Using Acid Patents (Class 502/27)
  • Patent number: 6077803
    Abstract: A process for presulfurizing a refining catalyst or petrochemical catalyst consists of bringing a catalyst into contact with liquid elementary sulfur or elementary sulfur dissolved in a liquid, preferably another sulfur compound such as an organic polysulfide, in the presence of a stabilizing agent, e.g., a fatty acid, mercaptan or alcohol.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: June 20, 2000
    Assignee: Europeene de Retraitment de Catalyseurs
    Inventors: Pierre Dufresne, Nilanjan Brahma
  • Patent number: 6071843
    Abstract: Platinum metal-containing catalyst systems, which comprise at least one platinum metal, a co-catalyst and other salts, and which are used for the production of diaryl carbonates by the oxidative reaction of aromatic hydroxy compounds with carbon monoxide, can be reactivated by treating the deactivated catalyst system in the liquid phase with an oxidising agent, removing the excess oxidising agent, and reacting the reactivated catalyst system with a carboxylate or diketonate.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: June 6, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Hans-Josef Buysch, Carsten Hesse, Johann Rechner
  • Patent number: 6046125
    Abstract: The present invention discloses aqueous methods for enhancing the acid sites of fluid catalytic cracking (FCC) catalysts. The methods comprise the steps of contacting an FCC catalyst, either spent or fresh, with an aqueous solution comprising water, an inorganic acid substantially free of chloride and aluminum. The acid is preferably sulfurous or sulfuric acid. The aluminum is provided by an aluminum source selected from the group consisting of the alumina trihydrates and aluminum oxide. Chloride contamination of the aluminum source should be minimal, preferably less than about 1000 ppm chloride, more preferably less than about 200 ppm chloride. The pH of the aqueous solution is adjusted to about 3-12 by the addition of a sufficient quantity of ammonium hydroxide. The FCC catalyst is added to this solution, preferably with stirring, in a weight ratio of about 1 part catalyst to about 1-10 parts water to prepare an aqueous slurry.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: April 4, 2000
    Assignee: Coastal Catalyst Technology, Inc.
    Inventor: Stephen K. Pavel
  • Patent number: 6034017
    Abstract: The present invention discloses aqueous methods for enhancing the acid sites of fluid catalytic cracking (FCC) catalysts. The methods comprise the steps of contacting an FCC catalyst, either spent or fresh, with an aqueous solution comprising water, and a source of both phosphorus and aluminum. Optionally the solution includes sulfurous or sulfuric acid. The phosphorus is provided by phosphoric acid, phosphorous acid or ammonium dihydrogen phosphate. The aluminum is provided by an aluminum source selected from the group consisting of the alumina trihydrates and aluminum oxide. Chloride contamination of the aluminum source should be minimal, preferably less than about 1000 ppm chloride, more preferably less than about 200 ppm chloride. The pH of the aqueous solution is adjusted to about 3-12 by the addition of a sufficient quantity of an aqueous ammonium solution.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: March 7, 2000
    Assignee: Coastal Catalyst Technology, Inc.
    Inventor: Stephen K. Pavel
  • Patent number: 6025292
    Abstract: Disclosed are (1) a method for the regeneration of a denitration catalyst wherein, in order to regenerate a denitration catalyst having reduced denitration power, the catalyst is cleaned with a cleaning fluid having a hydrofluoric acid concentration of 0.3 to 3% by weight and maintained at a temperature of 20 to 80.degree. C., and (2) a method for the regeneration of a denitration catalyst which comprises the steps of cleaning a denitration catalyst having reduced denitration power under the conditions described in (1) above, drying the cleaned catalyst, and impregnating the catalyst with a catalytically active component so as to support it on the catalyst.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: February 15, 2000
    Assignee: Mitsubishi Heavy Industries Ltd.
    Inventors: Yoshiaki Obayashi, Kouzo Iida, Atsushi Morii, Osamu Naito, Akira Hattori
  • Patent number: 6001763
    Abstract: A process for recovering a solution of Co and Mn acetates and other valuable components of a waste residue of used catalyst discharged from a plant for the liquid-phase, homogeneously catalyzed oxidation of alkylaromatic compounds, to produce polycarboxylic aromatic acids. The residue is pyrolized in a reaction zone provided forming molten metal in an electric arc or molten metal furnace under conditions which convert essentially all carbon in the residue mainly to CO, hydrogen and compounds vaporized in an effluent from the reaction zone. The effluent is passed through a liquid-gas-contacting means to yield a quench or scrubber stream. The residue may also be sludge from a pond in which the residue is stored. The alloy recovered is atomized to form a powder metal which is then digested in acetic acid, and/or aqueous hydrogen bromide, and/or mixtures thereof with the quench or scrubber stream, to form the corresponding salts.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: December 14, 1999
    Inventor: David Feitler
  • Patent number: 6001762
    Abstract: Catalyst comprising a perfluorinated ion-exchange microcomposite can be reactivated upon contact with at least one cleaning agent, such as an oxidizing agent, organic solvent, supercritical fluid or detergent. The process may further comprise heating prior to, during or after contact followed by washing with water and/or an organic solvent.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: December 14, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Andrew Harmer, Qun Sun
  • Patent number: 5985235
    Abstract: The invention relates to a method of activating a catalyst for hydrogenation of anthraquinones or derivatives thereof used in production of hydrogen peroxide comprising the step of treating the catalyst with an acid. The invention also relates to a method of producing hydrogen peroxide.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: November 16, 1999
    Assignee: EKA Chemicals AB
    Inventors: Mats Nystrom, Mikael Siverstrom
  • Patent number: 5955394
    Abstract: An improved separation process for the continuous catalytic oxidation of aromatic alkyls for the production of aromatic carboxylic acids in a liquid solvent medium, wherein the reactor product stream is withdrawn from the oxidation process, then separated to produce a product containing stream, mother liquor stream and a catalyst containing purge stream which is then passed through a filtration system and series of sorption vessels to remove the oxidation catalyst and separate the impurities from the catalyst. The solvent is then separated from the reaction by-products by conventional distillation methods. The solvent is recycled to the process while the reaction by-product residue is disposed of by incineration. The oxidation catalyst is eluted from the ion exchange columns and returned to the process.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: September 21, 1999
    Assignee: Mobile Process Technology, Co.
    Inventor: Michael D. Kelly
  • Patent number: 5942457
    Abstract: A process for regenerating spent clay which includes: (1) an extraction stage wherein an organic solvent or mixture of organic solvents are thoroughly mixed with the spent clay thus separating the entrained oil from the spent clay, (2) a reactivation stage wherein the oil-free spent clay is treated with acid, and (3) a thermal polishing step wherein the acid-treated, solvent-extracted spent clay is heated at a high temperature from about 500 degrees F to about 1400 degrees F for approximately one minute to five hours, preferably 10 minutes to 4 hours.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: August 24, 1999
    Inventor: Benjamin Santos
  • Patent number: 5942199
    Abstract: The invention relates to a method for the treatment of an impure aluminium oxide so that the organic impurities present therein it are converted into an insoluble and easily separable substance. According to the invention, aluminium oxide which contains organic matter as impurities is finely ground, the finely ground aluminium oxide is dissolved at an elevated temperature in sulphuric acid which has a concentration of at minimum 90% by weight, the amount of the sulphuric acid being at least stoichiometric in relation to the amount of aluminium oxide, the organic matter being carbonized into an insoluble and easily separable substance, and, if desired, the obtained mixture is treated further in order to form a solution-form or solid chemical which contains aluminium.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: August 24, 1999
    Assignee: Kemira Chemicals Oy
    Inventors: Simo Jokinen, Maire Iida Annikki Mattila, Anna-Mari Kristiina Stein, Sirpa-Liisa Katariina Mattila, Gerard Verkoijen
  • Patent number: 5908803
    Abstract: The present invention relates to the isolation of a palladium-based catalyst from a mixture in which it is dissolved. More specifically, the invention relates to the isolation of a palladium-based catalyst from a mixture originating from the reaction of hydroxycarbonylation of butadiene to pentenoic acids. It therefore consists of a process for the isolation of at least a portion of the palladium dissolved in a solution also containing at least 3-pentenoic acid, characterized in that the said solution is acidified and stirred with an aqueous solution of hydrochloric acid, so as to obtain two liquid phases including an aqueous phase containing at least a portion of the palladium.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: June 1, 1999
    Assignee: Rhone-Poulenc Fiber & Resin Intermediates
    Inventors: Philippe Leconte, Carl Patois
  • Patent number: 5906953
    Abstract: A process and apparatus for rejuvenating particulate used catalysts in a single rejuvenation vessel and providing a rejuvenated catalyst material having properties that result in activity substantially equal to new catalyst. The pressurizable vertically-oriented vessel has inlet and outlet openings for the catalyst and washing liquids, and is arranged to facilitate successive solvent liquid washing, water washings, and acid treatment steps for the used particulate catalyst provided in a bed in the vessel conical-shaped lower portion which contains catalyst rotary stirring means. After rejuvenation of the used catalyst, it is withdrawn from the vessel conical-shaped lower portion downwardly through a central withdrawal conduit and control valve for further processing. The water-soluble solvent and acid treatment liquids can be usually recovered by distillation for reuse in the catalyst rejuvenation process.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: May 25, 1999
    Assignee: HRI
    Inventors: John E. Duddy, Lawrence M. Abrams, Steven J. Hildebrandt
  • Patent number: 5900383
    Abstract: A process for increasing the activity of a zeolite-containing particulate solid containing contaminants which block the pores of the zeolite and adversely affect the activity thereof wherein the contaminated zeolitic material is slurried with a liquid containing an acid, detergent or surfactant, the slurry is agitated to liberate the pore-blocking contaminants from the zeolite pores so that they are suspended in the liquid, a portion of the liquid is withdrawn from the slurry and filtered to remove the suspended contaminants, the resulting liquid is returned to the slurry, and the treated zeolite-containing particulate solid is liquid from the solution and recovered.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: May 4, 1999
    Assignee: New Life Catalyst, Inc.
    Inventors: Robert E. Davis, David B. Bartholic
  • Patent number: 5888920
    Abstract: This invention discloses an integrated process of alkylation of olefins and regeneration of spent sulfuric acid. The alkylation of olefins may be replaced by nitration of toluene or by chlor-alkali process. The sulfuric acid is used as a catalyst or a absorbent, and the spent sulfuric acid is regenerated in situ and is recycled in the alkylation of olefins, nitration of toluene or chlor-alkali processes.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: March 30, 1999
    Inventors: Tse-Chuan Chou, Chao-Shan Chou, Yi-Lin Chen
  • Patent number: 5888919
    Abstract: A spent zeolite-containing hydrocarbon cracking catalyst is treated by regenerating it to remove carboneous deposits. A portion of the regenerated catalyst is withdrawn from the circulating catalyst inventory of a hydrocarbon processing unit and slurried with a liquid containing an activating agent to solubilize and/or dislodge contaminants which block the pores of the zeolite and adversely affect the activity of the catalyst. The slurry is agitated to dissolve or dislodge the contaminants from the zeolite pores, and the agitated slurry, without being permitted to settle, is transferred to a fluidized drying zone where the liquid and solubilized and/or dislodged contaminants are removed from the treated catalyst which has a level of cracking activity higher than that of the catalyst in the circulating catalyst inventory. The treated catalyst is then recycled to the unit and contacted with a hydrocarbon feedstock under cracking conditions.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: March 30, 1999
    Inventor: David B. Bartholic
  • Patent number: 5861222
    Abstract: A porous gas diffusion electrode for membrane fuel cells on an ion-conducting polymer. The electrode contains a finely divided electrocatalyst which is dispersed in a proton-conducting ionomer and has a total porosity of more than 40 to less than 75%. It supplies considerably improved performance data in comparison to known electrodes. The electrode can be produced by using pore-forming materials which are dissolved during the re-protonation of the ion-conducting polymers with sulfuric acid or are decomposed by the action of temperature.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: January 19, 1999
    Assignee: Degussa Aktiengesellschaft
    Inventors: Andreas Fischer, Hartmut Wendt, Ralf Zuber
  • Patent number: 5840260
    Abstract: Dangers of catalyst removal are decreased while the efficiency of the process is increased by provision of a new nozzle. The nozzle is two concentric pipes connected at one end, with the inner pipe extending slightly beyond the outer pipe at the other end. The outer pipe has orifices provided at the connected end which communicate with the exterior of the outer pipe and the space between the inner and outer pipes. A vacuum is pulled on the inner pipe which, in turn, causes gas to enter the space between the inner and outer pipes via the orifices. As the gas sweeps around the end of the inner pipe, it entrains catalyst particles and carries the particles into the inner pipe. The inner pipe extends beyond the reaches of the outer pipe to a distance such that the angle formed between the ends of the inner and outer pipes is approximately equal to the angle of repose of the catalyst.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: November 24, 1998
    Assignee: Shell Oil Company
    Inventors: Thomas Peyton Easterly, William Ogle Jones
  • Patent number: 5837635
    Abstract: The invention relates to a process for re-processing deactivated DENOX catalysts on the basis of Ti/V/Mo/W mixed oxides.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: November 17, 1998
    Assignee: Bayer AG
    Inventors: Jurgen Kischkewitz, Gunter Linde, Hans-Joachim Schittenhelm, Gunter Lailach, Kai Butje
  • Patent number: 5776848
    Abstract: An aqueous epoxidation process stream containing molybdenum and sodium values is incinerated and an aqueous solution containing molybdenum and sodium is recovered, acidified and reacted with a calcium compound without first adding base to form solid CaMoO.sub.4 which is separated.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: July 7, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Thomas I. Evans, Robert L. Cannon
  • Patent number: 5741748
    Abstract: A process for the removal of fluoride from a spent chromium-based fluroination catalyst by contacting the catalyst with potassium hydroxide to produce a suspension of solid hydrated chromium oxide in aqueous potassium fluoride. The solid hydrated chromium oxide may be separated from the solution, washed with water and/or aqueous acid, and contacted with nitric acid to produce a chromium (HI) nitrate solution from which a chromium-based catalyst may be prepared by precipitation of hydrated chromium oxide therefrom with aqueous alkali, and washing, drying and calcining the hydrated chromium oxide.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: April 21, 1998
    Assignee: Imperial Chemical Industries PLC
    Inventors: John Graham Allen, Daniel Howard Legg
  • Patent number: 5728639
    Abstract: A process is disclosed for converting a spent catalyst from conventional fluorination processes into a commercially useful tantalum or niobium oxide such as Ta(OH)5, Ta2O5, Nb(OH)5, or Nb2O5. The process broadly relates to dissolving the spent catalyst into water or an aqueous hydrofluoric acid solution, separating and disposing the undissolved residue, extracting the aqueous solution with a suitable solvent such as methyl isobutyl ketone (MIBK), and obtaining useful tantalum or niobium oxide products.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: March 17, 1998
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Vinci Martinez Felix
  • Patent number: 5716895
    Abstract: A simple and excellent process for the regeneration of heteropolyacid catalysts can be provided. A heteropolyacid catalyst, e.g. a phosphomolybdic acid catalyst, whose activity has been lowered can be regenerated by dissolving and/or suspending it in an aqueous medium and then treating with an inorganic ion-exchange material, e.g. crystalline antimonic acid.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: February 10, 1998
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Hideki Sugi, Kazuo Shiraishi, Atsushi Sudo
  • Patent number: 5695634
    Abstract: A process for regenerating a supported noble metal catalyst and also a process for catalytic treatment of wastewater containing, in particular, organohalogen contaminants, in which the process for regenerating the catalyst is a part of the overall wastewater treatment process.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: December 9, 1997
    Assignee: Solvay Deutschland GmbH
    Inventors: Gerhard Neuenfeldt, Alfred Ottmann, Hubert Schindler
  • Patent number: 5693833
    Abstract: Disclosed is a process for converting an iodine-free organotin (IV) compound resulting from the decomposition of an organotin (IV) iodide during the catalytic isomerization of .gamma.,.delta.-epoxyalkenes to 2,5-dihydrofurans to the corresponding, catalytically active organotin (IV) iodide by intimately contacting a catalyst mixture comprising (i) an organotin (IV) iodide, (ii) an iodine-free organotin (IV) compound resulting from the decomposition of the organotin (IV) iodide of component (i), and (iii) a solvent selected from hydrocarbons and chlorocarbons with aqueous hydrogen iodide.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: December 2, 1997
    Assignee: Eastman Chemical Company
    Inventors: Stephen Neal Falling, Patricia Lopez
  • Patent number: 5674796
    Abstract: The present invention relates to processes of regenerating Ni catalysts which had been used in a hydrogenation of unsaturated fatty oil or petroleum resin, which comprise separating the Ni-extracted solution and support by extracting the pretreated Ni catalysts with an acid, preparing support-containing solution by burning the separated support in the flow of air or oxygen diluted with nitrogen at the temperature of 300.degree. to 800.degree. C.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: October 7, 1997
    Assignees: Lucky Engineering Co., Ltd., Seoul National University
    Inventors: Ho-in Lee, Sang-heup Moon, Gyo-hyun Hwang, Byung-youl Coh, Seung-hyun Hur, Sung-hee Han, Heung-sun Park, Jong-hae Lee
  • Patent number: 5648305
    Abstract: This invention relates to a process for improving the effectiveness of a refinery process catalyst. The process comprises treating the refinery process catalyst with an effective amount of reducing agent selected from the group consisting of hydrazine, oximes, hydroxylamines, carbohydrazide, erythorbic acid, and mixtures thereof.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: July 15, 1997
    Inventors: William D. Mansfield, Todd L. Foret, Hubert P. Vidrine
  • Patent number: 5620936
    Abstract: A process is disclosed for converting a spent catalyst from conventional fluorination processes into a commercially useful tantalum or niobium salt such as K.sub.2 TaF.sub.7 or K.sub.2 NbF.sub.7. The process broadly relates to dissolving the spent catalyst in water or an aqueous hydrofluoric acid solution, separating and disposing the undissolved residue, extracting the aqueous solution with a suitable solvent such as methyl isobutyl ketone (MIBK), and obtaining useful tantalum products from the MIBK solution such as a tantalum salt.
    Type: Grant
    Filed: December 14, 1993
    Date of Patent: April 15, 1997
    Assignees: E. I. DuPont de Nemours and Company, Cabot Performance Material
    Inventors: Vinci M. Felix, Charles E. Mosheim, Norman A. Carlson
  • Patent number: 5618769
    Abstract: Process for the recovery of spent fluorinated sulfonic catalyst from acid soluble oil (ASO) being formed during alkylation of hydrocarbons in the presence of the acid catalyst. The process includeswashing the ASO with water and recovering an aqueous solution of the acid catalyst,neutralizing the acid in the aqueous solution by adding to the solution a basic compound being selected from the group of amino compounds, ammonia and ammonium salts, thereby, forming ammonium salts of the acid catalyst with a melting point at which the obtained acid catalyst salt in a subsequent concentration and drying step is in the form of a melt,drying the melt, and finallyrecovering the acid catalyst by protonization of the dried melt with sulfuric acid and distilling off the recovered acid catalyst from the sulfuric acid.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: April 8, 1997
    Assignee: Haldor Tops.o slashed.e A/S
    Inventor: Sven I. Hommeltoft
  • Patent number: 5468701
    Abstract: A three step process for regenerating spent bleaching clays and acid-activated smectite catalyst granules includes: (1) an extraction step to remove a majority of entrained oil, preferably about 75% to about 95% by weight of the entrained oil, when regenerating bleaching clays; (2) an oxidation step to remove the majority of remaining carbonaceous adsorbates which are not removed by the preceding extraction step, and (3) an acid wash step to restore the acidity normally associated with fresh acid-activated bleaching clays. The features of steps 2 and 3 may be combined into a single step by using an appropriate oxidant, for example, a source of acidic protons, such as peracetic acid.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: November 21, 1995
    Assignee: American Colloid Company
    Inventors: Robert S. Nebergall, Dennis R. Taylor, Carolyn J. Kucharz
  • Patent number: 5460643
    Abstract: Ceramic particles impregnated with silver nitrate for adsorbing mercury from waste gases can be regenerated and reused if the mercury is distilled off at 600.degree. to 900.degree. C. and the ceramic particles are subsequently impregnated with nitric acid.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: October 24, 1995
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Hasenpusch, Harald Wetterich
  • Patent number: 5409737
    Abstract: The use of chelating type cation exchange resins, particularly those with iminodiacetic acid functionality, to remove dissolved multivalent cations such as iron, zinc, and chromium from used autodeposition compositions permits reuse of the autodeposition compositions without the need for added surfactant and without developing any undesirable graininess or other texture in the coatings formed. The cation exchange resins can be efficiently regenerated with 0.5 to 4% by weight aqueous hydrofluoric acid.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: April 25, 1995
    Assignee: Henkel Corporation
    Inventors: William G. Kozak, Bashir M. Ahmed
  • Patent number: 5389592
    Abstract: A method of enhancing the activity of a regenerated catalyst for the hydroprocessing of hydrocarbons comprising:(a) applying a modifying element dissolved in a solvent onto the surface of a regenerated catalyst;(b) drying said modified regenerated catalyst to remove all free solvent from said catalyst;(c) optionally, heating said dried modified regenerated catalyst at temperature of about 120.degree. C. to about 1000.degree. C. at a rate of 1.degree.-20.degree. C. per minute, and holding said dried catalyst at a temperature of about 120.degree. C. to about 1000.degree. C. up to 48 hours to provide an enhanced regenerated catalyst; and(d) recovering said enhanced regenerated catalyst.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: February 14, 1995
    Assignee: Texaco Inc.
    Inventors: Jeffrey G. Weissman, Elaine C. Decanio, Max R. Cesar
  • Patent number: 5358915
    Abstract: A three step process for regenerating spent bleaching clays and acid-activated smectite catalyst granules includes: (1) an extraction step to remove a majority of entrained oil, preferably about 75% to about 95% by weight of the entrained oil, when regenerating bleaching clays; (2) an oxidation step to remove the majority of remaining carbonaceous adsorbates which are not removed by the preceding extraction step, and (3) an acid wash step to restore the acidity normally associated with fresh acid-activated bleaching clays. The features of steps 2 and 3 may be combined into a single step by using an appropriate oxidant, for example, a source of acidic protons, such as peracetic acid.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: October 25, 1994
    Assignee: American Colloid Company
    Inventors: Robert S. Nebergall, Dennis R. Taylor, Carolyn J. Kucharz
  • Patent number: 5356845
    Abstract: A process for the reactivation, or rejuvenation of a nickel-alumina catalyst employed in the production of a gas comprised of an admixture of hydrogen and carbon monoxide, or synthesis gas, by the conversion, in a reactor, or reaction zone, of light hydrocarbons in a fluidized bed of the catalyst at elevated temperature, in the presence of steam and oxygen. Catalyst reactivation is accomplished by withdrawing a portion of the catalyst from the fluidized bed of the reactor and treating the catalyst in an oxidation zone at temperature sufficient to oxidize and convert the nickel component of the catalyst to nickel aluminate and disperse said nickel aluminate within the alumina support, and then recycling the treated catalyst to the reactor, or reaction zone, to reactivate and increase the activity of the catalyst.
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: October 18, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: LeRoy R. Clavenna, Stephen M. Davis, Brent E. Beasley
  • Patent number: 5324695
    Abstract: A process for regenerating deactivated metal oxide catalysts comprising at least one of the elements antimony, iron, bismuth, molybdenum, vanadium, tungsten and/or uranium and a peptizable carrier, comprises the steps of:a) grinding the metal oxide catalyst in the presence of water to a particle size of from 10 nm to 10 .mu.m,b) heating the aqueous suspension of the metal oxide catalyst of stage a) to 30-100.degree. C. and adding an acid which peptizes the carrier,c) spray drying the acidic suspension of the metal oxide catalyst,d) heating the fluidizable metal oxide catalyst particles of stage c) to 500.degree.-850.degree. C.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: June 28, 1994
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Klaus Herzog, Heinrich Aichinger, Hans-Dieter Eichhorn, Guenter Herrmann
  • Patent number: 5284993
    Abstract: Disclosed is a process for removing acid soluble oils, produced as an undesirable by-product of an acid catalyzed alkylation reaction, from a mixture containing a strong acid and methanesulfonic acid. The process includes the use of water to induce the formation of the two immiscible liquid phases of ASO and methanesulfonic acid with water. The two immiscible phases can subsequently be separated from each other.
    Type: Grant
    Filed: September 21, 1992
    Date of Patent: February 8, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Alan D. Eastman
  • Patent number: 5260238
    Abstract: There is disclosed a process for regenerating a deactivated catalyst containing a zeolite and a noble metal of group VIII of the Periodic Table supported thereon which comprises subjecting the deactivated catalyst to decoking treatment under reductive or oxidative condition and subsequently to contact treatment with a solution containing a halogen or a halogen-containing compound and thereafter calcining the deactivated catalyst. According to the above process, the catalytic activity of a deactivated catalyst is restored to the level comparable to that of a fresh catalyst by the use of an inexpensive regenerating agent and simplified steps. Thus, the regeneration process is expected to find effective use in petroleum refinery, petrochemical industry, etc.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: November 9, 1993
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Takashi Murakawa, Michio Sugimoto
  • Patent number: 5227552
    Abstract: The present invention provides a process for producing a selected paraffin from a reaction mixture containing(i) an acceptor olefin having the carbon backbone structure of said selected paraffin;(ii) a donor paraffin having a carbon backbone structure different from that of said selected paraffin;(iii) less than about 10 mole percent molecular hydrogen; which process comprises the steps of contacting said reaction mixture with a heterogeneous catalyst comprising active carbon in the absence of an added catalytic metal or metal compound to convert at least a portion of said acceptor olefin to said selected paraffin and to dehydrogenate at least a portion of said donor paraffin.
    Type: Grant
    Filed: April 27, 1992
    Date of Patent: July 13, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Stuart D. Hellring, Randy F. Striebel
  • Patent number: 5212127
    Abstract: This invention relates to a process for reactivating a dehydrocyclodimerization catalyst. Dehydrocyclodimerization catalysts which contain an aluminum phosphate binder can be deactivated when they are exposed to hydrogen at temperatures above 500.degree. C. The instant process restores substantially all of the catalyst's lost activity. The process involves treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours. An ammonium nitrate solution is preferred. Next the catalyst is calcined at a temperature of about 500.degree. to about 700.degree. C. for a time of about 1 to about 15 hours to provide a reactivated catalyst. The catalyst can be reactivated several times using this process.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: May 18, 1993
    Assignee: UOP
    Inventors: Joseph A. Kocal, Christopher D. Gosling, Paul J. Kuchar, Tamotsu Imai
  • Patent number: 5187141
    Abstract: A process is provided for forming activated carbon from coal in the particulate state. The coal is first dried at a temperature sufficiently high to effect removal of moisture therefrom but below the temperature at which contained volatile matter vaporizes. The dried coal is then heated to an elevated temperature in a substantially non-oxidizing atmosphere at substantially atmospheric pressure sufficient to volatilize and remove the contained volatile matter and produce a char thereof and the char thereafter subjected to hydrogenation at an elevated temperature and pressure for a time sufficient to form activated carbon characterized by a BET surface area of at least about 200 m.sup.2 /g and an iodine number of at least about 400.
    Type: Grant
    Filed: August 24, 1990
    Date of Patent: February 16, 1993
    Inventors: Mahesh C. Jha, Robert L. McCormick
  • Patent number: 5151391
    Abstract: A spent metal contaminated zeolite-containing catalytic cracking catalyst composition is reactivated by a process which comprises contacting with an aqueous solution of HC1 and/or HNO.sub.3 and/or H.sub.2 SO.sub.4. The thus reactivated catalyst composition can be employed in a catalytic cracking process.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: September 29, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Chia-Min Fu, Michael K. Maholland, Richard E. Lowery
  • Patent number: 5143872
    Abstract: A method of regenerating noble metal catalysyts used for the catalytic reduction of nitrogen oxide with hydrogen, wherein the noble metal catalyst is treated with an aqueous alkaline solution having a pH of more than 9.
    Type: Grant
    Filed: July 16, 1991
    Date of Patent: September 1, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz-Josef Weiss, Hugo Fuchs
  • Patent number: 5093292
    Abstract: The catalytic activity of a chromium oxide-based catalyst used in the production of chlorine by oxidation of hydrogen chloride gas with an oxygen-containing gas is regenerated by impregnating it with an aqueous solution of chromic acid anhydride or of a chromium salt and then calcining the catalyst at a temperature not higher than 800.degree. C.
    Type: Grant
    Filed: November 20, 1990
    Date of Patent: March 3, 1992
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Yukihiro Yoshikawa, Tooru Hihara, Kunihiro Yamada, Shinji Takenaka, Kazunori Kawahara, Jun Kitagawa
  • Patent number: 5091350
    Abstract: A process for separating rhodium from mixtures thereof, comprising extracting said rhodium with an aqueous solution of a rhodium complexing agent and a solubilizer. A process for preparing aldehydes in the presence of both the complexing agent and the solubilizer is also set forth. The solubilizer is generally selected from salts of carboxylic acids having 8-20 carbon atoms, alkyl sulfonates, alkyl aryl sulfonates, amines and quaternary ammonium compounds of Formula II ##STR1## wherein A is alkyl, alkoxy, hydroxyalkyl, aryl having 6-25 carbon atoms, or R.sup.7 CONHCH.sub.2 CH.sub.2 CH.sub.2 --wherein R.sup.7 is alkyl having 5-11 carbon atoms; B is an alkyl having 1-25 carbon atoms, an aryl having 6-25 carbon atoms, or an .omega.-hydroxy alkyl having 1-4 carbon atoms; C and D are each independently an alkyl or .omega.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: February 25, 1992
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Boy Cornils, Werner Konkol, Helmut Bahrmann, Hanswilhelm Bach, Ernest Wiebus, Wolfgang Lipps
  • Patent number: 5084092
    Abstract: A method of separating metals from carbon-supported catalyst materials comprises the steps of combusting the carbon at a temperature insufficient to cause volatisation of the metal followed by reduction with hydrogen of any oxidised metal and washing with acid or water.
    Type: Grant
    Filed: August 16, 1988
    Date of Patent: January 28, 1992
    Assignee: The British Petroleum Company p.l.c.
    Inventors: David A. Campbell, Nicholas P. Wilkinson
  • Patent number: 5064526
    Abstract: A method for the decomposition of halogenated and non-halogenated organic contaminant compounds contained in a contaminated medium comprises adding an alkali or alkaline earth metal carbonate, bicarbonate or hydroxide to the contaminated medium in an aqueous solution or in a solvent having a boiling point of at least 200.degree. C., or in the form of a solid dispersion or suspension. The medium includes a hydrogen donor compound. The hydrogen donor compound may be originally contained in the medium or may be added to the medium. The medium further includes a catalytic source of carbon, for example, a carabohydrate, which will cause formation of a free radical hydrogen ion from the hydrogen donor compound. The medium is heated to dehydrate the medium and then is further heated at a temperature between about 200.degree. and 400.degree. C. to cause formation of the free radical hydrogen ion and effect reductive decomposition of the halogenated and non-halogenated organic contaminant compounds.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: November 12, 1991
    Assignee: The United States of America as represented by the Administrator of the Environmental Protection Agency
    Inventors: Charles J. Rogers, Alfred Kornel, Harold L. Sparks
  • Patent number: 5039350
    Abstract: A method for the decomposition of halogenated organic compounds contained in a contaminated medium comprises adding an alkali metal carbonate or bicarbonate to the contaminated medium in an aqueous solution or in a solvent having a boiling point of at least 200.degree. C., or in the form of a solid dispersion or suspension. The medium is heated to dehydrate the medium and then is further heated at a temperature between about 250.degree. and 400.degree. C. to effect decomposition of the halogenated organic compounds. An acid is then added to the medium in an amount sufficient to neutralize the same.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: August 13, 1991
    Assignee: The United States of America as represented by the Administrator of the Environmental Protection Agency
    Inventors: Charles J. Rogers, Alfred Kornel, Harold L. Sparks
  • Patent number: 5021377
    Abstract: A process for reactivating a spent, metal-contaminated zeolite-containing catalytic cracking catalyst composition comprises partially demetallizing (preferably by chlorinating and washing) the spent catalytic cracking catalyst composition, and thereafter contacting it with at least one fluorine compound (preferably NH.sub.4 F) and at least one antimony compound. The thus reactivated catalytic cracking catalyst composition is employed in a catalytic cracking process.
    Type: Grant
    Filed: June 5, 1990
    Date of Patent: June 4, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Michael K. Maholland, Chia-Min Fu, Richard E. Lowery, Donald H. Kubicek, Brent J. Bertus
  • Patent number: 5013698
    Abstract: A method of reducing alkaline earth metals contamination of activated carbon by washing the contaminated product with an inorganic acid, preferably hydrochloric, and then rinsing the acid washed carbon with water. Preferably, the washing step is carried out from three to thirty minutes at a pH of 2.5 or less. The rinsing step is continued until a pH of 5 or greater is obtained, preferably for a time period of at least three to five minutes. The method is applicable to any alkaline earth metal but particularly calcium and magnesium. Any inorganic may be employed with those forming water soluble salts being preferred. The invention also encompasses a method of regenerating spent activated carbon employing the acid wash and rinsing steps noted above followed by separating the washed carbon from the rinse water followed by drying and then pyrolizing the dried carbon at a temperature of approximately 500 degrees C. to 1100 degrees C. so as to effect the water gas reaction.
    Type: Grant
    Filed: December 27, 1989
    Date of Patent: May 7, 1991
    Inventors: Deborah A. Lonsinger, Jack J. Lonsinger