Of Iron Patents (Class 502/336)
  • Publication number: 20020077249
    Abstract: The present invention relates to a unit suitable for the through-flow of a fluid medium at least partially filled with an adsorbent/catalyst in pellet form consisting essentially of iron oxide and/or iron oxyhydroxides, solidified with oxides and/or (oxy)hydroxides of the elements Al, Mg and Ti, the pellets or granules based on iron oxides and/or iron oxyhydroxides and iron(III) hydroxide for the absorbent/catalyst, and processes for their production and their use.
    Type: Application
    Filed: September 25, 2001
    Publication date: June 20, 2002
    Inventors: Andreas Schlegel, Jurgen Kischkewitz
  • Patent number: 6395675
    Abstract: A device (catalytic converter) for purifying an exhaust gas. This device has a first catalyst for purifying a NOx of the exhaust gas. This first catalyst contains first and second powders. The first powder has a porous carrier and at least one noble metal loaded on the porous carrier. The at least one noble metal is selected from platinum, palladium and rhodium. The second powder has a first double oxide represented by the general formula (Ln1-&agr;A&agr;)1-&bgr;BO&dgr; where &agr; is a number that is greater than 0 and less than 1, &bgr; is a number that is greater than 0 and less than 1, &dgr; is a number that is greater than 0, Ln is at least one first element selected from La, Ce, Nd and Sm, A is at least one second element selected from Mg, Ca, Sr, Ba, Na, K and Cs, and B is at least one third element selected from Fe, Co, Ni and Mn. The device is improved in capability of purifying NOx contained in an oxygen rich exhaust gas.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: May 28, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuo Suga, Masanori Nakamura
  • Patent number: 6391821
    Abstract: An oxidation catalyst according to the present invention is prepared, for example, by heat processing a gold compound at 150° C. to 80° C., yielding ultrafine gold particles, which are then mixed with a palladium compound and a compound containing at least one element selected from the group consisting of alkaline metals and the elements of Groups IIA, IIIA, VIA, IIB, VB, and VIII of the Periodic Table. By an oxidation reaction between a benzyl compound such as p-xylene and a carboxylic acid such as acetic acid in the presence of oxygen and the oxidation catalyst prepared as above, a benzyl ester such as p-methylbenzyl acetate or p-xylylene diacetate can be produced. Consequently, it is possible to provide an oxidation catalyst suitable for use in industrially producing the foregoing benzyl esters, a method of preparing the foregoing oxidation catalyst, and a method of producing the foregoing benzyl esters efficiently and at low cost.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: May 21, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yuuichi Satoh, Jun Tatsumi, Toshiya Iida, Toshio Hayashi
  • Patent number: 6383974
    Abstract: Hydrorefining catalyst contains 0.1 to 25 wt % in total of at least one hydrogenation active metal element selected from elements of Group 6, Group 8, Group 9, and Group 10 of the Periodic Table, and 0.1 to 3 wt % potassium on a carrier formed of porous inorganic oxide. The concentration distribution of the hydrogenation active metal element is higher in the central part than in the peripheral part of the catalyst, and the concentration distribution of potassium is higher in the peripheral part than in the central part of the catalyst. The pores on the outside surface of the catalyst are not plugged by the metal content of hetero compounds and hetero compounds can be efficiently diffused to inside the catalyst. As a result, long-term retention of a state of high activity is possible.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: May 7, 2002
    Assignee: Japan Energy Corporation
    Inventors: Katsuaki Ishida, Ryutaro Koide, Koichi Matsushita
  • Publication number: 20020052289
    Abstract: This invention provides a process for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons, and uses a catalyst including (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium) and (b) a non-layered mesoporous support which exhibits an X-ray diffraction after calcination that has at least one peak at a d-spacing of greater than 18 Ångstrom units.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 2, 2002
    Inventors: Leo E. Manzer, Stephan Schwarz
  • Publication number: 20020035035
    Abstract: Thermostable metal oxide catalysts of the general formula ABMO3−&dgr;, having a perovskite crystal structure and the process of making the same. A, B and M are metal cations. M acts as a doping of site B in an amount of about 0.01 to about 0.30. Cations A, B and M are so chosen as to assure a depletion in oxygen represented by &dgr; of at least 0.02. The catalysts according to the present invention show good catalytic properties even at temperatures above 1300 ° C.
    Type: Application
    Filed: June 18, 2001
    Publication date: March 21, 2002
    Inventors: Jitka Kirchnerova, Danilo Klvana
  • Patent number: 6346228
    Abstract: The present invention relates to a novel hydrophobic multicomponent catalyst useful in the direct oxidation of hydrogen to hydrogen peroxide and to a method for the preparation of such catalyst. More specifically, this invention relates to a novel hydrophobic muticomponent catalyst comprising a hydrophobic polymer membrane deposited on a Pd containing acidic catalyst, useful for the direct oxidation of hydrogen by oxygen to hydrogen peroxide, an a method for preparing the same.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: February 12, 2002
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Subhash Dwarkanath Sansare, Abaji Govind Gaikwad
  • Patent number: 6342191
    Abstract: This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 300° C. to 700° C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided. The invention also relates to a method for producing an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: January 29, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Bryan E. Kepner, Eric A. Mintz
  • Publication number: 20020010087
    Abstract: Skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with aluminum, antimony, silicon, tin or zinc powder and 0.01-5 wt. % metal promotor powder to provide 20-80 wt. % iron content, then melted together, cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy precursor particles are treated with NaOH or KOH caustic solution at 30-95° C. to extract or leach out a major portion of the non-ferrous metal portion from the iron and provide the skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream in either fixed bed or slurry bed type reactor at 200-350° C. temperature, 1.0-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L/g Fe/h to produce desired hydrocarbon products.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 24, 2002
    Inventors: Jinglai Zhou, Yijun Lu, Zhixin Zhang, Guohui Li, Linyao Dong, Hairong Wang, Peizheng Zhou, Lap-Keung Lee
  • Patent number: 6338830
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: January 15, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 6337129
    Abstract: Disclosed is a member having an antifouling surface on which the so-called “stains,” such as deposits and contaminants, are less likely to be deposited. The surface of the member has both a hydrophobic portion, and a hydrophilic portion induced by a photocatalyst, the hydrophobic portion and the hydrophilic portion being present in a microscopically dispersed and exposed state on the surface. More specifically, according to a first aspect of the present invention, there is provided a member comprising: a substrate; and a surface layer provided on the substrate, the surface layer comprising a photocatalytic oxide, a silicone resin or silica, and a water-repellent fluororesin, the silicone or silica and the water-repellent fluororesin being present in a microscopically dispersed and exposed state on the outermost surface of the surface layer.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: January 8, 2002
    Assignee: Toto Ltd.
    Inventors: Toshiya Watanabe, Makoto Hayakawa, Mitsuyoshi Machida
  • Publication number: 20010049338
    Abstract: The present invention provides a method by which a highly active catalyst for the steam reforming of methanol is efficiently produced by a simple process. The catalyst is produced from alloy fine particles obtained by first grinding an Al alloy containing quasi-crystals consisting of aluminum, copper and at least one metal atom selected from Fe, Ru and Os, and then leaching the ground Al alloy.
    Type: Application
    Filed: March 30, 2001
    Publication date: December 6, 2001
    Inventors: Masatoshi Yoshimura, Yuzuru Takahashi, An-pang Tsai
  • Patent number: 6303538
    Abstract: The present invention discloses metallic fiber boards having catalytic functionality and processes for producing the same. The boards are formed from a mesh of metallic fibers, each fiber having a first layer of an oxide and a second layer of a porous oxide. A catalyst, either disposed on the surface of the second layer, or dispersed within the second layer, provides catalytic functionality to the fiber board. The first layer is produced by thermal oxidation of the metallic fibers, while the second layer and catalyst are produced by thermal decomposition of precursor materials applied to the fiber board while in solution, typically as a spray of atomized droplets. The resulting boards are used to catalyze the combustion of hydrocarbons, especially methane, and particularly in household boilers.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: October 16, 2001
    Assignee: Saes Getters S.p.A.
    Inventors: Luca Toia, Claudio Boffito, Vittorio Ragaini, Stefania Vitali, Claudia L. Bianchi
  • Patent number: 6281164
    Abstract: The useful life of SOx additives having a SO2→SO3 oxidation catalyst component and a SO3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: August 28, 2001
    Assignee: Intercat-Savannah, Inc.
    Inventors: Edward J. Demmel, Albert A. Vierheilig, Regis B. Lippert
  • Patent number: 6277895
    Abstract: Particulate skeletal iron catalyst is provided which contain at least about 50 wt. % iron with the remainder being a minor portion of a suitable non-ferrous metal and having characteristics of 0.062-1.0 mm particle size, 20-100 m2/g surface area, and 10-40 nm average pore diameter. Such skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with non-ferrous powder selected from aluminum, antimony, silicon, tin or zinc powder to provide 20-80 wt. % iron content and melted together to form an iron alloy, then cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy pulverized particles are treated with NaOH or KOH caustic solution at 30-95° C.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: August 21, 2001
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Lap-Keung Lee, Jinglai Zhou, Yijun Lu, Guohui Li
  • Patent number: 6274532
    Abstract: A completely metallic catalyst for the oxidation of mixtures in the gaseous phase which contain carbon monoxide, hydrocarbons and/or soot, has a surface doped with a metallic element and is subjected to a second thermal treatment in an oxygen-containing atmosphere.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: August 14, 2001
    Assignee: Krupp VDM GmbH
    Inventors: Wilfried Herda, Ulrich Heubner, Jürgen Koppe, Hartmut Lausch
  • Patent number: 6274533
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promoters are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: August 14, 2001
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6265342
    Abstract: A catalyst for purifying exhaust gases from diesel engines with an improved purification efficiency for both nitrogen oxide and particulates in exhaust emissions is provided. The catalyst includes: (i) a first catalytic layer containing a carrier portion including iron (Fe)-doped modified zirconium dioxide, and a catalyst portion including a material selected from the group consisting of copper (Cu), copper oxide, and mixtures thereof, and (ii) a second catalytic layer containing a carrier portion including Cu-doped modified zirconium dioxide, a main catalyst portion including platinum (Pt) and tin (Sn), and a co-catalyst portion including copper oxide. The catalyst portion of the first catalytic layer may contain palladium (Pd) instead of Cu.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: July 24, 2001
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang-bin Lim, Chan-ho Pak, Ju-hee Cho
  • Patent number: 6265451
    Abstract: Skeletal iron catalysts are prepared and utilized for producing hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with aluminum, antimony, silicon, tin or zinc powder and 0.01-5 wt % metal promotor powder to provide 20-80 wt % iron content, then melted together, cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy precursor particles are treated with NaOH or KOH caustic solution at 30-95° C. to extract or leach out a major portion of the non-ferrous metal portion from the iron, and then dried and reduced under hydrogen atmosphere to provide the skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream in either fixed bed or slurry bed type reactor at 200-350° C. temperature, 1.0-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L/g Fe/h to produce desired hydrocarbon products.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: July 24, 2001
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Jinglai Zhou, Yijun Lu, Zhixin Zhang, Guohui Li, Linyao Dong, Hairong Wang, Peizheng Zhou, Lap-Keung Lee
  • Patent number: 6248688
    Abstract: The present invention relates to a zirconium, rare earth containing composition comprising zirconium, cerium, neodymium and praseodymium components and the use of this composition in a catalyst composition useful for the treatment of gases to reduce contaminants contained therein and method process to make the catalyst composition. The catalyst has the capability of substantially simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: June 19, 2001
    Assignee: Engelhard Corporation
    Inventors: Joseph H. Z. Wu, Mukaram K. Syed
  • Patent number: 6235677
    Abstract: A process is disclosed for producing hydrocarbons by contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The process is characterized by using a catalyst prepared by a method involving (1) forming a catalyst gel by destabilizing an aqueous colloid comprising (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium), (b) colloidal cerium oxide, zirconium oxide, titanium oxide and/or aluminum oxide, and optionally (c) Al(OR)3, Si(OR)4, Ti(OR)4 and/or Zr(OR)4 where each R is an alkyl group having from 1 to 6 carbon atoms; and (2) drying the gel.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: May 22, 2001
    Assignee: Conoco Inc.
    Inventors: Leo E. Manzer, Kostantinos Kourtakis
  • Patent number: 6235678
    Abstract: A catalyst composition for oxidative dehydrogenation of paraffinic hydrocarbons and other compounds having at least two adjacent carbon atoms each having at least one hydrogen atom. The catalyst composition is represented by the formula AaBbSbcVdAleOx wherein A is an alkali or alkaline earth metal; B is one or more optional elements selected from zinc, cadmium, lead, nickel, cobalt, iron, chromium, bismuth, gallium, niobium, tin and neodymium; a is 0 to 0.3, b is 0 to 5, c is 0.5 to 10, d is 1, e is 3 to 10, 7≦a+b+c+d+e≦25, and x is determined by the valence requirements of the elements present. A process for the oxidative dehydrogenation of paraffins using the catalyst composition.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: May 22, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Edouard A. Mamedov, Shahid N. Shaikh
  • Patent number: 6165932
    Abstract: The invention is a sol-gel processed metal-aluminum based oxide material useful as a catalyst including a NOx trapping catalyst. It is made from alkoxides comprising heterometallic alkoxides. The metal is transition metal, one or both of alkali metal and alkaline earth metal, and optionally also a lanthanide. Then invention is also a method of treating lean-burn internal combustion engine exhaust gas with this material, without any precious metal included with the material, in the exhaust gas system. The method comprises locating the NOx trap in the system where the NOx trap absorbs nitrogen oxides during lean cycle operation and desorbs the nitrogen oxides when the concentration of the oxygen in the exhaust gas is lowered as during a rich or stoichiometric cycle.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: December 26, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventor: Chaitanya Kumar Narula
  • Patent number: 6121188
    Abstract: An activated fixed-bed Raney metal catalyst which is free of metal powder, has macropores and is based on an alloy of aluminum and at least one metal of subgroup VIII of the Periodic Table, contains more than 80% by volume, based on the total pores, of macropores and is used for the hydrogenation of low molecular weight and polymeric organic compounds.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: September 19, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Boris Breitscheidel, Uwe Diehlmann, Thomas Ruhl, Sabine Weiguny
  • Patent number: 6087298
    Abstract: The present invention relates to an exhaust gas treatment catalytic article having an upstream catalytic zone and at least one downstream catalytic zone. The upstream catalytic zone has an upstream composition which has a first upstream support, and at least one first upstream palladium component. The upstream zone can have one or more layers. The downstream catalytic zone has a first downstream layer which has a first downstream support and a first downstream precious metal component. A second downstream layer has a second downstream support and a second downstream precious metal component.
    Type: Grant
    Filed: May 14, 1996
    Date of Patent: July 11, 2000
    Assignee: Engelhard Corporation
    Inventors: Shiang Sung, Harold N. Rabinowitz, Rudolf M. Smaling
  • Patent number: 6087294
    Abstract: Particulate metal oxide compositions having reactive atoms stabilized on particulate surfaces and methods for reacting the compositions with saturated and unsaturated species are provided. The preferred particulate metal oxides of the compositions are nanocrystalline MgO and CaO with an average crystallite size of up to about 20 nm. The preferred reactive atoms of the compositions are atoms of the halogens and Group IA metals. In one embodiment, chlorine atoms are stabilized on the surface of nanocrystalline MgO thus forming a composition which is capable of halogenating compounds, both saturated and unsaturated, in the absence of UV light and elevated reaction temperatures.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: July 11, 2000
    Assignee: Kansas State University Research Foundation
    Inventors: Kenneth J. Klabunde, Naijian Sun
  • Patent number: 6080699
    Abstract: A heterogeneous massive catalyst is disclosed which comprises: at least one catalytically active component in the form of solid particles and at least one catalytically inert component in the form of solid particles wherein the components are dispersed in one another, wherein the inert component has a mean particle diameter greater than the mean particle diameter of the catalytically active component, and wherein the particles of the catalytically active material are grown on the particles of the catalytically inert material as well as a process for preparing the catalyst.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: June 27, 2000
    Inventor: Joachim Pohl
  • Patent number: 6074984
    Abstract: The useful life of SO.sub.X additives having a SO.sub.2 .fwdarw.SO.sub.3 oxidation catalyst component and a SO.sub.3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: June 13, 2000
    Assignee: Bulldog Technologies U.S.A., Inc.
    Inventors: Edward J. Demmel, deceased, Albert A. Vierheilig, Regis B. Lippert
  • Patent number: 6060423
    Abstract: A catalyst suitable for partially hydrogenating aromatic olefins to cyclohexene is disclosed. The catalyst is composed on a metallic active component deposited on a bi-oxide of gallium oxide-zinc oxide, and the metallic active component is selected from group VIII of the period table. The characteristic of the catalyst comprises a higher selectivity and yield in preparing cyclohexene.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: May 9, 2000
    Assignee: Chinese Petroleum Corporation
    Inventors: Yu-Wen Chen, Sung-Cheng Hu
  • Patent number: 6060420
    Abstract: A novel composite oxide has an A-site defect type perovskite structure represented by a general formula:A.sub.1--.alpha. BO.sub.3--.delta.wherein A is at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earth elements, Y and Pb, and B is at least one element selected from the group consisting of Ti, Mn, Fe, Co, Ni, Cu and Al, and .alpha. is 0<.alpha.<0.2 and .delta. is 0.ltoreq..delta..ltoreq.1, provided that only a known perovskite type oxide (La.sub.1-x Sr.sub.x).sub.1-.alpha. MnO.sub.3-.delta. (when .alpha. is 0.06, x is 0.08.ltoreq.x.ltoreq.0.30, while when the value of x is 0.11, .alpha. is 0.06<.alpha.<0.11) is excluded.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: May 9, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Fumio Munakata, Hiroaki Kaneko, Takeshi Miyamoto
  • Patent number: 6048821
    Abstract: The useful life of SO.sub.X additives having a SO.sub.2 .fwdarw.SO.sub.3 oxidation catalyst component and a SO.sub.3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc., with each component having large proportions of certain ingredients and having small proportions of certain other ingredients.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: April 11, 2000
    Assignee: Bulldog Technologies U.S.A., Inc.
    Inventors: Edward J. Demmel, Albert A. Vierheilig, Regis B. Lippert
  • Patent number: 6043187
    Abstract: The present invention relates to a catalyst comprising an extruded essentially alumina-based support, constituted by a plurality of juxtaposed agglomerates and partially in the form of packs of flakes and partially in the form of needles, and optionally comprising at least one catalytic metal or a compound of a catalytic metal from group VIB, and/or optionally at least one catalytic metal or compound of a catalytic metal from group VIII. The invention also relates to its use in a fixed bed reactor, for hydrorefining and hydroconverting hydrocarbon feeds.
    Type: Grant
    Filed: June 10, 1998
    Date of Patent: March 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kazstelan, Frederic Morel, Stephane Kressmann, Philippe Courty
  • Patent number: 6034032
    Abstract: The invention herein relates to a catalyst for enhancing the conversion of the dehydrogenation reaction of aromatic hydrocarbons such as ethylbenzene under a flow of carbon dioxide, which is expressed by the following formula I, wherein a catalyst in which an active component of iron oxides is highly dispersed onto a zeolite, activated charcoal, .gamma.-alumina or silica carrier. Further, the invention relates to a dehydrogenation method of aromatic hydrocarbons by means of using said catalyst:(Fe.sup.II.sub.x Fe.sup.III.sub.y O.sub.z)/S (I)wherein S denotes a zeolite, activated charcoal, .gamma.-alumina or silica carrier, and the initial state of iron oxide is as follows:x=0.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: March 7, 2000
    Assignee: Korea Reserarch Institute of Chemical Technology
    Inventors: Sang-Eon Park, Jong-San Chang, Yong Ki Park, Min Seok Park, Chul Wee Lee, Jermim Noh
  • Patent number: 6020285
    Abstract: Shaped particles suitable for use as a catalyst, or precursor thereto, particularly for the decomposition of hypohalite ions in aqueous solution, comprising a high alumina cement having an aluminium to calcium atomic ratio above 2.5 and at least one oxide of a Group VIII metal M selected from nickel and cobalt, said particles containing 10 to 70% by weight of said Group VIII metal oxide and having a porosity in the range of 30 to 60%, in which at least 10% of the pore volume is in the form of pores of size in the range 15 to 35 nm and less than 65% of the pore volume is in the form of pores of diameter greater then 35 nm are disclosed.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: February 1, 2000
    Assignee: Imperial Chemical Industries PLC
    Inventor: Frederick Ernest Hancock
  • Patent number: 6017844
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: January 25, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5990038
    Abstract: The invention relates to a first catalyst for purifying an exhaust gas. The first catalyst has a substrate and a catalytic coating formed thereon. This catalytic coating has first and second grains. The first grain includes a porous carrier supporting thereon at least one of palladium and rhodium. The second grain includes a double oxide supporting thereon at least one of platinum and palladium. This double oxide is represented by a formula of (La.sub.1-x A.sub.x).sub.1-.alpha. BO.sub..delta. where A is at least one element selected from barium, potassium and cesium, B is at least one of iron, cobalt, nickel and manganese, 0<X<1, 0<.alpha.<0.2, and .delta. is a number such that a net electric charge of the first double oxide becomes zero. The invention further relates to a second catalyst similar to the first catalyst. The first grain of the second catalyst includes a porous carrier supporting thereon at least one of platinum, palladium, rhodium and iridium.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: November 23, 1999
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuo Suga, Toru Sekiba
  • Patent number: 5985790
    Abstract: This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 400.degree. C. to 700.degree. C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: November 16, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5965481
    Abstract: The invention involves the production of a catalyst that contains (1) at least one refractory inorganic oxide support, (2) at least one iron oxide, and (3) at least one cerium oxide, (4) at least one metal A, for example, from Groups VIB, VIIB, VIII, and IB of the Periodic System and, optionally (5) at least one compound of metal B, for example, from Groups IA, IIA, the rare-earths group, and Group IVB of the Periodic System, deposited in the form of a porous layer ("washcoat") on a ceramic or metal substrate:(a) atomizing an aqueous suspension of at least one powder of the refractory inorganic oxide, cerium salt, iron salt, and optionally salt of the metal B; and/or A(b) resuspending the resultant powder and adding any remainder or all of the compound of metal B, as well as, optionally at least one bonding agent and, optionally at least one mineral acid or organic acid;(c) coating a ceramic or metal substrate is coated with the suspension obtained in step (b);(d) calcining the resultant coated substrate;(e)
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: October 12, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Daniel Durand, Gil Mabilon, Isabelle Guibard
  • Patent number: 5958825
    Abstract: A catalyst comprising, based on the total weight of the catalyst,more than 6-50% by weight of cobalt, nickel or a mixture thereof,0.001-25% by weight of ruthenium,0-10% by weight of copper and0-5% by weight of promoterson a porous metal oxide carrier can be prepared by(a) impregnating the carrier with the metals, promoters or compounds thereof,(b) drying and calcining the impregnated carrier and(c) reducing the calcined carrier in a stream of hydrogen,carrier not being impregnated with halogen compounds.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: September 28, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Joachim Wulff-Doring, Johann-Peter Melder, Gerhard Schulz, Guido Voit, Frank Gutschoven, Wolfgang Harder
  • Patent number: 5952540
    Abstract: This invention relates to a process for preparing hydrocarbons, in particular hydrogenation of carbon dioxide over Fe-K/Al.sub.2 O.sub.3 catalyst, which is reduced in hydrogen and activated in the mixture of carbon dioxide and hydrogen.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: September 14, 1999
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyu Wan Lee, Myoung Jae Choi, Ki Won Jun, Pyoung Ho Choi, Soo Jae Lee
  • Patent number: 5948726
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: September 7, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5948722
    Abstract: A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: September 7, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Malvina Farcasiu, Phillip B. Kaufman, J. Rodney Diehl, Hendrik Kathrein
  • Patent number: 5898014
    Abstract: The present invention relates to a zirconium, rare earth containing composition comprising zirconium, cerium, neodymium and praseodymium components and the use of this composition in a catalyst composition useful for the treatment of gases to reduce contaminants contained therein and method process to make the catalyst composition. The catalyst has the capability of substantially simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: April 27, 1999
    Assignee: Engelhard Corporation
    Inventors: Joseph H. Z. Wu, Shiang Sung, Zhicheng Hu, John J. Steger
  • Patent number: 5885923
    Abstract: An exhaust gas cleaner consisting essentially of a first catalyst consisting essentially of a first porous inorganic oxide supporting 1.6-8.7 weight percent of an Ag component, on a metal basis, and a second catalyst consisting essentially of a second porous inorganic oxide supporting 0.1-3.8 weight percent of a Pt component and 1-9.9 weight percent of a W component, each weight percent on a metal basis. The Ag component includes Ag or a compound thereof. The Pt component includes Pt, Pd, Ru, Rh, Ir, and Au. The W component includes W, V, Mn, Mo, Nb, and Ta.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: March 23, 1999
    Assignee: Kabushiki Kaisha Riken
    Inventors: Kiyohide Yoshida, Gyo Muramatsu, Satoshi Sumiya
  • Patent number: 5885922
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and one or more of the elements tungsten, niobium, tantalum, chromium and cerium and having a multiphase structure, and their use for the preparation of acrylic acid from acrolein by gas-phase catalytic oxidation, and oxometallates of the HT Cu molybdate structure type which contain Cu, Mo and at least one of the elements W, V, Nb and Ta.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: March 23, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 5863856
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide hydrogenation reactions, especially a Fischer-Tropsch catalyst, use of the catalyst for conducting such reactions, especially Fischer-Tropsch reactions, and the composition produced by said process. In the preparation of the catalyst, a solution of a multi-functional carboxylic acid having from about 3 to 6 total carbon atoms, preferably about 4 to 5 total carbon atoms, is employed to impregnate and disperse a compound or salt of rhenium and a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel onto a refractory inorganic oxide support, e.g., titania. The rhenium, which need be present only in small amount permits full and complete reduction of the catalytic metal, or metals, dispersed by the acid.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: January 26, 1999
    Assignee: Exxon Research and Engineering Company
    Inventor: Charles H. Mauldin
  • Patent number: 5856261
    Abstract: A process for the preparation of a catalyst useful for conducting carbon monoxide conversion reactions, especially a Fischer-Tropsch catalyst, use of the catalyst for conducting such reactions, especially Fischer-Tropsch reactions, and the composition produced by said process. In the preparation of the catalyst, a solution of a carbohydrate, or sugar, notably a monosaccharide or disaccharide, particularly sucrose, is employed to impregnate and disperse a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, or in a preferred embodiment both a compound or salt of rhenium and a compound or salt of a catalytic metal, or metals, e.g., copper or an Iron Group metal such as iron, cobalt, or nickel, onto a refractory inorganic oxide support, e.g., titania. The rhenium, when present only in small amount permits full and complete reduction of the catalytic metal, or metals, dispersed by the carbohydrate.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: January 5, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Claude C. Culross, Charles H. Mauldin
  • Patent number: 5834395
    Abstract: Catalyst for controlling emissions of the present invention is comprised of at least one kind of transition metal atoms and at least one of Al or Si, wherein said transition metal atoms form a part of the surface of the catalyst for purifying exhaust gas. Accordingly, the catalyst for purifying exhaust gas has both high performance for purifying NO.sub.x and high heat resistance, because monoatomic active metal disperses in the catalyst structure, active metal is taken firmly in the structure, and said transition metal forms a part of the surface of the surface.
    Type: Grant
    Filed: March 11, 1996
    Date of Patent: November 10, 1998
    Assignee: Next Generation Catalyst Research Institute, Co., Ltd.
    Inventor: Takashi Honda
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5789339
    Abstract: The present invention generally relates to supported perovskites and their use for low temperature oxidation of volatile oxygen-containing organic compounds, particularly alcohols. The present invention further relates to the use of supported perovskites to reduce the amount of oxygen-containing organic compounds present in waste gases produced by processes such as baking or brewing.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 4, 1998
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Cristian Libanati, Mohit Uberoi