Chromium Patents (Class 502/256)
  • Patent number: 11266976
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11241683
    Abstract: The present invention relates to catalysts of iron and chromium with a platinum promoter for use in water-gas shift reactions, both at low temperatures (LTS) and at high temperatures (HTS). Their characteristics of higher activity due to the addition of Pt compared to the conventional catalysts make them superior to the commercial catalysts in the same operating conditions. Because precursors of the active phase (Fe3O4) are obtained in greater quantity per unit area, it was possible to prepare catalysts that are more promising with a smaller surface area.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 8, 2022
    Assignees: PETRÓLEO BRASILEIRO S.A.—PETROBRAS, UNIVERSIDADE FEDERAL FLUMINENSE—UFF
    Inventors: Luis Eduardo Terra De Almeida, Ludmila De Paula Cabral Silva, Ana Carla da Silveira Lomba Sant'ana Coutinho, Fabio Barboza Passos, Vivian Passos De Souza, Maira Andrade Rodrigues, Amanda De Almeida Dumani Dos Santos
  • Patent number: 10662266
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 26, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear
  • Patent number: 10577440
    Abstract: A radically coupled polymer having a density of from about 0.915 g/ml to about 0.975 g/ml characterized by a crossover modulus measured in Pascals (Pa) that is equal to or less than ymn where ymn=180,000e?0.15x and x is the number average molecular weight of the radically coupled polymer divided by 1,000. An ethylene polymer having a level of short chain branching ranging from about 0 to about 10 mol. %; a level of long chain branching ranging from about 0.001 LCB/103 carbons to about 1.5 LCB/103 carbons as determined by SEC-MALS; and characterized by a crossover modulus measured in Pa that is equal to or less than ymn where ymn=180,000?0.15x and x is the number average molecular weight of the radically coupled polymer divided by 1,000.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: March 3, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Max P. McDaniel, Qing Yang, Jared L. Barr, Youlu Yu
  • Patent number: 10507462
    Abstract: A process is disclosed for an improved catalyst stripping process. The stripping vessel is divided into two zones. The first zone is a stripping zone where a substantial portion of the volatile hydrocarbons is removed at higher severity conditions. After the catalyst is stripped, the stripped catalyst moves to the lower cooling zone to be cooled at lower severity conditions. The flow rates, temperatures, pressures and the stripping and cooling zones are designed to ensure there is minimal volatile hydrocarbons on the catalyst by the time it leaves the stripping vessel. This design enables efficient stripping of volatile hydrocarbons at high severity conditions and eliminates these components from being stripped off elsewhere in the unit causing process and equipment issues.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 17, 2019
    Assignee: UOP LLC
    Inventors: Pelin Cox, William D. Schlueter, William Yanez, Jeffrey Grott
  • Patent number: 10246528
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: April 2, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Collins
  • Patent number: 9266976
    Abstract: The instant invention relates to an activation of a polymerization catalyst precursor by heat treatment comprising a support material and a catalyst precursor deposited thereon in a fluidized bed activator and to the use of the activated polymerization catalyst in the manufacture of polyolefins. The activation involves heat treatment in the presence of oxygen. After that activation the oxygen in the activator is replaced by inert gas via flushing until the fluidization gas emerging from the activator comprises oxygen in a maximum amount of up to 5 ppm. The catalyst prepared by that method is improved with respect to prevent reactor fouling during gas-phase polymerization or slurry polymerization either in stirred vessel or loop.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: February 23, 2016
    Assignee: Basell Polyolefine GmbH
    Inventors: Manfred Hecker, Paulus De Lange, Rainer Karer
  • Patent number: 9068027
    Abstract: A method comprising contacting a silica support material with a sulfating agent to form a sulfated silica support material comprising sulfate anions; thermally treating the sulfated silica support material to form a thermally treated sulfated silica support material; contacting the thermally treated sulfated silica support material with a chromium-containing compound to form a mixture; and thermally treating the mixture to form a polymerization catalyst.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 30, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Kathy S. Collins
  • Patent number: 8895468
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8846834
    Abstract: Mineral oil is added to a supported chromium catalyst in amounts which maintain a free flowing particulate material. Chromium catalysts so treated, provide polyethylene in a gas phase ethylene polymerization process with reduced reactor fouling or static.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 30, 2014
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Patrick Drew Evans
  • Publication number: 20140275457
    Abstract: A method comprising contacting a support material with a transition metal compound to produce a mixture; thermally treating the mixture in the presence of oxygen at a temperature in a range of from about 100° C. to about 500° C. for a period of from about 1 hour to about 10 hours, wherein at least a portion of the transition metal sublimes onto the support material to produce a support material comprising a dispersed transition metal; and thermally treating the support material comprising the dispersed transition metal in an oxidizing atmosphere at a temperature in a range of from about 550° C. to about 900° C. for a period of from about 1 hour to about 10 hours to produce a polymerization catalyst.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Max P. MCDANIEL, Kathy S. COLLINS, Eric D. SCHWERDTFEGER, Alan L. SOLENBERGER
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140121095
    Abstract: A process for preparing a catalyst comprising (A) selecting a catalyst support selected from the group consisting of gels of silica, silica alumina, alumina, aluminum phosphate, aluminaphospate, and combinations of two or more thereof; (B) mixing the catalyst support with one or more chromium containing compound, wherein the chromium containing compound is selected from the group consisting of chromium containing compounds which are oxidizable to a Cr+6 state and chromium containing compounds wherein the chromium is in a Cr+6 state; (C) mixing the catalyst support with one or more transition metal catalyst component; (D) calcining the catalyst support; and (E) optionally for the chromium containing compound which is oxidizable to a Cr+6 state, converting the chromium in the chromium containing compound to Cr+6; and (F) spray drying the catalyst support to form catalyst particles; wherein steps (B)-(F) may occur separately in any order or wherein any one or more of steps (B)-(F) may be combined together; and w
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Robert James Jorgensen
  • Patent number: 8697599
    Abstract: A method comprising (a) contacting a support and a chromium-containing compound to form chromium-containing support, (b) heat treating the chromium-containing support in an oxidizing atmosphere to form a treated support, (c) contacting the treated support with carbon monoxide to form a CO-contacted support, and (d) contacting the CO-contacted support with hydrogen to form a catalyst. A method comprising oxidizing a chromium-treated support to form a polymerization catalyst, contacting the polymerization catalyst with carbon monoxide to form a reduced polymerization catalyst, contacting the reduced polymerization catalyst with hydrogen to form an activated polymerization catalyst, and contacting the activated polymerization catalyst with ethylene in a reaction zone under suitable reaction conditions to form a random copolymer.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins, Stephen M. Wharry
  • Patent number: 8673806
    Abstract: The invention concerns catalysts comprising (i) a cladded catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the cladded catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the cladded catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalysts.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 18, 2014
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Patent number: 8674158
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8673808
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20130310526
    Abstract: A process for preparing a catalyst, and catalysts prepared thereby. The process includes selecting a catalyst support and mixing it with one or more chromium containing compounds oxidizable to a Cr+6 state or already in a Cr+6 state, and with with one or more transition metal catalyst component, and calcining the catalyst support while oxidizing any chromium containing compound to a Cr+6 state, and spray drying the catalyst support to form catalyst particles. The catalyst supports are characterized by a surface area greater than 50 m2/gram and a pore volume greater than 0.5 cc/gram at the time of mixing the catalyst support gels with the chromium containing compound.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY LLC
    Inventor: Robert James Jorgensen
  • Patent number: 8518851
    Abstract: The present invention relates to a catalyst for the hydrogenation of unsaturated hydrocarbons, in particular aromatics with a broad molecular weight range, a process for the production thereof and a process for hydrogenating unsaturated hydrocarbons.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 27, 2013
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Reinhard Geyer, Jürgen Hunold, Peter Kraak, Rainer Schoedel
  • Publication number: 20130203947
    Abstract: The present invention relates to a process for the activation of a supported chromium oxide based catalyst.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 8, 2013
    Applicant: INEOS COMMERCIAL SERVICES UK LIMITED
    Inventors: Christophe Moineau, Stephan Detournay
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20130184148
    Abstract: A process for the selective production of ethanol by vapor phase reaction of acetic acid over a hydrogenating catalyst composition to form ethanol is disclosed and claimed. In an embodiment of this invention reaction of acetic acid and hydrogen over either cobalt and palladium supported on graphite or cobalt and platinum supported on silica selectively produces ethanol in a vapor phase at a temperature of about 250° C.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 18, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventor: CELANESE INTERNATIONAL CORPORATION
  • Patent number: 8481451
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8471085
    Abstract: Among other things, this disclosure provides an olefin oligomerization system and process, the system comprising: a) a transition metal compound; b) a pyrrole compound having a hydrogen atom on at the 5-position or the 2- and 5-position of a pyrrole compound and having a bulky substituent located on each carbon atom adjacent to the carbon atom bearing a hydrogen atom at the 5-position or the 2- and 5-position of a pyrrole compound. These catalyst system have significantly improved productivities, selectivities to 1-hexene, and provides higher purity 1-hexene within the C6 fraction than catalyst systems using 2,4-dimethyl pyrrole.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 25, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Orson L. Sydora
  • Publication number: 20130090437
    Abstract: A process for preparation of silica xerogel catalyst support particles having high surface areas involves ageing a silica hydrogel at a pH from 3 to 5 and at a temperature of 45° C. or more. The ageing at low pH leads to a silica gel which may be converted to a xerogel having a pore volume of 1.5 cm3/g or more and a surface area of 600 m2/g or more by removal of liquid from the pore structure by solvent exchange with a liquid solvent having a surface tension of 35 mN/m or less. The resulting particles are useful for carrying catalyst metal compounds, such as a chromium compounds, in the pore structure to act as catalyst precursors. These catalyst precursors may be activated into porous catalyst particles suitable for use for olefin polymerisation to provide high activity and for forming high molecular weight polymers (low MI polymers) with good crack resistance.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 11, 2013
    Applicant: PQ CORPORATION
    Inventors: Parag Rasiklal Shah, Yatao Rachel Hu, Myoung Kie Lee
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Publication number: 20130072739
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8372777
    Abstract: Method of contacting a hydrocarbon feed with a catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 340 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ? or the catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 12, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Patent number: 8324330
    Abstract: The invention is directed to a process for the preparation of a silylchromate catalyst comprising the steps of: 1. depositing silylchromate on a support at a deposition temperature of at least 55° C. during a deposition time of less than 6 hours, 2. reducing the supported silylchromate by addition of a reducing agent at a reduction temperature of at least 15° C. during a reduction time of less than 1.5 hours; and 3. drying of the reduced silylchromate at a temperature of at least 25° C. during a drying time of less than 8 hours. The invention also relates to a process for the production of an ethylene homopolymer or an ethylene copolymer in the presence of the silylchromate catalyst obtained with the process according to the invention.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: December 4, 2012
    Assignee: Saudi Basic Industires Corporation
    Inventors: Syriac Palackal, Srikant Hazra, Orass Hamed, Mohammed Al-Anazi
  • Publication number: 20120302707
    Abstract: Mineral oil is added to a supported chromium catalyst in amounts which maintain a free flowing particulate material. Chromium catalysts so treated, provide polyethylene in a gas phase ethylene polymerization process with reduced reactor fouling or static.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 29, 2012
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Xiaoliang Gao, Patrick Drew Evans
  • Patent number: 8318000
    Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: November 27, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Patent number: 8216961
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8183173
    Abstract: A method of preparing a catalyst comprising aging a silica support in an alkaline solution to produce an alkaline aged silica support, removing at least a portion of the alkaline solution from the alkaline aged silica support to produce a dried silica support, and activating the silica support to produce a catalyst composition, wherein alkaline aging lowers the surface area of the silica support to less than about 50% of the original value and wherein activation of the silica support is carried out in batches of equal to or greater than about 500 lbs for a time period of less than about 8 hours.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 22, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Ted Cymbaluk, George Neil
  • Publication number: 20120122669
    Abstract: A method of selectively arraying ferritin and inorganic particles on a silicon oxide substrate having a chromium, niobium or tungsten portion. An aspect of the method includes steps of: preparing a solution which contains ferritin modified at an N-terminal part of a subunit with a peptide set out in SEQ ID NO: 1, and a nonionic surfactant; and a binding step of bringing the solution in contact with the silicon oxide substrate to selectively array peptide-modified ferritin to the chromium, niobium or, tungsten portion. Another aspect of the method includes selectively arraying ferritin modified with the peptide set out in SEQ ID NO: 1, and the inorganic particles contained in ferritin at the chromium, niobium, or tungsten portion by removing the solution.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 17, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: Nozomu MATSUKAWA
  • Patent number: 8178468
    Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 15, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Publication number: 20120071614
    Abstract: The invention concerns catalysts comprising (i) a cladded catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the cladded catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the cladded catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalysts.
    Type: Application
    Filed: January 7, 2010
    Publication date: March 22, 2012
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Publication number: 20120058884
    Abstract: Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Kwangyeol Lee
  • Publication number: 20120041160
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8114806
    Abstract: A catalyst and a method of preparation of said catalyst is described herein. The catalyst includes one or more metals from Columns 6-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 6-10 of the Periodic Table, a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?. Methods of producing said catalyst are described herein. Crude products and products made from said crude products are described herein.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: February 14, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20110257443
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Application
    Filed: February 1, 2011
    Publication date: October 20, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston