And Group Ii Metal Containing (i.e., Alkaline Earth, Be, Mg, Zn, Cd Or Hg) Patents (Class 502/328)
  • Patent number: 10213768
    Abstract: A NOx trap catalyst is disclosed. The NOx trap catalyst comprises a noble metal, a NOx storage component, a support, and a first ceria-containing material. The first ceria-containing material is pre-aged prior to incorporation into the NOx trap catalyst, and may have a surface area of less than 80 m2/g. The invention also includes exhaust systems comprising the NOx trap catalyst, and a method for treating exhaust gas utilizing the NOx trap catalyst.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 26, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Paul Richard Phillips, Stuart David Reid, Wolfgang Strehlau, Daniel Swallow
  • Patent number: 10099204
    Abstract: An exhaust gas-purifying catalyst of the present invention comprises a substrate, and one or more catalytic layers provided on the substrate, wherein at least one of the catalytic layers (i) contains a precious metal, alumina, and an acidic oxide element, (ii) has a correlation coefficient ?Al,AE of 0.70 or more, and (iii) has a correlation coefficient ?PM,AE of 0.70 or more.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: October 16, 2018
    Assignee: CATALER CORPORATION
    Inventors: Sho Hoshino, Akimasa Hirai, Kenichi Taki, Satoshi Matsueda, Yuji Yabuzaki
  • Patent number: 9828310
    Abstract: Provided is a Group 9 novel metal catalyst complex further comprising a ketone-containing cocatalyst. The metal catalyst complex is useful in generating olefins from alkanes with great efficiency. In one embodiment, provided is an iridium catalyst complex useful in the dehydrogenation of alkanes comprising a ketone-containing cocatalyst and iridium complexed with a tridentate ligand. Also provided is a novel dehydrogenation method which utilizes the catalyst composition. In other embodiments, a novel process for preparing oligomers from alkanes utilizing the catalyst composition is provided.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 28, 2017
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Robert Timothy Stibrany, Robert J. Saxton, Oleg Mironov
  • Patent number: 9776133
    Abstract: In a broad form the present invention relates to a method for oxidation of a species comprising sulfur in an oxidation state below +4, such as H2S, CS2, COS and S8 vapor, to SO2 said method comprising the step of contacting the gas and an oxidant with a catalytically active material consisting of one or more elements taken from the group consisting of V, W, Ce, Mo, Fe, Ca, Mg, Si, Ti and Al in elemental, oxide, carbide or sulfide form, optionally with the presence of other elements in a concentration below 1 wt %, at a temperature between 180° C. and 290° C., 330° C., 360° C. or 450° C., with the associated benefit of such a temperature being highly energy effective, and the benefit of said elements having a low tendency to form sulfates under the conditions, with the related benefit of an increased stability of the catalytically active material. The other elements present may be catalytically active noble metals or impurities in the listed materials.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: October 3, 2017
    Assignee: Haldor Topsoe A/S
    Inventors: Peter Schoubye, Joakim Reimer Thøgersen
  • Patent number: 9676682
    Abstract: Provided is a Group 9 novel metal catalyst complex further comprising a ketone-containing cocatalyst. The metal catalyst complex is useful in generating olefins from alkanes with great efficiency. In one embodiment, provided is an iridium catalyst complex useful in the dehydrogenation of alkanes comprising a ketone-containing cocatalyst and iridium complexed with a tridentate ligand. Also provided is a novel dehydrogenation method which utilizes the catalyst composition. In other embodiments, a novel process for preparing oligomers from alkanes utilizing the catalyst composition is provided.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 13, 2017
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Robert J. Saxton, Oleg Mironov
  • Patent number: 9650652
    Abstract: Methods and systems for producing and removing C6 and/or C8 carboxylates and/or methane from carbohydrate containing biomass, an alcohol, and mixtures of microorganisms under an anaerobic environment. The C6 and/or C8 carboxylates are removed continuously or in-line. Methanogenesis is not inhibited and very little input carbon is lost as carbon dioxide.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 16, 2017
    Assignee: Cornell University
    Inventors: Largus T. Angenent, Matthew T. Agler
  • Patent number: 9550166
    Abstract: Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200° C., from epitaxially stabilized, oxygen vacancy ordered SrCoO2.5 and thermodynamically unfavorable perovskite SrCoO3-?. The fast, low temperature redox activity in SrCoO3-? may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 24, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Ho Nyung Lee, Hyoungjeen Jeen, Woo Seok Choi, Michael Biegalski, Chad M. Folkman, I-Cheng Tung, Dillon D. Fong, John W. Freeland, Dongwon Shin, Hiromichi Ohta, Matthew F. Chisholm
  • Patent number: 9545619
    Abstract: The disclosure provides catalyst materials useful for hydrogenating olefins and shifting carbon monoxide and methods for using such catalyst materials. In one aspect, the disclosure provides catalyst materials including (a) copper, present in the range of about 20 weight % to about 80 weight %; (b) one or more stabilizer oxides stable under reducing conditions, each stabilizer oxide being a transition metal oxide or a metalloid oxide, the one or more stabilizer oxides being present in a total amount in the range of about 20 weight % to about 70 weight %; and (c) one or more multiple-valence metals, each multiple-valence metal being present in a positive oxidation state, the one or more multiple-valence metals are present in the range of about 0.1 weight % to about 40 weight %, all on an oxide basis.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: January 17, 2017
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Jason E. Spencer, Jennifer G. Renn, Yeping Cai
  • Patent number: 9409836
    Abstract: The present invention relates to a process for hydrogenation of olefinic or acetylenic bonds. Further, the present invention relates to a process for selective hydrogenation of olefinic or acetylenic bonds and/including triglycerides using modified metal supported on solid acidic metal oxide catalyst and the process for the preparation thereof. The present invention provides a process for hydrogenation of olefinic or acetylenic bonds using metal supported on solid acid metal oxide based catalyst, at moderate conditions. The present invention also relates to the preparation of metal supported on solid acid metal oxide based catalyst for hydrogenation reactions under mild conditions.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 9, 2016
    Assignee: Council of Scientific and Industrial Research
    Inventors: Shubhangi Bhalchandra Umbarkar, Mohan Keraba Dongare, Vaibhav Ravindrakumar Acham
  • Patent number: 9259712
    Abstract: The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 16, 2016
    Assignee: BASF SE
    Inventors: Ekkehard Schwab, Andrian Milanov, Stephan Schunk, Thomas Roussiere, Guido Wasserschaff, Andreas Strasser
  • Patent number: 9254480
    Abstract: The purpose of the present invention is to provide an oxidation catalyst for exhaust gas purification having high durability and a method for producing the catalyst. The purpose is achieved by an oxidation catalyst for exhaust gas purification containing a refractory inorganic oxide, and a catalyst component and a metal component, which are supported on the refractory inorganic oxide, wherein the catalyst component is platinum, or platinum and palladium, and the metal component is one or more selected from the group consisting of magnesium, calcium, strontium and barium.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 9, 2016
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA Inc.
    Inventors: Naohiro Kato, Yosuke Goto, Yuta Akasaka
  • Patent number: 9221033
    Abstract: A catalyst includes an olivine substrate on which an iron compound layer is deposited, produced by impregnating the olivine substrate with a solution including an iron salt, and then heat-treating. The catalyst is useful for steam-reforming tar, in particular in gaseous media from the steam gasification of biomass. Further, the catalyst can be used alone for catalyzing the steam gasification of organic compounds from biomass while limiting the amount of tar produced in the synthesized gases.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 29, 2015
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.), UNIVERSITE DE STRASBOURG
    Inventors: Alain Kiennemann, Claire Courson, Mirella Virginie
  • Patent number: 9192928
    Abstract: A method for regenerating deactivated ionic liquid catalyst containing conjunct polymer. The deactivated ionic liquid catalyst containing the conjunct polymer is contacted with either at least one metal complex having a general formula M1n+Rn, or at least one metal complex having a general formula [M2a+]x[M3b+yRz](xa/(z?by)). The conjunct polymer reacts with the reagent and can be extracted from the ionic liquid. The mixture is separated into a hydrocarbon effluent and an ionic liquid effluent.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 24, 2015
    Assignee: UOP LLC
    Inventors: Stuart Smith, Alakananda Bhattacharyya, Susie C. Martins
  • Patent number: 9192917
    Abstract: Disclosed is an exhaust gas purifying catalyst which includes barium hexaaluminate, and palladium and barium which are supported on barium hexaaluminate, wherein the amount of supported palladium, as reduced to metallic Pd, is 0.2 to 3.5 mass % with respect to the mass of barium hexaaluminate; the amount of supported barium, as reduced to BaO, is 1 to 20 mass % with respect to the mass of barium hexaaluminate; and the ratio by mole of supported barium to supported palladium, Ba/Pd, is (0.5 to 10)/1; an exhaust gas purifying catalyst product which has a catalyst support made of a ceramic or metallic material, and a layer which is formed of the exhaust gas purifying catalyst as a predominant component and which is supported on the catalyst support; and a method for producing the exhaust gas purifying catalyst product.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: November 24, 2015
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yunosuke Nakahara, Ohki Houshito
  • Patent number: 9180433
    Abstract: The present invention relates to a provides a catalyst comprising (a) a solid support comprising an alkaline earth metal oxide, fluoride, or oxyfluoride, and (b) at least one elemental metal disposed on or within said support, preferably wherein said elemental metal is present in an amount from about 0.01 to about 10 weight percent based upon the total weight of the metal and support. It also relates to the use of the catalyst for the dehydrochlorination of a hydrochlorofluorocarbon.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 10, 2015
    Assignee: HONEYWELL INTERNATIONAL, INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 9156023
    Abstract: A one-layer three-way catalyst is described for the cleaning of the exhaust gases of internal combustion engines with outstanding activity and thermal stability. The catalyst comprises an active aluminum oxide, a first cerium/zirconium mixed oxide and a second cerium/zirconium mixed oxide. The first cerium/zirconium mixed oxide has a higher zirconium oxide content than the second mixed oxide. The first cerium/zirconium mixed oxide is catalytically activated with rhodium and the second cerium/zirconium mixed oxide with palladium.
    Type: Grant
    Filed: February 23, 2008
    Date of Patent: October 13, 2015
    Assignee: UMICORE AG & CO. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Linder, Joerg-Michael Richter
  • Patent number: 9138728
    Abstract: The present invention provides a catalyst for forming carbon nanotubes that improves a yield at the time of manufacturing carbon nanotubes and enables continuous mass production of carbon nanotubes with high purity. The catalyst for forming carbon nanotubes of the present invention includes a carrier that includes MgO and a metal catalyst that is supported by the carrier, and the concentration of the MgO in the carrier is set equal to 99 mass % or higher.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 22, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Nariyuki Tomonaga, Tomoaki Sugiyama, Yasushi Mori, Takashi Kurisaki, Takanori Suto, Kota Kikuchi
  • Publication number: 20150148569
    Abstract: The present invention relates to a process for obtaining metal oxide catalysts comprising gallium which are capable of synthesising higher alcohols from lower alcohols. The process for obtaining said catalysts is also disclosed.
    Type: Application
    Filed: June 28, 2013
    Publication date: May 28, 2015
    Inventors: Ricardo Arjona Antolín, Juan Luis Sanz Yagüe, Avelino Corma Canós, Marcelo Eduardo Domine
  • Publication number: 20150148218
    Abstract: Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200° C., from epitaxially stabilized, oxygen vacancy ordered SrCoO2.5 and thermodynamically unfavorable perovskite SrCoO3-?. The fast, low temperature redox activity in SrCoO3-? may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Ho Nyung Lee, Hyoungjeen Jeen, Woo Seok Choi, Michael Biegalski, Chad M. Folkman, I-Cheng Tung, Dillon D. Fong, John W. Freeland, Dongwon Shin, Hiromichi Ohta, Matthew F. Chisholm
  • Patent number: 9040446
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 9040447
    Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 9034786
    Abstract: A catalyst which comprises nickel and/or cobalt supported on a support that includes a mixed oxide containing metals, such as aluminum, zirconium, lanthanum, magnesium, cerium, calcium, and yttrium. Such catalysts are useful for converting carbon dioxide to carbon monoxide, and for converting methane to hydrogen.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 19, 2015
    Assignee: Enerkem, Inc.
    Inventors: Prashant Kumar, David Lynch
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20150107984
    Abstract: Disclosed is a visible light responsive photocatalyst that simultaneously realizes high crystallinity and refinement of primary particles. Also disclosed is a photocatalyst composed of secondary particles that have a high porosity and are aggregates of fine primary particles. Rhodium-doped strontium titanate that is a visible light responsive photocatalyst of the present invention has a primary particle diameter of not more than 70 nm and has a absorbance at a wavelength of 570 nm of not less than 0.6 and a absorbance at a wavelength of 1800 nm of not more than 0.7, each absorbance determining by measuring a diffuse reflection spectrum, the rhodium-doped strontium titanate having a high water-splitting activity as a photocatalyst.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 23, 2015
    Inventors: Hiromasa Tokudome, Sayuri Okunaka
  • Publication number: 20150111723
    Abstract: A process for biomass catalytic cracking is disclosed herein. More specifically, the process is in presence of is a mixed metal oxide catalyst represented by the formula (X1O).(X2O)a.(X3YbO4) wherein X1, X2 and X3 are alkaline earth elements selected from the group of Mg, Ca, Be, Ba, and mixture thereof, and Y is a metal selected from the group of Al, Mn, Fe, Co, Ni, Cr, Ga, B, La, P and mixture thereof, wherein the catalyst is formed by calcining at least one compound comprising at least one alkaline earth element and a metal element.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 23, 2015
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 9012348
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 9012350
    Abstract: The herein disclosed exhaust gas purification catalyst is an exhaust gas purification catalyst that is provided with a porous carrier 40 and palladium 50 supported on this porous carrier 40. The porous carrier 40 is provided with an alumina carrier 42 formed of alumina and with a CZ carrier 44 formed of a ceria-zirconia complex oxide. Barium is added to both the alumina carrier 42 and the CZ carrier 44. Here, an amount of barium added to the alumina carrier 42 is an amount that corresponds to 10 mass % to 15 mass % relative to a total mass of the alumina carrier 42 excluding the barium, and an amount of barium added to the CZ carrier 44 is an amount that corresponds to 5 mass % to 10 mass % relative to a total mass of the CZ carrier 44 excluding the barium.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Aoki
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9006132
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 14, 2015
    Assignee: Korea Kumho Petrochemical Co., Ltd
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Publication number: 20150098893
    Abstract: The present invention relates to a photocatalyst for the generation of diatomic hydrogen from a hydrogen containing precursor under the influence of actinic radiation comprising semiconductor support particles comprised of SrTiO3 and TiO2 with one or more noble and/or transition metals deposited thereon. Further disclosed is a method for preparing such catalyst and a method for generating diatomic hydrogen by photolysis.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 9, 2015
    Inventors: Hicham Idriss, Ahmed Wahab Khaja, Taiwo Odedairo, Majed Mohammed Mussa
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8999145
    Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32-about 50%, by weight, iron; about 3-about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2-about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
  • Patent number: 8993475
    Abstract: An excellent oxygen storage capacity is achieved even in the case used for a long period of time under high temperature conditions. An oxygen storage material contains a first particle made of a composite oxide of cerium and zirconium or a composite oxide of cerium, a rare-earth element other than cerium and zirconium, a second particle including a composite oxide of a rare-earth element, an alkaline-earth element and zirconium, and a precious metal. A part of the precious metal forms a solid solution with the composite oxide included in the second particle.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 31, 2015
    Assignees: Cataler Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Mareo Kimura, Keiichi Narita, Akimasa Hirai, Akiya Chiba, Naoto Miyoshi, Kazunobu Ishibashi, Takaaki Kanazawa, Takeru Yoshida, Hirohisa Tanaka, Mari Uenishi, Isao Tan, Masashi Taniguchi
  • Publication number: 20150064631
    Abstract: A supported precious metal catalyst for the high-temperature combustion of a hydrocarbon includes 1-10% by weight in total of one or more precious metals on a refractory metal oxide support material, and 1-20% by weight in total of one or more stabilizing metals selected from rare earths and Groups IA, IIA, and IIIA of the periodic table of the elements, wherein at least part of the precious metal is present as a mixed metal oxide with one or more of the stabilizing metals.
    Type: Application
    Filed: March 25, 2013
    Publication date: March 5, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Noelia Montserrat Cortes Felix, Andrew Charles Scullard
  • Patent number: 8968601
    Abstract: Disclosed is a catalyst used for steam carbon dioxide reforming of natural gas, wherein an alkaline earth metal alone or an alkaline earth metal and a group 8B metal are supported on a hydrotalcite-like catalyst containing nickel, magnesium and aluminum. The disclosed catalyst is useful as a steam carbon dioxide reforming (SCR) catalyst of natural gas at high temperature and high pressure, while minimizing deactivation of the catalyst due to sintering of the active component nickel and deactivation of the catalyst due to coke generation at the same time. A synthesis gas prepared using the catalyst has a H2/CO molar ratio maintained at 1-2.2. A synthesis gas having a H2/CO molar ratio of 1.8-2.2 may be used as a raw material for Fischer-Tropsch synthesis or methanol synthesis and a synthesis gas having a H2/CO molar ratio of may be used as a raw material for dimethyl ether synthesis.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Yun Ju Lee, Jae Sun Jung, Jin Hee Lee, Seung Hwan Lee, Bang Hee Kim, Hyun Jin Kim, Eun Hyeok Yang
  • Patent number: 8969231
    Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 3, 2015
    Assignee: GTL.FI AG
    Inventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
  • Patent number: 8946114
    Abstract: A method of producing stable ferrous nitrate solution by dissolving iron in nitric acid to form a ferrous nitrate solution and maintaining the solution at a first temperature for a first time period, whereby the Fe(II) content of the ferrous nitrate solution changes by less than about 2% over a second time period. A method of producing stable Fe(II)/Fe(III) nitrate solution comprising ferrous nitrate and ferric nitrate and having a desired ratio of ferrous iron to ferric iron, including obtaining a stable ferrous nitrate solution; dissolving iron in nitric acid to form a ferric nitrate solution; maintaining the ferric nitrate solution at a second temperature for a third time period; and combining amounts of stable ferrous nitrate solution and ferric nitrate solution to produce the stable Fe(II)/Fe(III) nitrate solution. A method of preparing an iron catalyst is also described.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: February 3, 2015
    Assignee: Res USA, LLC.
    Inventors: Pandurang V. Nikrad, Jesse W. Taylor, Richard A. Bley, Danny M. Dubuisson, Sara L. Rolfe, Belma Demirel, Dawid J. Duvenhage, Harold A. Wright
  • Patent number: 8946113
    Abstract: The present invention relates to an Fe-modified perovskite-type catalyst, a method for preparing same and a method for preparing a synthesis gas by a combined reforming reaction using same. More particularly, it relates to a catalyst for a combined natural gas/steam/carbon dioxide reforming reaction having a perovskite structure with La and Sr introduced at the A site and Ni and Fe introduced at the B site with specific molar ratios and a method for producing a synthesis gas for Fischer-Tropsch synthesis or methanol synthesis using the catalyst by the combined reforming reaction. The catalyst of the present invention exhibits higher carbon dioxide conversion rate, significantly reduced catalyst deactivation caused by carbon deposition and improved long-term catalyst stability and activity, as compared to the existing catalyst for reforming reaction prepared by the impregnation method.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Eun Hyeok Yang, Jin Hee Lee, Hyun Jin Kim, Byoung Sung Ahn, Sang Woo Kim, Jae Sun Jung
  • Publication number: 20150031922
    Abstract: The present invention describes a process and catalysts for the conversion of a light hydrocarbon and carbon dioxide input stream into high quality syngas with the subsequent conversion of the syngas into fuels or chemicals. In one aspect, the present invention provides an efficient, solid solution catalyst for the production of a carbon containing gas from carbon dioxide and light hydrocarbons. The catalyst comprises a single transition metal, and the transition metal is nickel.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 29, 2015
    Inventors: Robert Schuetzle, Dennis Schuetzle
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Patent number: 8916491
    Abstract: The present invention relates to a process for producing a catalyst for carrying out methanation reactions. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds brought into contact with one another are intimately mixed, thermally treated so that the metal salt fraction melts and subsequently subjected to a low-temperature calcination step and a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises/contains nickel nitrate hexahydrate. The hydrotalcite-comprising starting material is preferably hydrotalcite or a hydrotalcite-like compound as starting material, and the hydrotalcite-comprising starting material preferably comprises magnesium and aluminum as metal species.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 23, 2014
    Assignee: BASF SE
    Inventors: Claudia Querner, Andrian Milanov, Stephan Schunk, Andreas Strasser, Guido Wasserschaff, Thomas Roussiere
  • Patent number: 8912110
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Publication number: 20140364303
    Abstract: Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Applicant: CDTI
    Inventor: Randal L. Hatfield
  • Patent number: 8901027
    Abstract: A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 2, 2014
    Assignee: Res USA, LLC
    Inventors: Deena Ferdous, Belma Demirel
  • Publication number: 20140339475
    Abstract: Disclosed is a catalyst used for steam carbon dioxide reforming of natural gas, wherein an alkaline earth metal alone or an alkaline earth metal and a group 8B metal are supported on a hydrotalcite-like catalyst containing nickel, magnesium and aluminum. The disclosed catalyst is useful as a steam carbon dioxide reforming (SCR) catalyst of natural gas at high temperature and high pressure, while minimizing deactivation of the catalyst due to sintering of the active component nickel and deactivation of the catalyst due to coke generation at the same time. A synthesis gas prepared using the catalyst has a H2/CO molar ratio maintained at 1-2.2. A synthesis gas having a H2/CO molar ratio of 1.8-2.2 may be used as a raw material for Fischer-Tropsch synthesis or methanol synthesis and a synthesis gas having a H2/CO molar ratio of may be used as a raw material for dimethyl ether synthesis.
    Type: Application
    Filed: August 20, 2013
    Publication date: November 20, 2014
    Applicant: Korea Institute of Science and Technology
    Inventors: Dong Ju MOON, Yun Ju LEE, Jae Sun JUNG, Jin Hee LEE, Seung Hwan LEE, Bang Hee KIM, Hyun Jin KIM, Eun Hyeok YANG
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin