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8372777
    Abstract: Method of contacting a hydrocarbon feed with a catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 340 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ? or the catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 12, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Patent number: 8318000
    Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: November 27, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8309487
    Abstract: An exhaust gas purifying catalyst (1) is composed of: a noble metal (2); a first compound (3); and a second compound (4). The noble metal (2) is supported on the first compound (3). The exhaust gas purifying catalyst (1) includes units having a structure in which the first compound (3) supporting the noble metal (2) is surrounded by the second compound (4), and the first compound (3) supporting the noble metal (2) is isolated from one another by the second compound (4). The noble metal (2) is one or more selected from [Pt, Pd and Rh], the first compound (3) contains Ti as a main component, and the second compound (4) contains, as a main component, one or more selected from [Al and Si].
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 13, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Masanori Nakamura, Hironori Wakamatsu, Katsuo Suga
  • Publication number: 20120283090
    Abstract: Silica supports having a surface area from about 250 m2/g to about 600 m2/g and an average pore diameter from about 45 ? to about 170 ?, used for supported tungsten catalysts, improves the activity of the resulting catalyst (i.e., its conversion level at a given temperature) for the metathesis of olefins, without compromising its selectivity to the desired conversion product(s). Exemplary catalysts and processes include those for the production of valuable light olefins such as propylene from a hydrocarbon feedstock comprising ethylene and butylene.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: UOP LLC
    Inventors: Kristoffer E. Popp, Mark A. Krawczyk, Christopher P. Nicholas, Jennifer F. Abrahamian