Zinc Containing Patents (Class 502/329)
  • Patent number: 7951976
    Abstract: Several metal-supported catalyst compositions based on nano-crystalline zinc oxide were synthesized and characterized by X-ray powder diffraction (XRD), Carbon dioxide temperature programmed desorption (CO2 TPD), and nitrogen adsorption at ?196° C. The Pd-supported nano-ZnO mixed with different oxides such as Cr2O3, CrO3, MgO, and ?-Al2O3 showed high catalytic activity in acetone condensation in gas-phase process under hydrogen flow. This reaction involves the base-acid coupling of acetone to form mesityl oxide, followed by its hydrogenation to methyl isobutyl ketone (MIBK). The novel catalyst 1% wt. n-Pd/n-ZnCr2O4 was utilized during gas-phase reaction during production of MIBK. MIBK selectivity was 70-72% at 66-77% acetone conversion at 300-350° C. Diisobutyl ketone (DIBK) was the main by-product, with a total MIBK+DIBK selectivity up to 88%. The prepared catalysts showed stable activity and may be used repeatedly and for a longer period of time.
    Type: Grant
    Filed: August 15, 2010
    Date of Patent: May 31, 2011
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz Ahmed Bagabas, Vagif Melik Akhmedov, Abdulrahman Al-Rabiah, Mohamed Mokhtar Mohamed Mostafa
  • Publication number: 20110105305
    Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
  • Publication number: 20110105304
    Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.
    Type: Application
    Filed: June 15, 2009
    Publication date: May 5, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
  • Patent number: 7919659
    Abstract: A catalyst for production of a cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon, wherein the catalyst comprises zirconia as a carrier, and particles having an average primary particle diameter in a range of from 3 to 50 nm and an average secondary particle diameter in a range of from 0.1 to 30 ?m.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 5, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventor: Akiyoshi Fukuzawa
  • Patent number: 7919431
    Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 5, 2011
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Publication number: 20110071018
    Abstract: This invention is directed a catalyst for dehydrogenating primary alcohols. In one embodiment, for example, the catalyst comprises a metal support (preferably a metal sponge support) having a copper-containing coating at the surface thereof. In another embodiment, the catalyst comprises a metal selected from the group consisting of zinc, cobalt, iron, tin and combinations thereof having a copper-containing coating at the surface thereof.
    Type: Application
    Filed: August 19, 2010
    Publication date: March 24, 2011
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: David A. Morgenstern, Juan P. Arhancet, Howard C. Berk, William L. Moench, JR., James C. Peterson
  • Patent number: 7897037
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Publication number: 20110039954
    Abstract: Multi-functional catalyst and processes utilizing the catalyst in single-stage conversion of syngas into hydrocarbon compounds are provided. The multi-functional catalyst, which comprises two or more catalytic materials situated within molecular distances of each other, facilitates conversion of syngas into one or more intermediate compounds and then into desired hydrocarbon compounds, such as high octane gasoline, diesel, jet fuel, olefins, and xylenes.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 17, 2011
    Applicant: BLACK & VEATCH CORPORATION
    Inventors: Jianli Hu, Jon C. Erickson
  • Patent number: 7884139
    Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: February 8, 2011
    Assignee: BASF Corporation
    Inventors: Cornelis Roeland Baijense, Tjalling Rekker
  • Publication number: 20110021646
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and an amount of zirconium(IV)oxide and/or aluminium oxide of between 0.5 and 2.5 wt. % calculated as metal, based on the weight of the calcined catalyst.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 27, 2011
    Applicant: BASF Catalysts LLC
    Inventor: Cornelis Roeland Baijense
  • Patent number: 7875251
    Abstract: An ozone-decomposing agent including a first iron compound and a second iron compound is provided. The second iron compound may have a spinel type structure. The first iron compound of the ozone-decomposing agent may include an oxide selected from Fe2O3, FeO(OH) or Fe(OH)3. The second iron compound of the ozone-decomposing agent may include an oxide selected from MnFe2O4, ZnFe2O4, NiFe2O4, CuFe2O4 or CoFe2O4.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: January 25, 2011
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventor: Kazuhiro Ueda
  • Publication number: 20110014105
    Abstract: A particulate desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulphurisation material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulphurisation material may be used to desulphurise hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 20, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 7858552
    Abstract: A composite catalytic material (and process for its manufacture) is provided which comprises a catalyst adhered to a polymeric support material. This composite catalytic material can be used to remove or degrade contaminants in water and to remove or degrade carbon monoxide or other airborne contaminants.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 28, 2010
    Assignee: Wayland Baptist University
    Inventors: Joel E. Boyd, Lori A. Pretzer, Philip J. Carlson
  • Publication number: 20100323883
    Abstract: Composite particle comprising a zinc containing compound such as zinc oxide and a noble metal such a platinum, and process for fabrication thereof. The particles facilitate simultaneous controlled introduction of the zinc and noble metal species into a nuclear reactor.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 23, 2010
    Applicant: General Electric
    Inventors: Samson Hettiarachchi, Thomas Pompillo Diaz, Angelito Foz Gonzaga
  • Publication number: 20100310950
    Abstract: A catalyst for a fuel cell, a fuel cell system including the same, and associated methods, the catalyst including a platinum-metal alloy having a face-centered tetragonal structure, and a carrier, wherein the platinum-metal alloy shows a broad peak or a peak having two split tips at a 2? of about 65 to about 75 degrees in an XRD pattern using a Cu—K ? line, and the platinum-metal alloy is supported in the carrier and has an average particle size of about 1.5 to about 5 nm.
    Type: Application
    Filed: January 22, 2010
    Publication date: December 9, 2010
    Inventors: Myoung-Ki Min, Geun-Seok Chai, Hee-Tak Kim, Tae-Yoon Kim, Sang-Il Han, Sung-Yong Cho, Kah-Young Song
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Patent number: 7846977
    Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 7, 2010
    Assignee: BASF Corporation
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Publication number: 20100304268
    Abstract: Alloy catalysts have the formula of PtiIrjXk, wherein X represents an element from the group consisting of Ti, Mn, Co, V, Cr, Ni, Cu, Zr, Zn, and Fe. These catalysts can be used as electrocatalysts in fuel cells.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Tetsuo Kawamura, Lesia Protsailo
  • Patent number: 7842260
    Abstract: Provided is a reaction vessel for a fuel cell, and more particularly to a reaction vessel exhibiting improved thermal efficiency, and a reaction device for a steam reforming reaction for a fuel cell. The reaction device includes a cylindrical reaction catalyst chamber on which a target reaction catalyst for a predetermined target reaction is disposed; and a tubular oxidation catalyst chamber surrounding the reaction catalyst chamber, comprising an oxidation reaction catalyst therein. The reaction device according features an increased contact area between catalyst and gas, and rapidly heating of the gas in contact with the catalyst to a desired reaction temperature.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Sung-chul Lee, Ju-yong Kim, Yong-kul Lee, Man-seok Han, Jun-sic Kim, Chan-ho Lee, Jin-goo Ahn
  • Patent number: 7820037
    Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 26, 2010
    Assignee: Osaka Gas Company Limited
    Inventors: Masataka Masuda, Shin-ichi Nagase, Susumu Takami, Osamu Okada
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7776782
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Patent number: 7767618
    Abstract: A bi-phase platinum catalyst, a method of manufacturing the same, an electrode including the bi-phase platinum catalyst, and a solar cell including the electrode. The bi-phase platinum catalyst includes platinum particles and an amorphous metal oxide.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 3, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Moon-sung Kang, Ji-won Lee, Byong-cheol Shin
  • Publication number: 20100179056
    Abstract: A self-started OSRM (oxidative steam reforming of methanol) process at room temperature for hydrogen production. In the process, an aqueous methanol and oxygen are pre-mixed. The mixture is then fed to a Cu/ZnO-based catalyst to initiate an OSRM process at room temperature. The temperature of the catalyst bed, with suitable thermal isolation, may be raised automatically by the exothermic OSRM to enhance the conversion of methanol. A hydrogen yield of 2.4 moles per mole methanol from the process may be obtained.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 15, 2010
    Inventors: Yuh-Jeen HUANG, Chuin-Tih YEH, Chien-Te HO, Liang-Chor CHUNG
  • Patent number: 7745370
    Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: June 29, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
  • Publication number: 20100152034
    Abstract: A process and catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a reactant comprising an alkyne and a non-hydrocarbon solvent/absorbent, contacting the reactant stream with a hydrogen-containing stream in the presence of a supported, promoted, Group VIII catalyst, removing the solvent/absorbent, and recovering the alkene product.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Applicant: SYNFUELS INTERNATIONAL, INC.
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Patent number: 7737075
    Abstract: More selective and efficient Ni hydrotreating catalysts are those which contain more than about 60% of the Ni content on the peripheral surface of porous supports, such as extruded alumina, which may be obtained by spraying an atomized solution of a Ni compound onto the support and drying it at a temperature in the range of from 200 to 600° C. When used, for example, to remove acetylenic compounds from butadiene streams, higher recovery of the desired butadiene with lower acetylenic content and low heavy polymer deposition is obtained than was possible with prior catalysts.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 15, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7737078
    Abstract: The formation of H2S in a stoichiometric or reducing atmosphere is restrained without using Ni or Cu as an environmental load substance. An additional oxide composed of an oxide of at least one kind of metal selected from the group consisting of Bi, Sn and Zn was added to a three-way catalyst for purifying an exhaust gas emitted from an internal combustion engine of which the combustion is controlled in near a stoichiometric atmosphere in the amount of from 0.02 mol to 0.2 mol per liter of the catalyst. The additional oxide forms SO3 or SO4 from SO2 in an oxidizing atmosphere, and stores sulfur components as a sulfide in a reducing atmosphere so that emission of H2S can be restrained. And since no environmental load substance is contained, the catalyst can be used safely.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 15, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromasa Suzuki
  • Publication number: 20100140137
    Abstract: A reductant producing apparatus and method is provided, the apparatus includes a catalyst attached to an encasement. The encasement has a first and second intake formed therein that are fluidly coupled to the catalyst. The first intake configured to allow entry of a hydrocarbon fuel into the encasement. The second intake is configured to allow entry of oxygen into the encasement. The catalyst is configured to catalyze an autothermal reaction to convert a mixture into a plurality of reductants comprising a plurality of hydrocarbons having a hydrocarbon chain length that is less than a hydrocarbon chain length of hydrocarbons in the hydrocarbon fuel. The mixture comprises the hydrocarbon fuel and the oxygen, and the mixture has a carbon-to-oxygen ratio that is greater than a one-to-one ratio.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Inventors: Gregg A. Deluga, Dan Hancu, Jin Ki Hong, Daniel G. Norton, Rick B. Watson, Arturo Vazquez, Ramanathan Subramanian
  • Patent number: 7732370
    Abstract: A catalyst including cobalt, zinc oxide and aluminium is described, having a total cobalt content of 15-75% by weight (on reduced catalyst), an aluminium content ?10% by weight (based on ZnO) and which when reduced at 425° C., has a cobalt surface area as measured by hydrogen chemisorption at 150° C. of at least 20 m2/g cobalt. A method for preparing the catalyst is also described including combining a solution of cobalt, zinc and aluminium with an alkaline solution to effect co-precipitation of a cobalt-zinc-aluminium composition from the combined solutions, separating of the co-precipitated composition form the combined solutions, heating the composition to form an oxide composition, and optionally reducing at least a portion of the cobalt to cobalt metal. The catalysts may be used for hydrogenation reactions and for the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 8, 2010
    Assignee: Johnson Matthey PLC
    Inventors: John Leonello Casci, Carl Leonard Huitson, Cornelis Martinus Lok
  • Publication number: 20100121123
    Abstract: The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.
    Type: Application
    Filed: May 8, 2008
    Publication date: May 13, 2010
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 7713910
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 11, 2010
    Assignee: Umicore AG & Co KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Patent number: 7713908
    Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
  • Patent number: 7713911
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 11, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
  • Publication number: 20100092380
    Abstract: A self-started OSRM (oxidative steam reforming of methanol) process at room temperature for hydrogen production is disclosed. In the process, an aqueous methanol and oxygen are pre-mixed. The mixture is then fed to a Cu/ZnO-based catalyst to initiate an OSRM process at room temperature. The temperature of the catalyst bed, with suitable thermal isolation, may be raised automatically by the exothermic OSRM to enhance the conversion of methanol. A hydrogen yield of 2.4 moles per mole methanol from the process may be obtained.
    Type: Application
    Filed: December 31, 2008
    Publication date: April 15, 2010
    Inventors: Yuh-Jeen HUANG, Chuin-Tih Yeh, Chien-Te Ho, Liang-Chor Chung
  • Patent number: 7655749
    Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20090314993
    Abstract: The present invention relates to a novel composite metal oxide catalyst, a method of making the catalyst, and a process for producing synthesis gas using the catalyst. The catalyst may be a nickel and cobalt based dual-active component composite metal oxide catalyst. The catalyst may be used to produce synthesis gas by the carbon dioxide reforming reaction of methane. The catalyst on an anhydrous basis after calcinations has the empirical formula: M a m + ? N b n + ? Al c 3 + ? Mg d 2 + ? O ( am 2 + bn 2 + 3 2 ? c + d ) Mm+ and Nn+ are two transition metals serving as dual-active components and selected from the group consisting of Ni, Co, Fe, Mn, Mo, Cu, Zn or mixtures thereof, a+b+c+d=1, and 0.001?a?0.8, 0.001?b?0.8, 0.1?c?0.99, 0.01?d?0.99.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Applicant: UNIVERSITY OF SASKATCHEWAN
    Inventors: Jianguo ZHANG, Hui WANG, Ajay Kumar DALAI
  • Publication number: 20090298958
    Abstract: The present invention relates to a process for converting synthesis gas to hydrocarbons, in particular to hydrocarbons in the C5-C60 range particularly suitable for use as liquid motor fuels, in a slurry reactor in the presence of a Fischer-Tropsch catalyst comprising cobalt and zinc oxide wherein the Fischer-Tropsch catalyst is activated with a reducing gas consisting of hydrogen and an inert gas at 330 to 400° C. prior to contact with synthesis gas in the slurry reactor.
    Type: Application
    Filed: October 20, 2006
    Publication date: December 3, 2009
    Applicants: BP EXPLORATION OPERATING COMPANY LIMITED, DAVY PROCESS TECHNOLOGY LIMITED
    Inventors: Jay Simon Clarkson, Timothy Douglas Gamlin, Lawrence Trevor Hardy
  • Publication number: 20090274612
    Abstract: The present invention provides a process for producing supported ruthenium oxide comprising a step of supporting a ruthenium compound on a carrier and then calcining it in an oxygen-containing gas atmosphere, wherein the ruthenium compound has a total of each content of sodium, calcium, magnesium, iron, silicon, aluminum, copper and zinc of 500 weight ppm or less based on the amount of ruthenium.
    Type: Application
    Filed: April 7, 2006
    Publication date: November 5, 2009
    Applicant: Sumitomo Chemical Company, Limited.
    Inventor: Kohei Seki
  • Patent number: 7605108
    Abstract: A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: October 20, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Katsuo Suga, Toru Sekiba
  • Patent number: 7598204
    Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 6, 2009
    Assignee: General Motors Corporation
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
  • Patent number: 7585812
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 8, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20090221724
    Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.
    Type: Application
    Filed: January 16, 2009
    Publication date: September 3, 2009
    Applicant: BASF CATALYSTS LLC
    Inventors: Cornelis Roeland Baijense, Tjalling Rekker
  • Patent number: 7582202
    Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 1, 2009
    Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.
    Inventors: William Jones, Paul O'Connor, Dennis Stamires
  • Publication number: 20090203520
    Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 13, 2009
    Applicant: Sud-Chemie Inc.
    Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
  • Publication number: 20090197981
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and having the following particle size distribution by volume: <10% having a particle size below 1 micron, 70-99% having a particle size between 1 and 5 micron, and <20% having a particle size above 5 micron.
    Type: Application
    Filed: November 11, 2008
    Publication date: August 6, 2009
    Applicant: BASF CATALYSTS LLC
    Inventors: Tjalling Rekker, Cornelis Roeland Baijense
  • Patent number: 7569511
    Abstract: An alcohol steam reforming catalyst for generating hydrogen contains palladium, yttrium, and at least one of cerium and a metal oxide. The catalyst displays both an improved alcohol conversion rate and improved carbon dioxide selectivity. Methods of making and using the alcohol steam reforming catalyst are described.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 4, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Christopher R. Castellano, Ye Liu, Ahmad Moini, Gerald Stephen Koermer, Robert Joseph Farrauto
  • Patent number: 7566393
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 28, 2009
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Patent number: 7563747
    Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 21, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Cornelis Roeland Baijense, Tjalling Rekker