Of Platinum Group Metal And Of Iron Group (i.e., Ru, Rh, Pd, Os, Ir, Or Pt And Fe, Co Or Ni) Patents (Class 502/326)
-
Patent number: 12042782Abstract: Provided is a post-treatment method and system for a core-shell catalyst, which relate to the field of fuel cell materials. The post-treatment method of the present disclosure includes the following steps: a core-shell catalyst is added into an electrolyte solution containing citric acid or ethylenediamine tetraacetic acid, a gas containing oxygen is introduced into the electrolyte solution followed by stirring for a predetermined reaction time, the open circuit potential of the reactor base is recorded during the reaction time, and the open circuit potential should stabilize at 0.90˜1.0 V vs. RHE when the reaction is completed. The molar ratio of citric acid or ethylenediamine tetraacetic acid to platinum of the core-shell catalyst is 10 to 1000:1. A percentage of oxygen in the gas is 10 to 100% by volume. The post-treatment method of the present disclosure can significantly improve the platinum mass activity and PGM mass activity and durability of core-shell catalyst.Type: GrantFiled: October 19, 2020Date of Patent: July 23, 2024Assignees: GUANGZHOU HKUST FOK YING TUNG RESEARCH INSTITUTE, THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Minhua Shao, Hsi-Wen Wu
-
Patent number: 11679380Abstract: A double-layer structured catalyst for use in dehydrogenation of light hydrocarbon gas within a range of C3 to C6, configured such that platinum, tin, and an alkali metal are carried in a phase-changed carrier, wherein the tin component is present in an entire region inside the carrier, and the platinum and the tin form a single complex and are present in an alloy form within a range of a predetermined thickness from an outer periphery of the carrier.Type: GrantFiled: May 17, 2019Date of Patent: June 20, 2023Assignee: HEESUNG CATALYSTS CORPORATIONInventors: Young-san Yoo, Hyun A Choi, Dong Kun Kang, Young Ho Lee
-
Patent number: 11633722Abstract: Methods for producing a carbon-free, PGM-free support for PGM catalyst. The catalytic material comprises PGM metals disposed on a carbon-free support which is catalytic but free of PGM.Type: GrantFiled: September 30, 2020Date of Patent: April 25, 2023Assignee: UChicago Argonne, LLCInventor: Lina Chong
-
Patent number: 11452993Abstract: The invention relates to polyoxometalates represented by the formula (An)m+{M?s[M?M12X8OyRzHq]}m? or solvates thereof, corresponding supported polyoxometalates, and processes for their preparation, as well as corresponding metal-clusters, optionally in the form of a dispersion in a liquid carrier medium or immobilized on a solid support, and processes for their preparation, as well as their use in reductive conversion of organic substrate.Type: GrantFiled: October 14, 2016Date of Patent: September 27, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Ulrich Kortz, Yixian Xiang, Zhengguo Lin, Peng Yang, Helge Jaensch, Wassim W. Ayass
-
Patent number: 11420189Abstract: An exhaust gas purification catalyst having a substrate having a wall flow structure, and a catalyst layer. The catalyst layer has: an A section provided in the interior of the partition wall, along an extension direction X of the partition wall, from an exhaust gas inflow end section; a C section provided in the interior of the partition wall, along the extension direction X of the partition wall, from an exhaust gas outflow end section; and a B section disposed between the A section and the C section in the extension direction X of the partition wall, and provided over the surface of the partition wall on the side in contact with the inlet cell, the interior of the partition wall, and the surface of the partition wall on the side in contact with the outlet cell.Type: GrantFiled: June 7, 2018Date of Patent: August 23, 2022Assignee: CATALER CORPORATIONInventors: Kazunari Sawada, Ryota Onoe, Tetsuhiro Hirao
-
Patent number: 11338274Abstract: Provided in this disclosure are oxidative dehydrogenation catalysts that include a mixed metal oxide having the empirical formula: Mo1.0V0.12-0.49Te0.05-0.17Nb0.10-0.20Od wherein d is a number to satisfy the valence of the oxide. The oxidative dehydrogenation catalyst is characterized by having XRD diffraction peaks (2? degrees) at 22±0.2, 27±0.2, 28.0±0.2, and 28.3±0.1. The disclosure also provides methods of making the catalysts that include wet ball milling.Type: GrantFiled: August 1, 2019Date of Patent: May 24, 2022Assignee: NOVA Chemicals (International) S.A.Inventors: Vasily Simanzhenkov, Xiaoliang Gao, Marie Barnes, David Sullivan, Yoonhee Kim, Perry de Wit
-
Patent number: 11213805Abstract: A catalyst in a calcined state has a specific surface area of 20-50 m2/g of catalyst, and a specific surface area of nickel metal after reduction of the catalyst of 8 to 11 m2/g, wherein the average particle size of nickel metal is 3-8 nm, the dispersion of the particles is 10-16%, and the content of nickel is 5-15 wt. % based on the weight of calcined catalyst. A support has a specific surface area of 40-120 m2/g with a pore volume of the support of 0.2-0.4 cm3/g, wherein the support is selected from a mixture of zirconium oxide and cerium oxide or magnesium oxide, cerium oxide and the ballast being zirconium oxide. The catalyst further contains a promoter selected from the group consisting of palladium and ruthenium, in an amount of from 0.01 to 0.5 wt. %.Type: GrantFiled: November 2, 2017Date of Patent: January 4, 2022Assignee: Rosneft Oil CompanyInventors: Sergey Aleksandrovich Mikhajlov, Gilyana Evgen'evna Dzhungurova, Nikolaj Aleksandrovich Mamonov, Dmitrij Aleksandrovich Grigor'ev, Mikhail Nikolaevich Mikhajlov
-
Patent number: 11110435Abstract: An exhaust gas purification catalyst comprises a substrate; a catalyst layer formed on the substrate and containing at least palladium (Pd) and rhodium (Rh) as a metal functioning as an oxidation and/or reduction catalyst. The catalyst also comprises a carrier that supports the metal, and an OSC material having oxygen storage capacity. The catalyst layer has, when disposed in the exhaust pipe, a front section positioned upstream in an exhaust gas flow direction within the exhaust pipe, and a rear section positioned downstream of the front section in the exhaust gas flow direction. The front section contains palladium (Pd) but does not contain the OSC material, and a proportion, at which the front section is formed from an upstream leading end in the exhaust gas flow direction, is 10% to 40% with respect to 100% of a total length of the substrate.Type: GrantFiled: March 13, 2017Date of Patent: September 7, 2021Assignee: Cataler CorporationInventors: Ryota Onoe, Kazuhiko Ito, Takahiro Harada, Chihiro Kasuya
-
Patent number: 10991952Abstract: Catalysts comprising nanostructured elements comprising microstructured whiskers having an outer surface at least partially covered by a catalyst material having the formula PtxNiyAuz, wherein x is in a range from 27.3 to 29.9, y is in a range from 63.0 to 70.0, and z is in a range from 0.1 to 9.6. Catalyst described herein are useful, for example, in fuel cell membrane electrode assemblies.Type: GrantFiled: October 11, 2017Date of Patent: April 27, 2021Assignee: 3M Innovative Properties CompanyInventors: Andrew J. L. Steinbach, Amy E. Hester, Dennis F. Van Der Vliet
-
Patent number: 10974198Abstract: The present invention relates to diesel oxidation catalyst compositions and catalyst articles, wherein the compositions and articles include a plurality of platinum group nanoparticles substantially in fully reduced form, wherein the nanoparticles have an average particle size of about 1 to about 10 nm and at least about 90% of the nanoparticles have a particle size of +/? about 2 nm of the average particle size. Such compositions can further include a refractory metal oxide material, wherein the nanoparticles and refractory metal oxide material can be combined within the same coating on a substrate or can be applied sequentially on a substrate. The nanoparticles can advantageously be substantially free of halides, alkali metals, alkaline earth metals, sulfur compounds, and boron compounds. Methods of preparing and using such compositions and catalyst articles (e.g., for the treatment of diesel exhaust gas streams) are also provided herein.Type: GrantFiled: January 5, 2017Date of Patent: April 13, 2021Assignee: BASF CorporationInventors: Xinyi Wei, Xiaoming Xu, Stanley Roth
-
Patent number: 10926252Abstract: A plasmonic nanoparticle catalyst for producing hydrocarbon molecules by light irradiation, which comprises at least one plasmonic provider and at least one catalytic property provider, wherein the plasmonic provider and the catalytic property provider are in contact with each other or have distance less than 200 nm, and molecular composition of the hydrocarbon molecules produced by light irradiation is temperature-dependent. And a method for producing hydrocarbon molecules by light irradiation utilizing the plasmonic nanoparticle catalyst.Type: GrantFiled: September 13, 2019Date of Patent: February 23, 2021Assignee: Beijing Guanghe New Energy Technology Co., Ltd.Inventors: Cong Wang, Haizhou Ren
-
Patent number: 10850270Abstract: Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support.Type: GrantFiled: October 31, 2018Date of Patent: December 1, 2020Assignees: Korea Institute of Science and Technology, Global Frontier Center for Multiscale Energy SystemsInventors: Sung Jong Yoo, Injoon Jang, So Young Lee, Hyun Seo Park, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim
-
Patent number: 10358345Abstract: A eutectic supported catalyst system is used in catalyzed chemical reactions. A metal catalyst particle is supported in a eutectic medium. The system may have a) a eutectic composition of at least two metals forming the eutectic composition; and b) metal catalyst particles, preferably of nanometer dimensions, such as from 0.5 to 50 nm. The particles are dispersed throughout the eutectic composition when the eutectic composition is solid, and the particles are dispersed or suspended throughout the eutectic composition when the eutectic composition is in liquid form. At least one metal of the eutectic may comprises lead and a metal in the metal catalyst is a different metal then the metals in the eutectic. The eutectic may be in a liquid state and the metal catalyst particles may be in an equilibrium state within the eutectic.Type: GrantFiled: November 16, 2015Date of Patent: July 23, 2019Inventor: Allen L. Johnson
-
Patent number: 9976199Abstract: Embodiments of the disclosure relate to intermetallic nanoparticles. Embodiments include nanoparticles having an intermetallic core including a first metal and a second metal. The first metal may be palladium and the second metal may be at least one of cobalt, iron, nickel, or a combination thereof. The nanoparticles may further have a shell that includes palladium and gold.Type: GrantFiled: April 22, 2015Date of Patent: May 22, 2018Assignee: Brookhaven Science Associates, LLCInventors: Kurian A. Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
-
Patent number: 9821375Abstract: The present invention addresses the problem of providing a method for producing metal microparticles in which the particle diameter and the coefficient of variation are controlled. Using at least two kinds of fluid to be processed including a fluid which contains at least one kind of reducing agent, the fluid to be processed is mixed in a thin film fluid formed between at least two processing surfaces, at least one of which rotates relative to the other, and which are disposed facing each other and capable of approaching and separating from each other, and metalmicroparticles are separated.Type: GrantFiled: October 2, 2012Date of Patent: November 21, 2017Assignee: M. TECHNIQUE CO., LTD.Inventors: Masaki Maekawa, Masakazu Enomura
-
Patent number: 9799881Abstract: A Li-air battery is provided. The battery contains: an anode compartment containing lithium or a lithium alloy as active metal; a cathode compartment supplied with an O2 source; and a lithium ion conductive membrane separating the anode compartment from the cathode compartment. The cathode compartment contains an air electrode with a skin alloy platinum or palladium catalyst.Type: GrantFiled: April 27, 2015Date of Patent: October 24, 2017Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Illinois Institute of TechnologyInventors: Shrihari Sankarasubramanian, Jai Prakash, Fuminori Mizuno, Nikhilendra Singh
-
Patent number: 9799889Abstract: A copper-coated palladium-containing particle dispersion in which copper-coated palladium-containing particles, which are obtained by coating surfaces of palladium-containing particles with copper, are dispersed is prepared, a platinum ion-containing solution is prepared, and a shell is formed by mixing the copper-coated palladium-containing particle dispersion and the platinum ion-containing solution with each other in a microreactor to displace copper of the copper-coated palladium-containing particle surfaces with platinum. The microreactor includes at least a first supply flow path, a second supply flow path, a joint portion in which the first supply flow path and the second supply flow path are joined to each other, and a discharge flow path. An orifice portion is provided midway in the discharge flow path. A pressure applied to the orifice portion in the displacement step is 2 MPa or higher.Type: GrantFiled: June 1, 2016Date of Patent: October 24, 2017Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Shotaro Ishikawa
-
Patent number: 9758730Abstract: The invention relates to a method to start up a Fischer-Tropsch process. A catalyst with a latent activity is used. The catalyst comprises titania, cobalt, promoter, and chlorine. The catalyst comprises more than 0.7 and less than 4 weight percent of the element chlorine, calculated on the total weight of the catalyst.Type: GrantFiled: July 14, 2014Date of Patent: September 12, 2017Assignee: SHELL OIL COMPANYInventors: Erwin Roderick Stobbe, Gerrit Leendert Bezemer, Peter John Van Den Brink, Alexander Petrus Van Bavel
-
Patent number: 9751079Abstract: Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.Type: GrantFiled: September 16, 2015Date of Patent: September 5, 2017Assignee: Silura Technologies, Inc.Inventors: Erik M. Freer, Wayne P. Schammel, Fabio R. Zurcher, Joel M. Cizeron, Jin Ki Hong, Anja Rumplecker, Sam Maurer, Joel Gamoras, Daniel Rosenberg, Erik C. Scher
-
Patent number: 9716279Abstract: Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.Type: GrantFiled: May 15, 2014Date of Patent: July 25, 2017Assignee: Brookhaven Science Associates, LLCInventors: Radoslav Adzic, Stoyan Bliznakov, Miomir Vukmirovic
-
Patent number: 9689085Abstract: A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.Type: GrantFiled: April 17, 2015Date of Patent: June 27, 2017Assignee: Brookhaven Science Associates, LLCInventors: Jia Xu Wang, Radoslav R. Adzic
-
Patent number: 9662612Abstract: An object of the present invention is to appropriately remove, from an exhaust gas, HC, CO, and ammonia flowing out from a filter (SCRF) on which an SCR catalyst is carried. In the present invention, a post-catalyst 8 is provided for an exhaust gas passage of an internal combustion engine on a downstream side from SCRF along with a flow of the exhaust gas. The post-catalyst 8 is constructed to include an adsorption reduction part 81c which adsorbs ammonia and which reduces NOx by using ammonia as a reducing agent, a first oxidation part 81b which oxidizes ammonia, and a second oxidation part 82 which oxidizes HO and CO.Type: GrantFiled: November 16, 2012Date of Patent: May 30, 2017Assignee: Toyota Jidosha Kabushiki KaishaInventors: Akira Mikami, Shigeki Nakayama, Nobumoto Ohashi, Keishi Takada, Kenji Sakurai, Yoshihisa Tsukamoto, Hiroshi Otsuki, Junichi Matsuo, Ichiro Yamamoto
-
Patent number: 9566568Abstract: Disclosed are washcoats, coated substrates formed from such washcoats, and catalytic converters for use in diesel applications, such as heavy duty diesel applications. Methods of preparing the coated substrates are also disclosed.Type: GrantFiled: May 11, 2016Date of Patent: February 14, 2017Assignee: SDCmaterials, Inc.Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
-
Patent number: 9333490Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a zoned diesel oxidation catalyst with a first washcoat zone with a Pt/Pd ratio that is less than 3:1 and a PGM loading at least twice that of a second washcoat zone.Type: GrantFiled: March 12, 2014Date of Patent: May 10, 2016Assignee: BASF CorporationInventors: M. Shahjahan Kazi, Fabien A. Rioult, Stanley A. Roth, Kenneth E. Voss
-
Patent number: 9133549Abstract: The present invention provides a gas sensor, including: a sensor substrate provided with an electrode; and a thin layer of sensor material formed by spraying a solution in which metal oxide nanoparticles are dispersed onto the sensor substrate. The gas sensor is advantageous in that a sensor material is formed into a porous thin layer containing metal oxide nanoparticles having a large specific surface area, thus realizing high sensitivity on the ppb scale and a high reaction rate. Further, the gas sensor is advantageous in that it can be manufactured at room temperature, and the thickness of a sensor material can be easily adjusted by adjusting the spray time, so that a thin gas sensor or a thick gas sensor can be easily manufactured.Type: GrantFiled: April 30, 2010Date of Patent: September 15, 2015Assignees: AMOGREENTECH CO., LTD., Korea Institute of Science and TechnologyInventors: Il-Doo Kim, Dong-Young Kim, Sung-Yeon Jang, Seong-Mu Jo, Jae-Min Hong, Yun-Seok Lee, Sung-Chul Yang
-
Patent number: 9126182Abstract: Catalyzed soot filters comprising a wall flow monolith having a washcoat comprising an alkali base metal composite disposed on the monolith. Methods of manufacturing and using catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.Type: GrantFiled: January 30, 2012Date of Patent: September 8, 2015Assignee: BASF CorporationInventors: Michel Deeba, M. Shahjahan Kazi
-
Patent number: 9064668Abstract: Getter materials are described. The getter materials have non-evaporable getter alloys in their powder form having high gas sorption efficiency, particularly for hydrogen, carbon oxide and nitrogen, which after having lost their functionality in consequence of the exposure to reactive gases at a first temperature, can then be reactivated through a thermal treatment at a temperature between 400° C. and 600° C. The alloy powders have as compositional elements titanium and silicon and at least one additional metallic element selected among vanadium, iron and aluminum and have an atomic percentage composition of the elements which can vary within the following ranges: 1. Titanium from 60 to 85 atomic percentage; 2. Silicon from 1 to 20 atomic percentage; and 3. The sum of vanadium, iron and aluminum from 10 to 30 atomic percentage.Type: GrantFiled: November 29, 2013Date of Patent: June 23, 2015Assignee: SAES GETTERS S.P.A.Inventors: Alberto Coda, Alessandro Gallitognotta, Andrea Conte
-
Patent number: 9040446Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.Type: GrantFiled: December 20, 2011Date of Patent: May 26, 2015Assignee: Chevron U.S.A. Inc.Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
-
Patent number: 9040447Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.Type: GrantFiled: December 20, 2011Date of Patent: May 26, 2015Assignee: Chevron U.S.A. Inc.Inventors: Oleg Mironov, Alexander E. Kuperman
-
Patent number: 9034269Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.Type: GrantFiled: November 27, 2013Date of Patent: May 19, 2015Assignee: BASF SEInventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
-
Patent number: 9034286Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.Type: GrantFiled: November 21, 2013Date of Patent: May 19, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
-
Patent number: 9034785Abstract: Solution suitable for accelerating the cure of a curable resin using a peroxide, said accelerator solution comprising (i) at least one organic solvent, (ii) a manganese salt, a copper salt, or a combination thereof, and (iii) an iron complex of a tetradentate, pentadentate or hexadentate nitrogen donor ligand.Type: GrantFiled: June 14, 2011Date of Patent: May 19, 2015Assignee: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.Inventors: Frederik Willem Karel Koers, Johannes Martinus Gerardus Maria Reijnders, Auke Gerardus Talma, Johannes Hermanus Ter Beek
-
Patent number: 9029286Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.Type: GrantFiled: April 29, 2013Date of Patent: May 12, 2015Assignee: Massachusettes Institute of TechnologyInventors: Brian Neltner, Angela M. Belcher
-
Publication number: 20150125369Abstract: The invention relates to a coated particle filter (3), in particular wall-flow filter, having a length (L). According to the invention, at least two zones (4, 5) which have different coatings are provided along the length (L). The invention also relates to a catalytic converter (2), wherein the catalytic converter (2) is formed with a coating which has a washcoat coating layer as a lower coating layer, onto which palladium is deposited. The invention finally relates to a device (1) for the purification of exhaust gases, in particular exhaust gases of diesel-engined motor vehicles, comprising a catalytic converter (2) and a coated particle filter (3) of length (L) positioned downstream of the catalytic converter (2), wherein the particle filter (3) and the catalytic converter (2) are designed in accordance with the invention.Type: ApplicationFiled: April 26, 2013Publication date: May 7, 2015Inventor: Bernhard Kahlert
-
Publication number: 20150126768Abstract: The present invention relates to a device for treatment of material transported through the device comprising at least one porous element consisting of specific solid metallic structure which allows cross-flow of the material through the porous element and wherein the porous element is coated by a non-acidic metal oxide which is impregnated by palladium (Pd).Type: ApplicationFiled: April 17, 2013Publication date: May 7, 2015Applicant: DSM IP ASSETS B.V.Inventor: Werner Bonrath
-
Patent number: 9024090Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.Type: GrantFiled: December 19, 2012Date of Patent: May 5, 2015Assignee: Celanese International CorporationInventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
-
Patent number: 9018126Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and deposited on the carrier, silver, a promoting amount of one or more promoters selected from the group consisting of alkali metals and rhenium and a promoting amount of nickel, wherein the nickel is added as a nickel compound or nickel complex during the initial impregnation along with the silver and other promoters; including a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.Type: GrantFiled: July 11, 2011Date of Patent: April 28, 2015Assignee: Shell Oil CompanyInventor: Marek Matusz
-
Patent number: 9018129Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.Type: GrantFiled: December 12, 2013Date of Patent: April 28, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
-
Patent number: 9017576Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.Type: GrantFiled: October 7, 2013Date of Patent: April 28, 2015Assignee: King Abdullah University of Science and TechnologyInventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
-
Patent number: 9012352Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.Type: GrantFiled: April 25, 2012Date of Patent: April 21, 2015Assignee: Korea Research Institute of Chemical TechnologyInventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
-
Patent number: 9011809Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.Type: GrantFiled: February 24, 2012Date of Patent: April 21, 2015Assignee: N.E. Chemcat CorporationInventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
-
Patent number: 9012353Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.Type: GrantFiled: August 8, 2012Date of Patent: April 21, 2015Assignee: Clean Diesel Technologies, Inc.Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
-
Patent number: 9005560Abstract: A method to produce a NOx trap composition, and its use in a NOx trap and in an exhaust system for internal combustion engines, is disclosed. The NOx trap composition is produced by heating an iron-containing zeolite in the presence of an inert gas and an organic compound to produce a reductively calcined iron/zeolite. A palladium compound is then added to the reductively calcined iron/zeolite, and the resulting Pd—Fe/zeolite is then calcined at 400 to 600° C. in the presence of an oxygen-containing gas to produce the NOx trap composition. The NOx trap composition shows low temperature NO capacity below 200° C., as well as an additional NO storage temperature window in the 200 to 250° C. range.Type: GrantFiled: February 18, 2014Date of Patent: April 14, 2015Assignee: Johnson Matthey Public Limited CompanyInventor: Fiona-Mairead McKenna
-
Patent number: 8999145Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32-about 50%, by weight, iron; about 3-about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2-about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.Type: GrantFiled: October 15, 2012Date of Patent: April 7, 2015Assignee: UOP LLCInventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
-
Publication number: 20150093686Abstract: A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.Type: ApplicationFiled: March 11, 2013Publication date: April 2, 2015Applicant: STC.UNMInventors: Alexey Serov, Ulises A Martinez, Plamen B Atanassov
-
Patent number: 8993475Abstract: An excellent oxygen storage capacity is achieved even in the case used for a long period of time under high temperature conditions. An oxygen storage material contains a first particle made of a composite oxide of cerium and zirconium or a composite oxide of cerium, a rare-earth element other than cerium and zirconium, a second particle including a composite oxide of a rare-earth element, an alkaline-earth element and zirconium, and a precious metal. A part of the precious metal forms a solid solution with the composite oxide included in the second particle.Type: GrantFiled: June 22, 2007Date of Patent: March 31, 2015Assignees: Cataler Corporation, Toyota Jidosha Kabushiki KaishaInventors: Mareo Kimura, Keiichi Narita, Akimasa Hirai, Akiya Chiba, Naoto Miyoshi, Kazunobu Ishibashi, Takaaki Kanazawa, Takeru Yoshida, Hirohisa Tanaka, Mari Uenishi, Isao Tan, Masashi Taniguchi
-
Patent number: 8986637Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.Type: GrantFiled: November 6, 2013Date of Patent: March 24, 2015Assignee: Johnson Matthey Public Limited CompanyInventors: Janet Mary Fisher, David Thompsett
-
Patent number: 8980104Abstract: An activated carbon cloth-supported bimetallic Pd—Cu nanocatalyst is disclosed comprising about 1 wt % Pd and about 0.35-0.45 wt % Cu and having a surface Cu/Pd metal ratio of about 8-10 m2/m2. The nanocatalyst is capable of removing nitrate and/or nitrite from wastewater with a high selectivity to nitrogen.Type: GrantFiled: May 4, 2010Date of Patent: March 17, 2015Assignee: Technion Research and Development Foundation Ltd.Inventors: Moshe Sheintuch, Uri Matatov-Meytal
-
Patent number: 8969238Abstract: The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which the catalyst metal oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions of nitrogen oxides with ammonia or urea as reductant, oxidations of alcohols or aldehydes with dioxygen or air to provide aldehydes, ketones or carboxylic acids, and photocatalytic oxidation of volatile organic compounds (VOCs).Type: GrantFiled: November 17, 2009Date of Patent: March 3, 2015Assignee: Danmarks Tekniske UniversitetInventors: Rasmus Fehrmann, Anders Riisager, Søren Birk Rasmussen, Steffen Buss Kristensen, Andreas Jonas Kunov-Kruse
-
Patent number: 8968690Abstract: Disclosed herein is a layered three-way catalytic system being separated in a front and a rear portion having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides. Provided is a catalyst composite comprising a single front catalytic layer and two rear catalytic layers in conjunction with a substrate, where the single font layer and the rear bottom layer comprise a Pd component, the rear top layer comprises a Rh component, and the rear bottom layer is substantially free of an oxygen storage component (OSC).Type: GrantFiled: November 21, 2011Date of Patent: March 3, 2015Assignee: Umicore AG & Co. KGInventors: John G. Nunan, Raoul Klingmann, Ryan J. Andersen, Davion Onuga Clark, David Henry Moser