Of Manganese Patents (Class 502/324)
  • Publication number: 20140205928
    Abstract: A platinum alloy catalyst PtXY, wherein X is nickel, cobalt, chromium, copper, titanium or manganese and Y is tantalum or niobium, characterised in that in the alloy the atomic percentage of platinum is 46-75 at %, of X is 1-49 at % and of Y is 1-35 at %; provided that the alloy is not 66 at % Pt 20 at % Cr14 at % Ta or 50 at % Pt, 25 at % Co, 25 at % Ta is disclosed. The catalyst has particular use as an oxygen reduction catalyst in fuel cells, and in particular in phosphoric acid fuel cells.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Sarah BALL, Thomas Robertson RALPH, Brian Ronald THEOBALD, David THOMPSETT
  • Patent number: 8785061
    Abstract: To provide a CO conversion catalyst for use in a fuel cell in a DSS operation, which includes a Cu—Al-Ox catalyst, in which the Cu—Al-Ox catalyst has a boehmite phase formed in at least a part of the Cu—Al-Ox catalyst. The CO conversion catalyst has an improved degree of dispersion of Cu metal by the boehmite phase formed therein, and hence can be prevented from sintering of copper caused due to steam, thereby achieving improved durability with respect to the function as the CO conversion catalyst.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Tetsuya Shishido
  • Patent number: 8785699
    Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: July 22, 2014
    Assignee: Pioneer Energy, Inc.
    Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin
  • Patent number: 8779014
    Abstract: The present invention provides a slurry catalyst and a method for preparing the same, and belongs to the technical field of preparing catalyst. Particularly, the present invention provides a slurry catalyst directly used in a slurry bed reactor for synthesizing methanol and dimethyl ether and a method for preparing the same, which uses the complete liquid phase preparation from solution to slurry without the conventional slurry-producing process of firstly forming a solid catalyst and dispersing it into an inert medium after crushing and milling. This catalyst mainly comprises Cu, Zn, Al and Zr, wherein atomic ratios of each of components are Cu/Zn/(Al+Zr)=1/0.1-5/0.15-15 and Zr/Al=1:1.0-1:30, and one or two selected from the group consisting of lanthanide metals, Mn, Mo, Si, V, W, Cr, Mg, Ni, K, Pd, Rh, Ru, Re, Pt and Sr is used a promoter.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: July 15, 2014
    Assignee: Taiyuan University of Technology
    Inventors: Wei Huang, Zhihua Gao, Lihua Yin, Kechang Xie
  • Publication number: 20140194279
    Abstract: The performance of an ABx type metal hydride alloy is improved by adding an element to the alloy which element is operative to enhance the surface area morphology of the alloy. The alloy may include surface regions of differing morphologies.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: Ovonic Battery Company, Inc.
    Inventors: Kwo Young, Benjamin Reichman, Michael A. Fetcenko
  • Publication number: 20140193730
    Abstract: Electrooxidative materials and various method for preparing electrooxidative materials formed from an alloy of oxophilic and electrooxidative metals. The alloy may be formed using methods such as spray pyrolysis or mechanosynthesis and may or may not include a supporting material which may or may not be sacrificial as well as the materials.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: STC.UNM
    Inventors: Ulises A. Martinez, Plamen B. Atanassov, Alexey Serov, Monica Padilla
  • Publication number: 20140187654
    Abstract: The present invention relates to a catalyst for oxygenate synthesis for synthesizing an oxygenate from a mixed gas containing hydrogen and carbon monoxide, the catalyst for oxygenate synthesis containing: a component (A): rhodium, a component (B): manganese, a component (C): an alkali metal, and a component (D): a component (D1), component (D2) or component (D3), wherein the component (D1) is one or more substances selected from the group consisting of titanium, vanadium and chromium, the component (D2) is an element belonging to group 13 of the periodic table, and the component (D3) is one or more substances selected from the group consisting of magnesium and lanthanoids. According to the present invention, an oxygenate can be synthesized efficiently from a mixed gas containing hydrogen and carbon monoxide.
    Type: Application
    Filed: August 22, 2012
    Publication date: July 3, 2014
    Applicant: SEKISUI CHEMICAL CO., LTD.
    Inventor: Toshihito Miyama
  • Patent number: 8765092
    Abstract: A non-stoichiometric perovskite oxide having the general chemical formula LaXMnOY, in which the molar ratio of lanthanum to manganese (“X”) ranges from 0.85 to 0.95, can be used in particle form as an oxidation catalyst to oxidize NO to NO2 in an exhaust aftertreatment system for a hydrocarbon-fueled engine. The oxygen content (“Y”) fluctuates with variations in the molar ratio of lanthanum to manganese but generally falls somewhere in the range of 3.0 to 3.30. The crystal lattice adjustments spurred by the non-stoichiometric molar ratio of lanthanum to manganese are believed responsible for an enhanced NO oxidative activity relative to similar perovskite oxides with a higher molar ratio of lanthanum and manganese.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 1, 2014
    Assignees: GM Global Technology Operations LLC, Tianjin University
    Inventors: Gongshin Qi, Wei Li, Xinquan Wang, Meiqing Shen
  • Patent number: 8765085
    Abstract: Aspects of the invention relate to a base metal catalyst composition effective to catalyze the abatement of hydrocarbons, carbon monoxide and nitrogen oxides under both rich and lean engine operating conditions comprising a support including at least 10% by weight of reducible ceria doped with up to about 60% by weight of one or more of oxides selected from the group Al, Pr, Sm, Zr, Y, Si, Ti and La; and a base metal oxide on the reducible ceria support, the base metal selected from one or more of Ni, Fe, Mn, Cu, Co, Ba, Mg, Ga, Ca, Sr, V, W, Bi and Mo, the base metal catalyst composition effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx. Other aspects of the invention relate to methods of using and making such catalysts.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 1, 2014
    Assignee: Basf Corporation
    Inventors: Pascaline Harrison Tran, Xinsheng Liu, Ye Liu, Michael P. Galligan, Qinglin Zhang
  • Patent number: 8759249
    Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 24, 2014
    Assignee: SUED-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Groβmann, Silvia Neumann
  • Publication number: 20140154613
    Abstract: An air electrode catalyst material according to an embodiment of the present invention is used in solid oxide fuel cells and includes a perovskite oxide represented by a general formula (1): AxByO3-6. A ratio x/y of the A to the B is 1.05?x/y?1.5, and a peak derived from a perovskite structure A1B1O3-? is shown in a chart obtained by an X-ray diffraction measurement, and in Raman spectra, an area of absorption peak existing between 560 cm?1 and 620 cm?1 (inclusive) is larger than that between 380 cm?1 and 440 cm?1 (inclusive).
    Type: Application
    Filed: May 31, 2013
    Publication date: June 5, 2014
    Inventors: YASUSHI SATO, TAKAO KUDO, KOICHI YAMAMURO, SHU YAMAGUCHI, SHOGO MIYOSHI, AYANO TAKESHITA
  • Patent number: 8741242
    Abstract: A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Jonathan Ashley Cooper, Michael Anthony Howard
  • Patent number: 8722608
    Abstract: The present invention concerns bleaching of substrates with an aqueous solution of a water soluble salt of a preformed transition metal catalyst together with hydrogen peroxide.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 13, 2014
    Assignee: Conopco, Inc.
    Inventors: Ronald Hage, Jean Hypolites Koek, Marinus Maria Cornelis Gerardus Warmoeskerken
  • Patent number: 8722001
    Abstract: A catalyst for the purification of exhaust gas that can be used to highly efficiently treat an exhaust gas which has moisture and fluctuates between an oxidizing atmosphere and a reducing atmosphere even after the catalyst is exposed to a high temperature is provided. The present invention relates to a catalyst for the purification of exhaust gas having a catalyst layer of catalyst components comprising a noble metal, magnesium oxide, and a refractory inorganic oxide formed on a three-dimensional structure, wherein the catalyst layer has two peaks originated from the magnesium oxide in a pore distribution obtained by mercury intrusion technique.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 13, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA, Inc.
    Inventors: Mariko Ono, Akihisa Okumura
  • Publication number: 20140128643
    Abstract: This invention relates to a catalyst containing from about 2 up to about 8% by wt. of copper, zero up to about 0.6 moles/kg of one or more alkali metal(s), from about 0.08 up about 0.85 moles/kg of one or more alkaline earth metals and from about 0.09 up to about 0.9 moles/kg of one or more transition metals selected from the group consisting of Mn, Re and mixtures thereof, where all the metals are impregnated in form of their chlorides or other water soluble salts on a fluidizable support with a BET surface area of from about 80 up to about 220 m2/g. A process for the oxychlorination of ethylene to form 1,2-dichloroethane using such a catalyst having good activity, good selectivity and low tendency to stickiness in fluidized bed oxychlorination reactions.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 8, 2014
    Inventors: Rolf Tompers, Keith Kramer
  • Publication number: 20140128632
    Abstract: The present invention provides a process and a solid catalyst for oxydehydration of glycerol to acrylic acid with H2O2 under mild experimental condition at atmospheric pressure. The process provides a single step liquid phase selective oxidation glycerol to acrylic acid over nanocrystalline Cu supported ?-MnO2 catalyst. The process provides glycerol conversion of 20-78% and selectivity of acrylic acid up to 86%.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: RAJARAM BAL, BIPUL SARKAR, RAJIB KUMAR SINGHA, CHANDRASHEKAR PENDEM, SHUBHRA ACHARYYA SHANKHA, SHILPI GHOSH
  • Publication number: 20140107356
    Abstract: A method for producing epoxidation catalysts is provided. The catalyst comprises a support, a catalytic species, maganese and at least one alkali metal and/or promoter. The catalytic species may be silver. The catalyst is prepared by a method wherein at least a portion of the manganese is impregnated in a step separate from the at least one alkali metal and/or promoter. Advantageously, catalysts produced by the present method may exhibit greater efficiencies than catalysts produced by conventional methods. A method for the epoxidation of alkylenes using the catalysts so produced is provided as is a method for using the alkylene oxides for the production of 1,2-diols, 1,2-carbonates, 1,2-diol ethers, or alka-nolamines.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 17, 2014
    Applicant: DOW TECHNOLOGY INVESTMENTS, LLC
    Inventors: Srikant Gopal, Lakshmi N. Vutukuru Murthy, Arun G. Basrur
  • Patent number: 8697597
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 15, 2014
    Assignee: University of Miami
    Inventor: Xiangyang Zhou
  • Patent number: 8685882
    Abstract: Disclosed is a vanadium/titania-based catalyst including natural manganese ore for removing nitrogen oxides and dioxin in a wide operating temperature range and a method of using the same. Specifically, this invention pertains to a vanadium/titania (V/TiO2)-based catalyst, including natural manganese ore, and a method for removing nitrogen oxides and dioxin over a wide operating temperature range, in which the WTiO2 catalyst for selective catalytic reduction of nitrogen oxides and removal of dioxin contained in flue gas includes 5-30 wt % of natural manganese ore.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 1, 2014
    Assignee: Korea Power Engineering Company, Inc.
    Inventors: Sung Ho Hong, Jun Yub Lee, Seok Joo Hong, Sung Pill Cho, Sung Chang Hong, Do Gyong Lee, Sang Hyun Choi
  • Publication number: 20140088316
    Abstract: A supported silver catalyst and use thereof in a process for producing an alkylene oxide, such as ethylene oxide, by the direct oxidation of an alkylene with oxygen or an oxygen-containing gas, wherein the catalyst provides improved stability and improved resilience to reactor upsets and timely recovery to substantially pre-upset levels of catalyst activity and/or efficiency. In some embodiments, the catalyst also exhibits improved activity. A catalyst capable of producing ethylene oxide at a selectivity of at least 87 percent while achieving a work rate of at least 184 kg/h/m3 at a temperature of no greater than 235° C. when operated in a process where the inlet feed to a reactor containing the catalyst comprises ethylene, oxygen, and carbon dioxide, wherein the concentration of carbon dioxide in the inlet feed is greater than or equal to 2 mole percent.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Inventors: Manuel A. W. Natal, Madan M. Bhasin, Hwaili Soo, Albert C. Liu
  • Publication number: 20140080698
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Application
    Filed: April 29, 2013
    Publication date: March 20, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Patent number: 8674156
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 18, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co. Ltd.
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Patent number: 8673807
    Abstract: The present invention relates to a catalyst composition for the synthesis of thin multi-walled carbon nanotube(MWCNT). More particularly, this invention relates to a multi-component metal catalyst composition comprising i) main catalyst of Co and Al, ii) inactive support of Mg and iii) optional co-catalyst at least one selected from Ni, Cr, Mn, Mo, W, Pb, Ti, Sn, or Cu. Further, the present invention affords thin multi-walled carbon nanotube having 5˜20 nm of diameter and 100˜10,000 of aspect ratio in a high yield.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 18, 2014
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Wan Sung Lee, Youngchan Jang
  • Patent number: 8668890
    Abstract: Aspects of the invention relate to a method of treating a gas stream generated by a motorcycle, the method comprising: contacting a gas stream containing hydrocarbons, carbon monoxide and nitrogen oxides and generated by a motorcycle under both rich and lean engine operating conditions with a base metal catalyst composition, thereby removing at least a part of the hydrocarbons, carbon monoxide and nitrogen oxides in gas stream. The base metal catalyst composition comprises a support including at least 10% by weight of reducible ceria, and about 3 to about 7 wt % MnO and about 8 to about 22 wt % CuO on the reducible ceria support. The base metal catalyst composition is effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: March 11, 2014
    Assignee: BASF Corporation
    Inventors: Pascaline Harrison Tran, Xinsheng Liu, Ye Liu, Michael P. Galligan, Qinglin Zhang, Hiroyuki Horimura, Akiko Iwasa
  • Publication number: 20140066680
    Abstract: The present disclosure provides a catalyst for oxidative dehydrogenation of butene to butadiene, comprising at least one compound of formula ZnaAlbMcFeeOf.Z(?-Fe2O3), wherein M is at least one element chosen from Be, Mg, Ca, Sr, Mn, Ba, Cu, Co, and Ni, Z represents the percentage by weight of ?-Fe2O3 in the catalyst and ranges from 10% to 70%. Also provided herein is a process of preparing said catalyst and the use of said catalyst in an oxidative dehydrogenation of butene to butadiene processes.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 6, 2014
    Applicants: Shanghai Research Institute of Petrochemical Technology SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Changxi Miao, Wenhai Wu, Zhigui Fan, Tieqiang Zeng, Chunjing Ma, Sheng Wu
  • Patent number: 8663588
    Abstract: A double-layer three-way catalyst for purification of the exhaust gases from internal combustion engines which has excellent activity and thermal stability is described. The catalyst contains active aluminum oxide and a first cerium/zirconium mixed oxide which are both catalytically activated with palladium in the first layer applied to a catalyst support. In the second layer which is in direct contact with the exhaust gas, the catalyst likewise contains an active aluminum oxide and a second cerium/zirconium mixed oxide which are both catalytically activated with rhodium. The second cerium/zirconium mixed oxide has a higher zirconium oxide content than the first mixed oxide.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: March 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Dieter Lindner, Martin Roesch, Raoul Klingmann, Anke Wolf, Joerg-Michael Richter
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Publication number: 20140031546
    Abstract: A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Wenqin Shen, Alguo Liu, Wayne Turbeville
  • Publication number: 20140031198
    Abstract: The invention relates to a process for preparing a supported catalyst, wherein the catalyst contains cobalt, manganese and a third element selected from the group consisting of aluminium, gallium, indium, thallium, tin, lead and bismuth, and is prepared by co-precipitation of a manganese salt and a cobalt salt on a support, followed by impregnation with a salt of the third element. Further, the invention relates to the catalyst so obtained.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 30, 2014
    Applicant: SHELL OIL COMPANY
    Inventor: Michael Johannes Franciscus Maria VERHAAK
  • Patent number: 8637417
    Abstract: A method for treating a catalyst base that comprises a contact area of porous material. A fluid, such as a flue gas stream, can be conducted along the contact area. A catalytically relevant substance is introduced into pores of the catalyst base using a transport fluid and remains on pore wall areas after removal of the transport fluid. The introduction is carried out such that an amount of the catalytically relevant substance relative to the surface remains on the pore wall areas as a function of location within the pore and decreases within the pore after exceeding a specific pore depth. A blocking fluid can first be introduced into pore regions beyond the specific pore depth, thus blocking these regions when transport fluid containing the catalytically relevant substance is introduced.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: January 28, 2014
    Assignee: Steag Energy Services GmbH
    Inventors: Hermann Brüggendick, Maik Blohm
  • Patent number: 8628742
    Abstract: A method of using a hybrid oxidation catalyst system for remediating a lean emission from a vehicle includes the step of oxidizing the hydrocarbons and carbon monoxide in an engine emission comprising hydrocarbons, carbon monoxide, NOx including NO and NO2, and oxygen with a first catalyst. The first catalyst includes noble metal particles supported in a first ceramic layer. The method further includes oxidizing the NO with a second catalyst having base metal oxide particles supported in a second ceramic layer to form NO2. The first catalyst is disposed upstream of the second catalyst and the system is capable of converting at least 10% of the amount of NO to NO2 at a temperature ranging from 75° C. to 225° C.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew Robert Drews, Robert J. Kudla
  • Publication number: 20140004027
    Abstract: Provided are a titania carrier for supporting a catalyst for removing nitrogen oxides, a manganese oxide-titania catalyst comprising the same, an apparatus and a method for preparing the same, and a method for removing nitrogen oxides. More particularly, provided are a titania carrier having a specific surface area of 100 m2/g-150 m2/g, an average pore volume of 0.1 cm3/g-0.2 cm3/g, and an average particle size of 5 nm-20 nm, and an apparatus and method for preparing the same. Provided also are a manganese oxide-titania catalyst comprising the titania carrier and manganese oxide supported thereon, a method for preparing the same, and a method for removing nitrogen oxides using the catalyst. The catalyst has high activity and dispersibility, and thus provides excellent denitrogenation efficiency even in a low temperature range of about 200° C.
    Type: Application
    Filed: November 27, 2012
    Publication date: January 2, 2014
    Inventors: Jong Soo Jurng, Eun Seuk Park, Sung Min Chin, Woo Joon Cha
  • Publication number: 20140001407
    Abstract: The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrian MILANOV, Ekkehard Schwab, Stephan Schunk, Guido Wasserschaff
  • Patent number: 8618016
    Abstract: Iron- and manganese-containing heterogeneous catalyst, and a process for producing it, including the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating; surface oxidation of the iron particles to form iron oxide; contacting the particles with an aqueous solution of a manganese compound; drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting in oxygen-comprising manganese compounds on the particles; and finally reaction of these with the iron oxide to form a mixed oxide of the formula MnxFe3-xO4, where 0<x?2. Process for preparing olefins by reacting carbon monoxide with hydrogen in the presence of a catalyst, wherein the abovementioned iron- and manganese-comprising heterogeneous catalyst is used as catalyst.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moβbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Patent number: 8613900
    Abstract: The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: December 24, 2013
    Assignee: The Regents of the University of California
    Inventors: Heinz M. Frei, Feng Jiao
  • Patent number: 8614161
    Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
  • Patent number: 8603937
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 10, 2013
    Assignee: Shell Oil Company
    Inventors: Randall Clayton Yeates, John Robert Lockemeyer, Marek Matusz
  • Patent number: 8603939
    Abstract: The present provides a high-efficiency amide compound production catalyst to be used in producing an amide compound through hydration of a nitrile compound and a production method using it. The amide compound production catalyst is for producing an amide compound through reaction of a nitrile compound and water, and comprises a manganese oxide catalyst containing bismuth and further containing yttrium or vanadium. The method for producing an amide compound comprises reacting a nitrile compound and water in a liquid phase in the presence of the amide compound production catalyst.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takako Uchiyama, Shinyou Shirai, Yoshikazu Shima, Masaki Takemoto, Genki Nogami
  • Patent number: 8598063
    Abstract: A catalyst for FT synthesis which, in the FT method, is high in a CO conversion and small in the formation of a gaseous component and can stably perform an FT synthesis reaction and enhance the productivity of hydrocarbons, and a method for producing hydrocarbons using the catalyst, are provided. A catalyst for Fischer-Tropsch synthesis comprising a support containing manganese carbonate as a main component, wherein the support contains at least one metal having an activity to the Fischer-Tropsch reaction; and a method for producing hydrocarbons using this catalyst.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: December 3, 2013
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Kazuhito Sato, Shigenori Nakashizu
  • Patent number: 8586786
    Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved methanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Publication number: 20130281554
    Abstract: This invention relates to a catalyst for oxygenate synthesis to use for synthesizing an oxygenate from mixed gas containing hydrogen and carbon monoxide, the catalyst comprising, an (A) component: rhodium, a (B) component: manganese, a (C) component: an alkali metal, and a (Z) component: magnesium oxide.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: SEKISUI CHEMICAL CO., LTD., COLORADO SCHOOL OF MINES
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Publication number: 20130252808
    Abstract: To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO3±? (provided that, 0???1). Here, A represents one or more of a rare-earth element (excluding Ce), an alkaline earth metal element, and an alkali metal element, X represents one or more of a transition metal element and a metalloid element, and O represents oxygen.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 26, 2013
    Inventors: Yoshihiro YAMAZAKI, Sossina M. HAILE, Chih-Kai YANG
  • Publication number: 20130244869
    Abstract: A composition includes titanium dioxide-containing digestion residue from titanium dioxide production, and at least one further component which is catalytically active. Dimensionally stable, catalytically active solids which are obtained from this composition can be used as catalyst, for example for minimizing nitrogen oxides.
    Type: Application
    Filed: August 26, 2011
    Publication date: September 19, 2013
    Applicant: SACHTLEBEN PIGMENT GMBH
    Inventors: Gerhard Auer, Frank Hipler
  • Publication number: 20130232861
    Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 12, 2013
    Applicant: Pioneer Energy, Inc.
    Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin