Treating With A Liquid Or Treating In A Liquid Phase, Including Dissolved Or Suspended Patents (Class 502/22)
  • Patent number: 12024445
    Abstract: An asymmetric system containing a first conductive polymer modified with a redox active moiety and a second conductive polymer modified with a surfactant is used for the separation of organic compounds from aqueous solutions. The asymmetric system has complementary hydrophobicity tunability in response to electrochemical modulations. For example, both materials are hydrophobic in their respective neutral states, therefore exhibiting affinity toward organic compounds. Application of a mild potential drives the desorption of the organic compounds and regeneration of the materials. The asymmetric system can be used in a cyclic fashion, through repeated electrical discharge or shorting of the two electrodes to program the capture of organics from a feed solution, and application of a potential to stimulate the release of the adsorbed organics.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: July 2, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Trevor Alan Hatton, Xianwen Mao, Yinying Ren
  • Patent number: 11554572
    Abstract: The present invention addresses the problem of providing a desiccant that can be used for passivation of an electronic device such as an organic electroluminescence element against moisture permeation, as well as an organic thin film including the desiccant, an organic layered film in which the organic thin film is layered, and an electronic device that is provided therewith. This desiccant is characterized by including a compound that emits a hydrophobic substance by absorbing water. This organic thin film is characterized by including this desiccant.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 17, 2023
    Assignee: KONICA MINOLTA, INC.
    Inventors: Yukihiro Makishima, Hideo Taka, Hiroshi Kita, Yoshiyuki Suzuri
  • Patent number: 11154839
    Abstract: Poly(acrylic acid)-based superabsorbent polymer (SAP) in a feed stream is converted with UV irradiation into poly(acrylic acid) (PAA) in a flow system. The UV total energy used to convert SAP into PAA is less than about 50 MJ/kg SAP.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 26, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Dimitris Ioannis Collias, John Andrew McDaniel, Gary Wayne Gilbertson, Martin Ian James, Arsen Arsenov Simonyan
  • Patent number: 10974239
    Abstract: There are provided methods of treating a catalyst-containing reactor system with a liquid solvent to remove contaminants from the reactor system. An exemplary method includes the steps of: isolating the reactor system to be treated from upstream and downstream equipment; reducing the temperature and pressure of the isolated reactor system by flushing with a hydrogen rich gas; injecting a non-aqueous liquid solvent into the reactor system at an injection point while continuously flowing hydrogen-rich gas through the reactor system; maintaining the solvent in a liquid state while flowing the solvent continuously through the reactor system; and terminating the step of injecting solvent and terminating the continuous flowing of hydrogen-rich gas. The exemplary method is free of the injecting of a carrier gas into the reactor system comprising alkanes selected from the methane, ethane, propane, butane and pentane.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: April 13, 2021
    Assignee: USA DeBusk LLC
    Inventor: Blake Montgomery
  • Patent number: 10760171
    Abstract: The present invention relates to an oxygen generator integrated with an ozone removal filter such that an ozone removal filter is provided in an oxygen discharge opening communicating with an oxygen discharge hole of a water electrolytic cell constituting an apparatus for producing oxygen by using mineral water among generally used water, for filtering ozone generated with oxygen during electrolysis of water and ozone compounds, in which ozone is combined with various organic and inorganic materials contained in mineral water, such as calcium (Ca), magnesium (Mg) and silicon (Si), and thus the oxygen generator allows only high purity oxygen to pass through and to be discharged through the oxygen discharge hole.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 1, 2020
    Assignee: FOURL DESIGN CO. LTD.
    Inventor: Sok Ho Jeon
  • Patent number: 10611917
    Abstract: The present invention relates to an installation for the purification of minerals, pigments and/or fillers and/or the preparation of precipitated earth alkali carbonate and/or mineralization of water and to the use of such an installation for the purification of minerals, pigments and/or fillers and/or mineralization of water and/or the preparation of precipitated earth alkali carbonate.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: April 7, 2020
    Assignee: Omya International AG
    Inventors: Matthias Buri, Samuel Rentsch, Patrick A. C. Gane, René Vinzenz Blum
  • Patent number: 10556225
    Abstract: Methods for regenerating a spent catalyst are disclosed. Such methods may employ a step of chlorinating the spent catalyst in the gas phase, followed by decoking the chlorinated spent catalyst, and then fluorinating the de-coked catalyst in a fluorine-containing solution of a fluorine-containing compound.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: February 11, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli
  • Patent number: 10167493
    Abstract: The present technology relates to methods for extracting carotenoids like ?-carotene or lutein from oil obtained from/as a by-product derived from a feedstock material like starch-containing material in a processes for producing fermentation products by-products derived from a fermentative production process, in particular from an ethanol fermentation process, wherein the by-product is selected from the group consisting of distillers' wet grain (DWG), distillers' dried grains (DDG), distillers' solubles (DS), distillers' dried solubles (DDS), distillers' dried grain with solubles (DDGS), and mixtures thereof.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 1, 2019
    Assignee: DIREVO Industrial Biotechnology GmbH
    Inventors: Joachim Englert, Klaudija Milos
  • Patent number: 10099213
    Abstract: The present disclosure relates to processes for regenerating catalysts. In certain aspects, a process for regenerating a deactivated catalyst disposed in a first organic material includes removing a substantial portion of the first organic material from the catalyst to provide a dewaxed catalyst having less than about 40 wt % (e.g., less than about 20%) organic material disposed thereon. The dewaxed catalyst is then contacted with a flow of a substantially inert gas at a temperature of at least about 200° C. to provide an inert gas-treated catalyst having less than about 10 wt % organic material disposed thereon. The inert gas-treated catalyst is then contacted with an oxygen-containing gas at a temperature of at least about 200 ° C. to form an oxidized catalyst (e.g., having less than 2 wt % carbonaceous material disposed thereon). The oxidized catalyst is then contacted with a hydrogen-containing gas at a temperature of at least about 200° C. to form a regenerated catalyst.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 16, 2018
    Assignee: Clariant Corporation
    Inventors: Jae Hyung Kim, Doug Huelsman, Jeffery L. Braden
  • Patent number: 9751822
    Abstract: The present invention relates to a method for producing an unsaturated carboxylic acid using a catalyst having both a high catalytic performance and a high mechanical strength, and in the method, a supported catalyst obtained by feeding a liquid binder component and a catalytic active component containing molybdenum and vanadium and/or a precursor thereof into a rolling granulator and conducting granulation at a relative centrifugal acceleration of 0.5 G or more and 30 G or less is used.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: September 5, 2017
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Tatsuhiko Kurakami, Hideomi Sakai, Toru Toki
  • Patent number: 9435043
    Abstract: An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 6, 2016
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Joel A. Haber, Jian Jin, Chengxiang Xiang, John M. Gregoire, Ryan J. Jones, Dan W. Guevarra, Aniketa A. Shinde
  • Patent number: 9327282
    Abstract: Described herein is a selective catalytic reduction (SCR) catalyst treatment system that includes a vanadium-based SCR catalyst contaminated with a water-soluble contaminant. The SCR catalyst treatment system also includes a water delivery system that is configured to apply water to the vanadium-based SCR catalyst to remove the water-soluble contaminant from the vanadium-based SCR catalyst.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: May 3, 2016
    Assignee: Cummins IP, Inc.
    Inventors: Aleksey Yezerets, Neal W. Currier, Xu Chen, Junhui Li, Krishna Kamasamudram, Hongbin Ma, Tamas Szailer, Cary Henry, Roger Fox
  • Patent number: 9108897
    Abstract: The present invention provides a method for desorbing and regenerating a butanol-adsorbing hydrophobic macroporous polymer adsorbent, comprising: successively eluting the hydrophobic macroporous polymer adsorbent with butanol adsorbed therein using a water soluble low-boiling-point polar solvent and water. The method provided in the present invention has a simple process, a short separation time, easy, fast and complete desorption and regeneration, low equipment investment and pollution, and reduced energy consumption, and therefore production is easy on a large scale.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 18, 2015
    Assignee: Nanjing University of Technology
    Inventors: Hanjie Ying, Xiaoqing Lin, Jiansheng Fan, Jinglan Wu, Yong Chen, Xiaochun Chen, Jingjing Xie, Jian Xiong, Jianxin Bai
  • Patent number: 9062261
    Abstract: The invention relates to a catalytic cracking process for reducing sulfur content in gasoline and the device thereof, which includes a fluidized bed reactor in addition of a heavy oil catalytic cracking riser, characterized in enhancing contact time of oil-gas with the catalyst, further desulfurizing and reducing olefin content and increasing octane number in gasoline; regenerating all recycling catalysts, quality of products being stable and easily operated, reducing sulfur of gasoline to a maximum limit; adding a cooling device so as to avoid coking when the catalyst contacts with oil-gas in high temperature and decrease of yield of light oil resulted by excessively high reaction temperature of gasoline upgrading, improving products distribution, being flexible to change catalyst-oil ratio and reaction temperature of catalytic cracking reaction.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 23, 2015
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Xionghou Gao, Shuhong Sun, Lin Wang, Xinmei Pang, Zhifeng Wang, Yongfu Gao, Zhaoyong Liu, Conghua Liu, Jinsen Gao, Gang Wang, Yanhui Zhang, Tao Liu, Juanjuan Liu
  • Patent number: 9029281
    Abstract: A regenerated spent hydroprocessing catalyst treated with a chelating agent and having incorporated therein a polar additive.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: May 12, 2015
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, Ed Ganja, Salvatore Philip Torrisi
  • Publication number: 20150126784
    Abstract: A process for regenerating catalysts that have been deactivated or poisoned during hydrogenation of biomass, sugars and polysaccharides is described, in which polymerized species that have agglomerated to catalyst surfaces can be removed by means of washing the catalyst with hot water at subcritical temperatures. A feature of the process regenerates the catalysts in situ which allows the process to be adapted for used in continuous throughput reactor systems. Also described is a continuous hydrogenation process that incorporated the present regeneration process.
    Type: Application
    Filed: April 17, 2013
    Publication date: May 7, 2015
    Inventor: Chi-Cheng Ma
  • Patent number: 9018119
    Abstract: A method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore, which includes: preparing a slurry by using middle-low grade manganese dioxide ore powder, putting sulfur-containing fume in an absorbing device and controlling gas velocity and gas-liquid ratio, and then adding manganese dioxide slurry and controlling the slurry to backwards flow relative to the sulfur-containing fume, discharging the desulfurized fume from the absorbing device, pressure-filtering and separating the slurry discharged from the absorbing device, recycling the mother liquor to the absorbing device, and continuing the recycling operation until the manganese sulfate in the mother liquor is >=200 g/l, the obtained filter cake at 60-70° C., adjusting pH value of the clear solution obtained to 2-4, adding manganese sulfide under agitation at 25-95° C.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: April 28, 2015
    Assignee: Guizhou Redstar Developing Co., Ltd.
    Inventors: Zhiguang Jiang, Dong Hua, Fei Wu
  • Patent number: 8987159
    Abstract: We provide an extracted conjunct polymer naphtha (45), comprising a hydrogenated conjunct polymer naphtha, from a used ionic liquid catalyst, having a final boiling point less than 246° C. (475° F.), a Bromine Number of 5 or less, and at least 30 wt % naphthenes. We also provide a blended alkylate gasoline (97) comprising the extracted conjunct polymer naphtha (45), and integrated alkylation processes to make the extracted conjunct polymer naphtha (45) and the blended alkylate gasoline (97). We also provide a method to analyze alkylate products, by determining an amount of methylcyclohexane in the alkylate products (80).
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 24, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung Cho Timken, Izadyar Dalvand, Douglas Robert Cyr, Michael Tung-hai Cheng, Huping Luo, Shawn Shlomo Winter, Michael Sean Driver, Donald Henry Mohr
  • Patent number: 8980779
    Abstract: A method for regenerating an NOx removal catalyst, the method being capable of readily restoring the catalytic activity of a deteriorated NOx removal catalyst; being performed by simple operations; and attaining high operational efficiency. The method for regenerating an NOx removal catalyst 14 employed in a flue gas NOx removal apparatus includes immersing the NOx removal catalyst at ambient temperature in regeneration water 31 containing substantially no chlorine and no cleaning component; removing the catalyst from the regeneration water; and removing water from the catalyst.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: March 17, 2015
    Assignee: The Chugoku Electric Power Co., Inc.
    Inventor: Shigeo Shirakura
  • Patent number: 8980780
    Abstract: A process for regenerating a titanium silicalite catalyst by contacting the fouled titanium silicalite catalyst with a regeneration solution that includes at least one oxidizing agent.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: March 17, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Hannah L. Crampton, Philip J. Carlberg, Cesar E. Meza
  • Publication number: 20150072912
    Abstract: A method is disclosed. The method comprises the steps of preparing a serviceable catalytic converter such that a catalyst substrate of the catalytic converter is serviceable while the catalytic converter remains connected to an exhaust system by forming a lower surface of the body of the catalytic converter with an absence of material in order to provide at least one opening in the lower surface of the body of the catalytic converter for permitting selective access to a fluid-flow passage that extends through the body of the catalytic converter that contains the catalyst substrate; and disposing at least one close-out member in the at least one opening for fluidly-sealing the at least one opening. A component of an exhaust system that is serviceable while remaining fluidly-connected and physically-connected to the exhaust system is also disclosed.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: Paul Richard SerVaas, Ryan Scott Miller
  • Publication number: 20150072855
    Abstract: Described herein is a selective catalytic reduction (SCR) catalyst treatment system that includes a vanadium-based SCR catalyst contaminated with a water-soluble contaminant. The SCR catalyst treatment system also includes a water delivery system that is configured to apply water to the vanadium-based SCR catalyst to remove the water-soluble contaminant from the vanadium-based SCR catalyst.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Inventors: Aleksey Yezerets, Neal W. Currier, Xu Chen, Junhui Li, Krishna Kamasamudram, Hongbin Ma, Tamas Szailer, Cary Henry, Roger Fox
  • Patent number: 8927448
    Abstract: A method to prepare an improved catalyst feed to a system to upgrade heavy oil. The method comprises: providing a spent catalyst that has been used in a hydroprocessing operation has with a solid content ranging from 5 to 50 wt. % in soluble hydrocarbons and having less than 80% but more than 10% of original catalytic activity; removing at least 50% of the soluble hydrocarbons removed in a deoiling step; treating the deoiled spent catalyst with a treating solution containing at least one of plain water, a mineral acid, an oxidizing agent, and combinations thereof to reduce the concentration of at least one metal contaminant in the deoiled spent catalyst by at least 40%. After treatment, the treated deoiled spent catalyst is slurried in a hydrocarbon medium, and fed to the heavy oil upgrade system as part of the catalyst feed system with a fresh slurry catalyst.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: January 6, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bo Kou, Julie Chabot
  • Publication number: 20150001154
    Abstract: A method of forming a treated granulized zeolite product includes applying a cationic surfactant to a granulized zeolite material, such that an amount applied to the granulized zeolite material covers at least 20 percent of the ECEC sites of the granulized zeolite material, granulizing a zeolite material to produce the granulized zeolite material, the zeolite material having a d50 in a range of 300 to 30 micron size.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventor: Stephen L. Peterson
  • Patent number: 8906819
    Abstract: This invention is directed to a method for removing calcium material from a substrate or catalytic converter. In particular, this invention is directed to a method for removing calcium material, particularly in the form of calcium-containing fly ash, from a substrate using a partially protonated or non-protonated polycarboxylic acid treatment material.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: December 9, 2014
    Assignee: Coalogix Technology Holdings Inc.
    Inventors: Michael D. Cooper, Nagesh Patel
  • Publication number: 20140296057
    Abstract: The behavior of a monitored condition over time for a reactor or reaction system can be analyzed using groupings or windows of data to identify anomalous features in the time-average values. Anomalous features can be identified based on a threshold value generated from the analysis. Based on identification of an anomalous feature, a corrective action can be taken. For example, when the monitored condition is the pressure drop across a catalyst bed, detection of an anomaly can indicate the time to initiate a wash process for the catalyst bed before a large drop in catalyst activity occurs. By detecting an anomaly at an earlier point in time, a wash cycle can be initiated earlier so that the wash is more effective at restoring the catalyst bed to a desired condition.
    Type: Application
    Filed: February 28, 2014
    Publication date: October 2, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Teh C. Ho, Krishnan Kumaran, Richard C. Dougherty
  • Patent number: 8809215
    Abstract: A process for regenerating a spent cobalt Fischer-Tropsch synthesis catalyst includes subjecting a spent particulate cobalt Fischer-Tropsch synthesis catalyst sequentially to a dewaxing treatment, an oxidation treatment at a pressure of 4 to 30 bar(a) and a reduction treatment, thereby regenerating the catalyst.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 19, 2014
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jan Van De Loosdrecht, Abdool Muthalib Saib
  • Patent number: 8791307
    Abstract: A process of producing ?,?-unsaturated ethers includes pyrolyzing an acetal represented by Formula (2) below in a gas phase in the presence of a catalyst and a compound having at least one hydrogen atom capable of hydrogen bonding to produce an ?,?-unsaturated ether represented by Formula (3) below: R1R2CH—CR3(OR4)2??(2) R1R2C?C—R3(OR4)??(3) In Formulae (2) and (3), R1, R2 and R3 are each independently a hydrogen atom, an alkyl group, an alkenyl group or an aryl group; R4 is an alkyl group, an alkenyl group or an aryl group; the plurality of R4 in Formula (2) may be the same or different from each other.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: July 29, 2014
    Assignee: Showa Denko K.K.
    Inventors: Yoshikuni Okumura, Hiroto Kouka, Takanori Aoki
  • Publication number: 20140194275
    Abstract: A method of reactivating a spent catalyst comprising a metal and a catalyst support, the method comprising redispersing the metal in the spent catalyst to produce a redispersed spent catalyst, contacting the redispersed spent catalyst with a reactivating composition to produce a redispersed, reactivated spent catalyst, and thermally treating the redispersed, reactivated spent catalyst to produce a reactivated catalyst.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 10, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventor: An-Hsiang Wu
  • Patent number: 8772191
    Abstract: The invention provides a process for the off site regeneration of a solid catalyst, comprising two consecutive steps: a first step of washing the catalyst using one or more fluid(s) in the supercritical state, so as to extract from the catalyst at least a portion of the hydrocarbons present at the surface of the latter, followed by a second step of combustion of at least a portion of the coke present at the surface of the said catalyst by a heat treatment of the latter in the presence of oxygen and at a temperature ranging from 300° C. to 600° C.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: July 8, 2014
    Assignee: Eurecat S.A.
    Inventors: Philippe Kerleau, Pierre Dufresne
  • Patent number: 8765622
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. Filtering in the deoiling zone can comprise filtering the slurry and solvent through a cross-flow microfiltration unit, recovering a retentate stream of the cross-flow microfiltration unit, combining the retentate stream of the cross-flow microfiltration unit with solvent to form a combined retentate-solvent stream, and filtering the combined retentate-solvent stream through a cross-flow microfiltration unit.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lalit S. Shah, Christopher A. Powers, James R. Stoy, Fred D. Brent, Bruce E. Reynolds, Andre R. Da Costa
  • Patent number: 8754004
    Abstract: A method of constructing a phosphorous adsorbing structure includes creating a design model that indicates a percentage of phosphorous removed from a water supply per an amount of a predetermined adsorbent exposed to the water supply based upon an original concentration of phosphorous in the water supply and a retention time of water in the adsorbing structure.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: June 17, 2014
    Assignee: The Board of Regents for Oklahoma State University
    Inventor: Chad J. Penn
  • Publication number: 20140163259
    Abstract: A process for producing phenol is described in which a feed comprising alkylbenzene hydroperoxide is contacted with a cleavage catalyst under cleavage conditions effective to convert at least part of the hydroperoxide into phenol, the process is characterized in that at least a part of the deactivated catalyst is regenerated using a oxidizing material comprising hydrogen peroxide and then return to the process. A method of regenerating the cleavage catalyst is also described.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Inventors: Jihad Mohammed Dakka, Kun Wang
  • Patent number: 8748332
    Abstract: Provided is a method for cleaning a used denitration catalyst, which prevents release of mercury to the atmosphere by collecting and removing mercury which would have been released to the atmosphere in the process of cleaning the used denitration catalyst. The method comprises immersing the used denitration catalyst mainly composed of titanium oxide and having been used in exhaust gas containing mercury in a cleaning liquid, and stirring the cleaning liquid to dissolve and remove catalyst poisons including the mercury from the used denitration catalyst, wherein a waste gas generated in the step of stirring the cleaning liquid is conducted to a flue having a mercury removal device so as to remove the mercury, and then vented to the atmosphere.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 10, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Seiji Ikemoto, Yasuyoshi Kato, Keiichiro Kai
  • Patent number: 8729140
    Abstract: A process for regenerating one or more deactivated cobalt comprising Fischer-Tropsch catalyst particle(s), comprising the steps of: (i) oxidizing the catalyst particle(s) at a temperature between 20 and 400° C.; (ii) treating the catalyst particle(s) for more than 5 minutes, (iii) drying the catalyst particle(s); and (iv) optionally reducing the catalyst particle(s) with hydrogen or a hydrogen comprising gas. This process may be preceded by a step in which Fischer-Tropsch product is removed from the catalyst particle(s). The treatment is performed using carbon dioxide and a liquid comprising ammonia.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 20, 2014
    Assignee: Shell Oil Company
    Inventors: Gerrit Leendert Bezemer, Stephen Nkrumah, Johannes Theodorus Maria Smits
  • Patent number: 8722556
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. The deoiling zone can comprise a membrane that is rapidly displaced in a horizontal direction.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 13, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Andre R. DaCosta, Paul Bryan
  • Publication number: 20140087938
    Abstract: A device for roasting spent activated carbon, waste sludges, or other organic wastes, includes a downdraft bed furnace, a first adsorber fluidly coupled to the furnace including a closed tank of adsorber process solution, a venturi scrubber and a cyclone separator coupled to the tank such that gases are sucked through the venturi and the cyclone separator, liquid effluents from the scrubber and separator falling by gravity into the tank, a second adsorber fluidly coupled to the first adsorber including a closed tank of adsorber liquid, a venturi scrubber and a cyclone separator coupled to the tank such that gases are sucked through the venturi and the cyclone separator, liquid effluents from the scrubber and separator falling by gravity into the tank, the second adsorber configured to remove impurities not removed in the first adsorber; and an exhaust blower fluidly coupled to the second adsorber unit and configured to pull air into the furnace and through the first and second adsorbers.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventor: Daniel W. Kappes
  • Patent number: 8680162
    Abstract: A process for regenerating a spent particulate wax-containing cobalt-based Fischer-Tropsch synthesis catalyst is provided. The process includes subjecting the spent wax-containing catalyst sequentially to a dewaxing treatment, an oxidation treatment and a reduction treatment. During the dewaxing treatment, the spent wax-containing catalyst is at least partially dewaxed, with dewaxed catalyst particles being produced. During the oxidation treatment, an oxygen-containing gas is passed through a bed of the dewaxed catalyst particles at an operating temperature T° C. where 150<T<450, and the operating temperature is controlled by removing heat from the catalyst particle bed using a cooling device, to obtain oxidized catalyst particles. During the reduction treatment, the oxidized catalyst particles are reduced, thereby regenerating the catalyst.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 25, 2014
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jan Van De Loosdrecht, Willem Adriaan Booysen
  • Patent number: 8673800
    Abstract: We provide a process and apparatus for preparing a used catalyst for disposal, comprising: a. hydrolyzing a used ionic liquid catalyst comprising an anhydrous metal halide to produce a hydrolyzed product; and b. separating the hydrolyzed product into a liquid phase and a solid phase; wherein the liquid phase comprises a non-water-reactive aqueous phase and a hydrocarbon phase; and wherein the solid phase comprises a solid portion of the hydrolyzed product, that is not water reactive. A vessel is used for the hydrolyzing and a separator is used for the separating.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: March 18, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Shawn Stephen Healy, Shawn Shlomo Winter
  • Patent number: 8637418
    Abstract: A method for treating a catalyst base that comprises a contact area of porous material. A fluid, such as a flue gas stream, can be conducted along the contact area. A catalytically relevant substance is introduced into pores of the catalyst base using a transport fluid and remains on pore wall areas after removal of the transport fluid. The introduction is carried out such that an amount of the catalytically relevant substance relative to the surface remains on the pore wall areas as a function of location within the pore and decreases within the pore after exceeding a specific pore depth. A blocking fluid can first be introduced into pore regions beyond the specific pore depth, thus blocking these regions when transport fluid containing the catalytically relevant substance is introduced.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: January 28, 2014
    Assignee: STEAG Energy Services GmbH
    Inventors: Hermann Brüggendick, Maik Blohm
  • Patent number: 8637417
    Abstract: A method for treating a catalyst base that comprises a contact area of porous material. A fluid, such as a flue gas stream, can be conducted along the contact area. A catalytically relevant substance is introduced into pores of the catalyst base using a transport fluid and remains on pore wall areas after removal of the transport fluid. The introduction is carried out such that an amount of the catalytically relevant substance relative to the surface remains on the pore wall areas as a function of location within the pore and decreases within the pore after exceeding a specific pore depth. A blocking fluid can first be introduced into pore regions beyond the specific pore depth, thus blocking these regions when transport fluid containing the catalytically relevant substance is introduced.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: January 28, 2014
    Assignee: Steag Energy Services GmbH
    Inventors: Hermann Brüggendick, Maik Blohm
  • Patent number: 8614159
    Abstract: A method of re-using a spent fluid catalytic cracking (FCC) catalyst, previously used in an FCC process, in an additional FCC process, where the method includes the steps of: providing FCC catalyst that has been utilized in an FCC process, defined as spent FCC catalyst, wherein the spent FCC catalyst includes both aluminum and at least one rare earth element therein; and reacting the spent FCC catalyst with an extracting agent to extract at least a portion of the at least one rare earth element from the spent FCC catalyst, while extracting no more than half of the aluminum from the spent FCC catalyst. After performing the reacting step, the reacted spent FCC catalyst can be used in an additional FCC process.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: December 24, 2013
    Inventor: Albert A. Vierheilig
  • Patent number: 8598059
    Abstract: The present invention relates to a process for sulfurizing a hydrocarbon treatment catalyst, comprising: at least a first step of depositing, on the surface of the catalyst, one or more sulfurization auxiliaries of formula (I): and at least a second step, carried out after the first step, of placing the catalyst in contact with a sulfur-containing gaseous mixture containing hydrogen and a sulfur compound. This process does not comprise the deposit of any carbon sources other than the auxiliary of formula (I).
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 3, 2013
    Assignee: Eurecat S.A.
    Inventors: Pierre Dufresne, Eric Nagy, Pauline Galliou
  • Patent number: 8586501
    Abstract: According to various embodiments, a catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The substrate is a product of adding a substrate precursor to a water-in-oil microemulsion including a catalytic metal salt, a solvent, a templating agent, and water.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colborn, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Publication number: 20130303358
    Abstract: We provide a process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers in a reactor, by removing at least 57 wt % of the conjunct polymers originally present in the used acidic ionic liquid catalyst in a separate regeneration reactor, so as to increase the activity of the catalyst. We also provide a regenerated used acidic ionic liquid catalyst having increased activity.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 14, 2013
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Saleh Ali Elomari, Thomas Van Harris
  • Publication number: 20130277603
    Abstract: The present invention describes the method for preparing, using and recovering an absorbent material for apolar compounds or mixtures of apolar compounds, such as organic solvents, mineral oil and derivatives thereof, lubricant oils, edible oils, inter alia. The absorbent material is composed of an inorganic matrix of high porosity, low density and high mechanical resistance. This matrix is rendered water-proof, thus acquiring the property of absorbing apolar compounds or mixtures of apolar compounds.
    Type: Application
    Filed: July 14, 2011
    Publication date: October 24, 2013
    Applicant: UNIVERSIDADE FEDERAL DE MINAS GERAIS
    Inventors: Geraldo Magela De Lima, Jadson Cláudio Belchior, Geison Voga Pereira, Fabrício Vieira De Andrade, Márcio Guimarães Coelho, Daneile Santos Cavanellas Gomes, Nathália Gabriela Silva Pinheiro
  • Publication number: 20130274533
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 17, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
  • Patent number: 8524623
    Abstract: A process for regenerating a spent ionic liquid catalyst including (a) applying a voltage across one or more pairs of electrodes immersed in a spent ionic liquid catalyst comprising conjunct polymer-metal halide complexes to provide freed conjunct polymers and a regenerated ionic liquid catalyst; and (b) separating the freed conjunct polymers from the regenerated ionic liquid catalyst is described. An alkylation process incorporating the regeneration process is also described.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: September 3, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Saleh Elomari, Thomas V. Harris, James N. Ziemer
  • Patent number: 8507396
    Abstract: A process for regenerating a used acidic catalyst which has been deactivated by conjunct polymers by removing the conjunct polymers so as to increase the activity of the catalyst is disclosed. Methods for removing the conjunct polymers include addition of a basic reagent and alkylation. The methods are applicable to all acidic catalysts and are described with reference to certain ionic liquid catalysts.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 13, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Publication number: 20130168290
    Abstract: A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
    Type: Application
    Filed: July 4, 2011
    Publication date: July 4, 2013
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Prabhu K. Mohan, A.V. Karthikeyani, Manish Agarwal, Biswanath Sarkar, Balaiah Swamy, V. Chidambaram, P.S. Choudhury, S. Rajagopal