Zinc Containing Patents (Class 502/329)
-
Patent number: 7951976Abstract: Several metal-supported catalyst compositions based on nano-crystalline zinc oxide were synthesized and characterized by X-ray powder diffraction (XRD), Carbon dioxide temperature programmed desorption (CO2 TPD), and nitrogen adsorption at ?196° C. The Pd-supported nano-ZnO mixed with different oxides such as Cr2O3, CrO3, MgO, and ?-Al2O3 showed high catalytic activity in acetone condensation in gas-phase process under hydrogen flow. This reaction involves the base-acid coupling of acetone to form mesityl oxide, followed by its hydrogenation to methyl isobutyl ketone (MIBK). The novel catalyst 1% wt. n-Pd/n-ZnCr2O4 was utilized during gas-phase reaction during production of MIBK. MIBK selectivity was 70-72% at 66-77% acetone conversion at 300-350° C. Diisobutyl ketone (DIBK) was the main by-product, with a total MIBK+DIBK selectivity up to 88%. The prepared catalysts showed stable activity and may be used repeatedly and for a longer period of time.Type: GrantFiled: August 15, 2010Date of Patent: May 31, 2011Assignee: King Abdulaziz City for Science and Technology (KACST)Inventors: Abdulaziz Ahmed Bagabas, Vagif Melik Akhmedov, Abdulrahman Al-Rabiah, Mohamed Mokhtar Mohamed Mostafa
-
Publication number: 20110105305Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 16, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
-
Publication number: 20110105304Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 15, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
-
Patent number: 7919659Abstract: A catalyst for production of a cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon, wherein the catalyst comprises zirconia as a carrier, and particles having an average primary particle diameter in a range of from 3 to 50 nm and an average secondary particle diameter in a range of from 0.1 to 30 ?m.Type: GrantFiled: March 29, 2005Date of Patent: April 5, 2011Assignee: Asahi Kasei Chemicals CorporationInventor: Akiyoshi Fukuzawa
-
Patent number: 7919431Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.Type: GrantFiled: December 4, 2003Date of Patent: April 5, 2011Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
-
Publication number: 20110071018Abstract: This invention is directed a catalyst for dehydrogenating primary alcohols. In one embodiment, for example, the catalyst comprises a metal support (preferably a metal sponge support) having a copper-containing coating at the surface thereof. In another embodiment, the catalyst comprises a metal selected from the group consisting of zinc, cobalt, iron, tin and combinations thereof having a copper-containing coating at the surface thereof.Type: ApplicationFiled: August 19, 2010Publication date: March 24, 2011Applicant: MONSANTO TECHNOLOGY LLCInventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk, William L. Moench, JR., James C. Peterson
-
Patent number: 7897037Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.Type: GrantFiled: September 20, 2007Date of Patent: March 1, 2011Assignee: Shell Oil CompanyInventor: Carolus Matthias Anna Maria Mesters
-
Publication number: 20110039954Abstract: Multi-functional catalyst and processes utilizing the catalyst in single-stage conversion of syngas into hydrocarbon compounds are provided. The multi-functional catalyst, which comprises two or more catalytic materials situated within molecular distances of each other, facilitates conversion of syngas into one or more intermediate compounds and then into desired hydrocarbon compounds, such as high octane gasoline, diesel, jet fuel, olefins, and xylenes.Type: ApplicationFiled: August 13, 2010Publication date: February 17, 2011Applicant: BLACK & VEATCH CORPORATIONInventors: Jianli Hu, Jon C. Erickson
-
Patent number: 7884139Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.Type: GrantFiled: January 16, 2009Date of Patent: February 8, 2011Assignee: BASF CorporationInventors: Cornelis Roeland Baijense, Tjalling Rekker
-
Publication number: 20110021646Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and an amount of zirconium(IV)oxide and/or aluminium oxide of between 0.5 and 2.5 wt. % calculated as metal, based on the weight of the calcined catalyst.Type: ApplicationFiled: July 19, 2010Publication date: January 27, 2011Applicant: BASF Catalysts LLCInventor: Cornelis Roeland Baijense
-
Patent number: 7875251Abstract: An ozone-decomposing agent including a first iron compound and a second iron compound is provided. The second iron compound may have a spinel type structure. The first iron compound of the ozone-decomposing agent may include an oxide selected from Fe2O3, FeO(OH) or Fe(OH)3. The second iron compound of the ozone-decomposing agent may include an oxide selected from MnFe2O4, ZnFe2O4, NiFe2O4, CuFe2O4 or CoFe2O4.Type: GrantFiled: April 25, 2006Date of Patent: January 25, 2011Assignee: Toyo Boseki Kabushiki KaishaInventor: Kazuhiro Ueda
-
Publication number: 20110014105Abstract: A particulate desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulphurisation material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulphurisation material may be used to desulphurise hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.Type: ApplicationFiled: February 25, 2009Publication date: January 20, 2011Applicant: JOHNSON MATTHEY PLCInventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
-
Patent number: 7858552Abstract: A composite catalytic material (and process for its manufacture) is provided which comprises a catalyst adhered to a polymeric support material. This composite catalytic material can be used to remove or degrade contaminants in water and to remove or degrade carbon monoxide or other airborne contaminants.Type: GrantFiled: October 19, 2007Date of Patent: December 28, 2010Assignee: Wayland Baptist UniversityInventors: Joel E. Boyd, Lori A. Pretzer, Philip J. Carlson
-
Publication number: 20100323883Abstract: Composite particle comprising a zinc containing compound such as zinc oxide and a noble metal such a platinum, and process for fabrication thereof. The particles facilitate simultaneous controlled introduction of the zinc and noble metal species into a nuclear reactor.Type: ApplicationFiled: June 21, 2010Publication date: December 23, 2010Applicant: General ElectricInventors: Samson Hettiarachchi, Thomas Pompillo Diaz, Angelito Foz Gonzaga
-
Publication number: 20100310950Abstract: A catalyst for a fuel cell, a fuel cell system including the same, and associated methods, the catalyst including a platinum-metal alloy having a face-centered tetragonal structure, and a carrier, wherein the platinum-metal alloy shows a broad peak or a peak having two split tips at a 2? of about 65 to about 75 degrees in an XRD pattern using a Cu—K ? line, and the platinum-metal alloy is supported in the carrier and has an average particle size of about 1.5 to about 5 nm.Type: ApplicationFiled: January 22, 2010Publication date: December 9, 2010Inventors: Myoung-Ki Min, Geun-Seok Chai, Hee-Tak Kim, Tae-Yoon Kim, Sang-Il Han, Sung-Yong Cho, Kah-Young Song
-
Patent number: 7846867Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.Type: GrantFiled: August 30, 2007Date of Patent: December 7, 2010Assignee: China Petroleum & Chemical CorporationInventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
-
Patent number: 7846977Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.Type: GrantFiled: June 17, 2008Date of Patent: December 7, 2010Assignee: BASF CorporationInventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
-
Publication number: 20100304268Abstract: Alloy catalysts have the formula of PtiIrjXk, wherein X represents an element from the group consisting of Ti, Mn, Co, V, Cr, Ni, Cu, Zr, Zn, and Fe. These catalysts can be used as electrocatalysts in fuel cells.Type: ApplicationFiled: May 28, 2009Publication date: December 2, 2010Inventors: Tetsuo Kawamura, Lesia Protsailo
-
Patent number: 7842260Abstract: Provided is a reaction vessel for a fuel cell, and more particularly to a reaction vessel exhibiting improved thermal efficiency, and a reaction device for a steam reforming reaction for a fuel cell. The reaction device includes a cylindrical reaction catalyst chamber on which a target reaction catalyst for a predetermined target reaction is disposed; and a tubular oxidation catalyst chamber surrounding the reaction catalyst chamber, comprising an oxidation reaction catalyst therein. The reaction device according features an increased contact area between catalyst and gas, and rapidly heating of the gas in contact with the catalyst to a desired reaction temperature.Type: GrantFiled: October 23, 2007Date of Patent: November 30, 2010Assignee: Samsung SDI Co. Ltd.Inventors: Sung-chul Lee, Ju-yong Kim, Yong-kul Lee, Man-seok Han, Jun-sic Kim, Chan-ho Lee, Jin-goo Ahn
-
Patent number: 7820037Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.Type: GrantFiled: November 19, 2008Date of Patent: October 26, 2010Assignee: Osaka Gas Company LimitedInventors: Masataka Masuda, Shin-ichi Nagase, Susumu Takami, Osamu Okada
-
Patent number: 7799727Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.Type: GrantFiled: December 15, 2009Date of Patent: September 21, 2010Assignee: UOP LLCInventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
-
Patent number: 7776782Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.Type: GrantFiled: January 8, 2007Date of Patent: August 17, 2010Assignee: Battelle Memorial InstituteInventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
-
Patent number: 7767618Abstract: A bi-phase platinum catalyst, a method of manufacturing the same, an electrode including the bi-phase platinum catalyst, and a solar cell including the electrode. The bi-phase platinum catalyst includes platinum particles and an amorphous metal oxide.Type: GrantFiled: July 3, 2008Date of Patent: August 3, 2010Assignee: Samsung SDI Co., Ltd.Inventors: Moon-sung Kang, Ji-won Lee, Byong-cheol Shin
-
Publication number: 20100179056Abstract: A self-started OSRM (oxidative steam reforming of methanol) process at room temperature for hydrogen production. In the process, an aqueous methanol and oxygen are pre-mixed. The mixture is then fed to a Cu/ZnO-based catalyst to initiate an OSRM process at room temperature. The temperature of the catalyst bed, with suitable thermal isolation, may be raised automatically by the exothermic OSRM to enhance the conversion of methanol. A hydrogen yield of 2.4 moles per mole methanol from the process may be obtained.Type: ApplicationFiled: March 24, 2010Publication date: July 15, 2010Inventors: Yuh-Jeen HUANG, Chuin-Tih YEH, Chien-Te HO, Liang-Chor CHUNG
-
Patent number: 7745370Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.Type: GrantFiled: April 20, 2009Date of Patent: June 29, 2010Assignee: Sud-Chemie Inc.Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
-
Publication number: 20100152034Abstract: A process and catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a reactant comprising an alkyne and a non-hydrocarbon solvent/absorbent, contacting the reactant stream with a hydrogen-containing stream in the presence of a supported, promoted, Group VIII catalyst, removing the solvent/absorbent, and recovering the alkene product.Type: ApplicationFiled: February 25, 2010Publication date: June 17, 2010Applicant: SYNFUELS INTERNATIONAL, INC.Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
-
Patent number: 7737075Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.Type: GrantFiled: December 5, 2007Date of Patent: June 15, 2010Assignee: Catalytic Distillation TechnologiesInventor: J. Yong Ryu
-
Patent number: 7737078Abstract: The formation of H2S in a stoichiometric or reducing atmosphere is restrained without using Ni or Cu as an environmental load substance. An additional oxide composed of an oxide of at least one kind of metal selected from the group consisting of Bi, Sn and Zn was added to a three-way catalyst for purifying an exhaust gas emitted from an internal combustion engine of which the combustion is controlled in near a stoichiometric atmosphere in the amount of from 0.02 mol to 0.2 mol per liter of the catalyst. The additional oxide forms SO3 or SO4 from SO2 in an oxidizing atmosphere, and stores sulfur components as a sulfide in a reducing atmosphere so that emission of H2S can be restrained. And since no environmental load substance is contained, the catalyst can be used safely.Type: GrantFiled: December 1, 2005Date of Patent: June 15, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventor: Hiromasa Suzuki
-
Publication number: 20100140137Abstract: A reductant producing apparatus and method is provided, the apparatus includes a catalyst attached to an encasement. The encasement has a first and second intake formed therein that are fluidly coupled to the catalyst. The first intake configured to allow entry of a hydrocarbon fuel into the encasement. The second intake is configured to allow entry of oxygen into the encasement. The catalyst is configured to catalyze an autothermal reaction to convert a mixture into a plurality of reductants comprising a plurality of hydrocarbons having a hydrocarbon chain length that is less than a hydrocarbon chain length of hydrocarbons in the hydrocarbon fuel. The mixture comprises the hydrocarbon fuel and the oxygen, and the mixture has a carbon-to-oxygen ratio that is greater than a one-to-one ratio.Type: ApplicationFiled: December 10, 2008Publication date: June 10, 2010Inventors: Gregg A. Deluga, Dan Hancu, Jin Ki Hong, Daniel G. Norton, Rick B. Watson, Arturo Vazquez, Ramanathan Subramanian
-
Patent number: 7732370Abstract: A catalyst including cobalt, zinc oxide and aluminium is described, having a total cobalt content of 15-75% by weight (on reduced catalyst), an aluminium content ?10% by weight (based on ZnO) and which when reduced at 425° C., has a cobalt surface area as measured by hydrogen chemisorption at 150° C. of at least 20 m2/g cobalt. A method for preparing the catalyst is also described including combining a solution of cobalt, zinc and aluminium with an alkaline solution to effect co-precipitation of a cobalt-zinc-aluminium composition from the combined solutions, separating of the co-precipitated composition form the combined solutions, heating the composition to form an oxide composition, and optionally reducing at least a portion of the cobalt to cobalt metal. The catalysts may be used for hydrogenation reactions and for the Fischer-Tropsch synthesis of hydrocarbons.Type: GrantFiled: April 15, 2005Date of Patent: June 8, 2010Assignee: Johnson Matthey PLCInventors: John Leonello Casci, Carl Leonard Huitson, Cornelis Martinus Lok
-
Publication number: 20100121123Abstract: The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.Type: ApplicationFiled: May 8, 2008Publication date: May 13, 2010Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
-
Patent number: 7713910Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.Type: GrantFiled: October 29, 2004Date of Patent: May 11, 2010Assignee: Umicore AG & Co KGInventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
-
Patent number: 7713908Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.Type: GrantFiled: August 29, 2005Date of Patent: May 11, 2010Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
-
Patent number: 7713911Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.Type: GrantFiled: March 15, 2005Date of Patent: May 11, 2010Assignee: Nissan Motor Co., Ltd.Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
-
Publication number: 20100092380Abstract: A self-started OSRM (oxidative steam reforming of methanol) process at room temperature for hydrogen production is disclosed. In the process, an aqueous methanol and oxygen are pre-mixed. The mixture is then fed to a Cu/ZnO-based catalyst to initiate an OSRM process at room temperature. The temperature of the catalyst bed, with suitable thermal isolation, may be raised automatically by the exothermic OSRM to enhance the conversion of methanol. A hydrogen yield of 2.4 moles per mole methanol from the process may be obtained.Type: ApplicationFiled: December 31, 2008Publication date: April 15, 2010Inventors: Yuh-Jeen HUANG, Chuin-Tih Yeh, Chien-Te Ho, Liang-Chor Chung
-
Patent number: 7655749Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.Type: GrantFiled: September 19, 2005Date of Patent: February 2, 2010Assignee: GM Global Technology Operations, Inc.Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
-
Patent number: 7638459Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.Type: GrantFiled: May 25, 2005Date of Patent: December 29, 2009Assignee: UOP LLCInventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
-
Publication number: 20090314993Abstract: The present invention relates to a novel composite metal oxide catalyst, a method of making the catalyst, and a process for producing synthesis gas using the catalyst. The catalyst may be a nickel and cobalt based dual-active component composite metal oxide catalyst. The catalyst may be used to produce synthesis gas by the carbon dioxide reforming reaction of methane. The catalyst on an anhydrous basis after calcinations has the empirical formula: M a m + ? N b n + ? Al c 3 + ? Mg d 2 + ? O ( am 2 + bn 2 + 3 2 ? c + d ) Mm+ and Nn+ are two transition metals serving as dual-active components and selected from the group consisting of Ni, Co, Fe, Mn, Mo, Cu, Zn or mixtures thereof, a+b+c+d=1, and 0.001?a?0.8, 0.001?b?0.8, 0.1?c?0.99, 0.01?d?0.99.Type: ApplicationFiled: June 19, 2008Publication date: December 24, 2009Applicant: UNIVERSITY OF SASKATCHEWANInventors: Jianguo ZHANG, Hui WANG, Ajay Kumar DALAI
-
Publication number: 20090298958Abstract: The present invention relates to a process for converting synthesis gas to hydrocarbons, in particular to hydrocarbons in the C5-C60 range particularly suitable for use as liquid motor fuels, in a slurry reactor in the presence of a Fischer-Tropsch catalyst comprising cobalt and zinc oxide wherein the Fischer-Tropsch catalyst is activated with a reducing gas consisting of hydrogen and an inert gas at 330 to 400° C. prior to contact with synthesis gas in the slurry reactor.Type: ApplicationFiled: October 20, 2006Publication date: December 3, 2009Applicants: BP EXPLORATION OPERATING COMPANY LIMITED, DAVY PROCESS TECHNOLOGY LIMITEDInventors: Jay Simon Clarkson, Timothy Douglas Gamlin, Lawrence Trevor Hardy
-
Publication number: 20090274612Abstract: The present invention provides a process for producing supported ruthenium oxide comprising a step of supporting a ruthenium compound on a carrier and then calcining it in an oxygen-containing gas atmosphere, wherein the ruthenium compound has a total of each content of sodium, calcium, magnesium, iron, silicon, aluminum, copper and zinc of 500 weight ppm or less based on the amount of ruthenium.Type: ApplicationFiled: April 7, 2006Publication date: November 5, 2009Applicant: Sumitomo Chemical Company, Limited.Inventor: Kohei Seki
-
Patent number: 7605108Abstract: A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.Type: GrantFiled: July 5, 2005Date of Patent: October 20, 2009Assignee: Nissan Motor Co., Ltd.Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Katsuo Suga, Toru Sekiba
-
Patent number: 7598204Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.Type: GrantFiled: September 19, 2005Date of Patent: October 6, 2009Assignee: General Motors CorporationInventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
-
Patent number: 7585812Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.Type: GrantFiled: June 20, 2008Date of Patent: September 8, 2009Assignee: Sud-Chemie Inc.Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
-
Publication number: 20090221724Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.Type: ApplicationFiled: January 16, 2009Publication date: September 3, 2009Applicant: BASF CATALYSTS LLCInventors: Cornelis Roeland Baijense, Tjalling Rekker
-
Patent number: 7582202Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.Type: GrantFiled: February 10, 2004Date of Patent: September 1, 2009Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.Inventors: William Jones, Paul O'Connor, Dennis Stamires
-
Publication number: 20090203520Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.Type: ApplicationFiled: April 20, 2009Publication date: August 13, 2009Applicant: Sud-Chemie Inc.Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
-
Publication number: 20090197981Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and having the following particle size distribution by volume: <10% having a particle size below 1 micron, 70-99% having a particle size between 1 and 5 micron, and <20% having a particle size above 5 micron.Type: ApplicationFiled: November 11, 2008Publication date: August 6, 2009Applicant: BASF CATALYSTS LLCInventors: Tjalling Rekker, Cornelis Roeland Baijense
-
Patent number: 7569511Abstract: An alcohol steam reforming catalyst for generating hydrogen contains palladium, yttrium, and at least one of cerium and a metal oxide. The catalyst displays both an improved alcohol conversion rate and improved carbon dioxide selectivity. Methods of making and using the alcohol steam reforming catalyst are described.Type: GrantFiled: May 5, 2006Date of Patent: August 4, 2009Assignee: BASF Catalysts LLCInventors: Christopher R. Castellano, Ye Liu, Ahmad Moini, Gerald Stephen Koermer, Robert Joseph Farrauto
-
Patent number: 7566393Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.Type: GrantFiled: April 26, 2005Date of Patent: July 28, 2009Assignee: NanoScale CorporationInventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
-
Patent number: 7563747Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.Type: GrantFiled: April 22, 2003Date of Patent: July 21, 2009Assignee: BASF Catalysts LLCInventors: Cornelis Roeland Baijense, Tjalling Rekker