Of Titanium Patents (Class 502/350)
  • Patent number: 10493437
    Abstract: A method of preparing a metal/metal oxide material can make use of a nanostructure that includes a first metal to form the metal oxide, and a reaction surface with a reducing agent on the reaction surface. A second metal is deposited onto the reaction surface to form a bimetallic product. The bimetallic product is calcined to form the metal/metal oxide material.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: December 3, 2019
    Assignee: The University of British Columbia
    Inventors: Mark Maclachlan, Michael Wolf, Gomathi Anandhanatarajan
  • Patent number: 10220378
    Abstract: Aspects of the disclosure relate to an efficient entirely man-made nanobio hybrid fabricated through cell-free expression of transmembrane proton pump followed by assembly of the synthetic protein architecture with semiconductor nanoparticles for photocatalytic H2 evolution. The system produces H2 at a turnover rate of 240 ?mol of H2 (?mol protein)?1 h?1 under green and 17.74 mmol of H2 (?mol protein)?1 h?1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robsutness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy materials and devices.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: March 5, 2019
    Assignee: UChicago Argonne, LLC
    Inventors: Elena A. Rozhkova, Peng Wang, Richard D. Schaller, Nada M. Dimitrijevic, Tijana Rajh, Shankar G. Balasubramanian
  • Patent number: 10183246
    Abstract: A catalyzed fabric filter substrate and a method of preparing the substrate comprising the steps of a) providing a fabric filter substrate b) providing an aqueous impregnation liquid comprising an aqueous hydrosol of one or more catalyst metal precursor compounds dispersed on nanoparticles of an oxidic metal carrier, a surfactant and a dispersing agent selected from the group of primary amines; c) impregnating the fabric filter substrate with the impregnation liquid; and d) drying and thermal activating the impregnated fabric filter substrate at a temperature below 300° C. to convert the one or more metal compounds of the catalyst precursor to their catalytically active form.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 22, 2019
    Assignee: Haldor Topsoe A/S
    Inventors: Francesco Castellino, Thomas Holten Kollin
  • Patent number: 10173198
    Abstract: The invention provides a process for the production of titania particles with a desired morphology. The process comprises providing a titania sol and then drying the sol to provide dried titania particles. The process is characterized in that the morphology of the dried titania particles is controlled by applying one or more of the following criteria: (a) the titania sol is produced from a TiO2 containing slurry obtained using a precipitation step in a sulphate process, wherein the size of micelles formed during the precipitation is controlled; (b) the titania sol is produced from a TiO2 containing slurry and the pH of the slurry is controlled in order to affect the extent to which the titania sol is flocculated; (c) the titania sol is produced from a TiO2 containing slurry and the iso-electric point of the titania is adjusted in order to affect the extent to which the titania sol is flocculated; (d) the titania sol is dried by application of heat and the temperature used during the drying step is controlled.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: January 8, 2019
    Assignee: HUNTSMAN P&A UK LIMITED
    Inventors: Karl Lowry, John Lalande Edwards, Darren J Waters, John Robb
  • Patent number: 10059607
    Abstract: A water purification anode has a first semiconductor contacting a second semiconductor at a heterojunction. The second semiconductor includes TiO2 and excludes bismuth and niobium. The first semiconductor includes iridium. In some instances, the anode includes a current collector in direct physical contact with the first semiconductor. The anode can be arranged in water such that at least one face of the second semiconductor is in direct physical contact with the water.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: August 28, 2018
    Assignee: The California Institute of Technology
    Inventors: Michael R. Hoffmann, Kangwoo Cho
  • Patent number: 10035132
    Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or ester-forming derivative thereof and a glycol, wherein the polycondensation catalyst comprises particles of a solid base having on their surfaces either a coat layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, or an inner coat layer of an oxide of at least one element selected from silicon, aluminum and zirconium or a composite oxide of at least two elements selected from silicon, aluminum and zirconium in an amount of from 1 to 20 parts by weight per 100 parts by weight of the solid base and an outer coat layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, and wherein the solid base is hydrotalcite.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: July 31, 2018
    Assignee: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Toshikatsu Umaba, Hiromitsu Shimizu, Kenji Mori, Keiichi Tabata
  • Patent number: 9352299
    Abstract: A method for preparing a neutral, stable and transparent photocatalytic titanium dioxide sol is provided. The method comprises (1) contacting an alkaline titanium dioxide sol with an alkaline peptizing agent to provide a peptized alkaline titanium dioxide sol; (2) neutralizing the peptized alkaline titanium dioxide sol; and (3) obtaining or collecting the neutral, stable and transparent photocatalytic titanium dioxide sol. The titanium dioxide sol is stable and transparent over a range of pH of about 7.0 to about 9.5. The titanium dioxide sol may include crystallites of titanium dioxide having an average particle size of less than about 10 nm with at least 90% of the crystallites being in the anatase form.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 31, 2016
    Assignee: Cristal USA Inc.
    Inventors: Julie Elizabeth Kerrod, Anthony Roy Wagstaff
  • Patent number: 9260318
    Abstract: TiO2 nanoparticles having improved consistent particle morphology, uniform particle size, and which contain uniform intra-particle pores in the mesopore size range are produced by wet chemical hydrolysis.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: February 16, 2016
    Inventors: Guoyi Fu, Mark Watson
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9034269
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 19, 2015
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Patent number: 9028615
    Abstract: A domestic appliance includes at least one component having a surface that can become laden with organic dirt. The surface includes a photocatalyst and is made from a primary-formed first material in which the photocatalyst is dispersed. A photoradiation source is provided for irradiating the photocatalyst with an activating electromagnetic radiation.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 12, 2015
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Hans Eglmeier, Andreas Hanau, Hartmut Schaub, Ingo Schulze
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Patent number: 9017576
    Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 28, 2015
    Assignee: King Abdullah University of Science and Technology
    Inventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
  • Publication number: 20150111725
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
  • Patent number: 9012350
    Abstract: The herein disclosed exhaust gas purification catalyst is an exhaust gas purification catalyst that is provided with a porous carrier 40 and palladium 50 supported on this porous carrier 40. The porous carrier 40 is provided with an alumina carrier 42 formed of alumina and with a CZ carrier 44 formed of a ceria-zirconia complex oxide. Barium is added to both the alumina carrier 42 and the CZ carrier 44. Here, an amount of barium added to the alumina carrier 42 is an amount that corresponds to 10 mass % to 15 mass % relative to a total mass of the alumina carrier 42 excluding the barium, and an amount of barium added to the CZ carrier 44 is an amount that corresponds to 5 mass % to 10 mass % relative to a total mass of the CZ carrier 44 excluding the barium.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Aoki
  • Publication number: 20150105235
    Abstract: Provided are: a photocatalyst comprising a porous first metal oxide film having pores, and a second metal particle or a second metal oxide particle formed inside the pores; a method for preparing the photocatalyst; and a photocatalyst apparatus using the photocatalyst.
    Type: Application
    Filed: December 28, 2012
    Publication date: April 16, 2015
    Applicant: LG Hausys, Ltd.
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150102258
    Abstract: The present disclosure relates to a photocatalytic composition comprising photocatalytic titanium dioxide particles being dispersed in a continuous phase, and at least one anti-photogreying additive, wherein said at least one anti-photogreying additive is adapted to limit photogreying of said titanium dioxide particles while the photocatalytic activity of said titanium dioxide particles is maintained, and wherein the photo greying index (?L) of said composition is less than 6.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 16, 2015
    Applicant: Välinge Photocatalytic AB
    Inventors: Michael Humle, Simon Lausten Østergaard
  • Publication number: 20150105249
    Abstract: A metal suboxide having a specific surface area of greater than or equal to about 1.5 m2/g is prepared by preparing a metal suboxide precursor, and heat-treating the metal suboxide precursor.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Applicant: Postech Academy-Industry Foundation
    Inventors: Dong Jin HAM, Bok Soon KWON, Hyun-seok KIM, Joon Seon JEONG, Hyo Rang KANG, Jae Sung LEE, Sueng Hoon HAN, Gang Hong BAE
  • Publication number: 20150099621
    Abstract: Provided is a photocatalyst including: a porous metal oxide film; and metal particles formed on a surface of the porous metal oxide film.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 9, 2015
    Inventors: Dong Il Lee, Seong Moon Jung, Joo-Hwan Seo, Ju-Hyung Lee
  • Publication number: 20150099090
    Abstract: The invention pertains to the field of technical textiles, and more particularly to the field of textiles used as a carrier, in particular as a carrier for active compounds or compounds to be activated. The invention thus relates to a glass, quartz, or metal pile fabric, as well as to a catalytic fabric. The invention also relates to a method for manufacturing said fabric.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 9, 2015
    Inventors: Jean-Michel Faurie, Didier Chavanon, Gérard Compigne, Emmanuel Periat
  • Patent number: 8999878
    Abstract: According to the present invention, an exhaust gas purifying catalyst is provided. The catalyst comprises a porous silica support comprising silica having a pore structure, and a perovskite-type composite metal oxide particle supported in the pore structure of the porous silica support. Further, the peak attributable to the space between silica primary particles is in the range of 3 to 100 nm in the pore distribution of the porous silica support.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: April 7, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Publication number: 20150087506
    Abstract: The present invention is directed to a process for obtaining a nanostructured titania catalyst with stabilized acidity through the sol-gel method and hydrotreatment and thermal activation; constituted basically by titanium oxide, specially characterized of being as nanostructures in its evolution nanocrystals-nanotubes-nanocrystals, that gives special physicochemical properties such as high specific area, purity and phases stability, acidity stability and different types of active acid sites, such as a capacity to disperse and stabilize metallic particles with high activity mainly in catalytic processes.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventors: Salvador CASTILLO CERVANTES, Isidro MEJIA CENTENO, Jesus MARIN CRUZ, Policarpo GALICIA GÓMEZ, Roberto CAMPOSECO SOLIS
  • Patent number: 8986906
    Abstract: The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Hee Dong Jang, Han Kwon Chang, Kuk Cho
  • Patent number: 8987164
    Abstract: A semiconductor of which a substance such as a semiconductor photocatalyst is uniformly coated on the surface thereof with a graphitic carbon film and a method of fabricating the same are disclosed. According to the inventive method, a graphitic carbon film having a thickness of 1 nm or less is uniformly formed on the surface of the semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure crystallinity of the semiconductor photocatalyst to be a support of the carbon film.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Dong-Ki Lee, Kyu-Sung Han, Weon-Ho Shin, Jung-Woo Lee, Jung-Hoon Choi, Kyung-Min Choi, Yeob Lee
  • Patent number: 8986502
    Abstract: A photodegradable paper including cellulose fibers and, if applicable, fillers, additives and/or other kind of fibers is described. Also described, is a paper particularly in the field of packaging, tissue papers or cigarettes.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: March 24, 2015
    Assignee: Solvay Acetow GmbH
    Inventors: Dirk Hölter, Wolfgang Koppe
  • Patent number: 8986580
    Abstract: Disclosed are: a visible-light-responsive titanium oxide microparticle dispersion comprising an aqueous dispersion medium and titanium oxide microparticles dispersed therein, and a peroxotitanium component, an iron component and/or a copper component and a tin component, wherein the content of the peroxotitanium component is 0.1 to 20 mass % relative to the titanium oxide content; and a process for producing a visible-light-responsive titanium oxide microparticle dispersion, comprising (1) producing peroxotitanic acid containing a tin compound from a raw material titanium compound, a tin compound and hydrogen peroxide, (2) heating an aqueous solution of peroxotitanic acid containing the tin compound to 80 to 250° C.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 24, 2015
    Assignee: Shin-etsu Chemical Co., Ltd.
    Inventors: Manabu Furudate, Tomohiro Inoue, Yoshitsugu Eguchi, Tadashi Amano
  • Publication number: 20150080213
    Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Vaidyanathan Subramanian, Sankaran Murugesan
  • Publication number: 20150071980
    Abstract: Methods directed to the synthesis of metal nanoparticles are described. A formation process can be carried out at ambient temperature and pressure and includes the deposition of metal ions on a titanate carrier according to a chemical deposition process followed by exposure of the metal ions to a reducing agent. Upon the exposure, nanoparticles of the reduced metal are formed that are adhered to the titanate carrier.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M.L. Taylor-Pashow, Mark C. Elvington
  • Publication number: 20150071841
    Abstract: In order to improve the lifetime of an SCR catalyst in the waste gas purification by means of the SCR process of waste gas of a biomass combustion plant, the catalyst comprises a sacrificial component selected from a zeolite and/or a clay mineral, in particular halloysite. During operation, catalyst poisons contained in the waste gas, in particular alkali metals, are absorbed by the sacrificial component so that catalytically active centres of the catalyst are not blocked by the catalyst poisons.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Maria Theresia Brandmair
  • Patent number: 8974739
    Abstract: An improved method for producing an expanded polytetrafluoroethylene (PTFE) porous film or tape supporting catalyst particles. The method for producing an expanded PTFE porous film or tape supporting catalyst particles according to the invention comprises a step of preparing tape-like porous PTFE, a step of impregnating the tape-like porous PTFE with a solution or dispersion of catalyst particles, a step of substantially removing the solvent or dispersing medium, and a step of further stretching the tape-like porous PTFE containing the catalyst particles in the machine direction (MD) and/or the transverse direction (TD).
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 10, 2015
    Assignee: W. L. Gore & Associates, Co., Ltd.
    Inventor: Kazumasa Yoshida
  • Patent number: 8975205
    Abstract: Embodiments of the present disclosure include structures, photocatalytic structures, and photoelectrochemical structures, methods of making these structures, methods of making photocatalysis, methods of splitting H2O, methods of splitting CO2, and the like.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 10, 2015
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Wilson Smith, Yiping Zhao
  • Patent number: 8975206
    Abstract: A catalyst composition comprising a vanadate represented by the formula XVO4/S, wherein XVO4 stands for a Bi-, Sb-, Ga- and/or Al-vanadate optionally in mixture with one or more rare earth metal-vanadates, or in mixture with one or more transition metal-vanadates, or in mixture with one or more transition metal-vanadates and one or more rare earth metal-vanadates, and S is a support comprising TiO2, optionally in combination with a dopant and a process for the preparation of such catalyst compositions.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 10, 2015
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Patent number: 8969238
    Abstract: The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which the catalyst metal oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions of nitrogen oxides with ammonia or urea as reductant, oxidations of alcohols or aldehydes with dioxygen or air to provide aldehydes, ketones or carboxylic acids, and photocatalytic oxidation of volatile organic compounds (VOCs).
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 3, 2015
    Assignee: Danmarks Tekniske Universitet
    Inventors: Rasmus Fehrmann, Anders Riisager, Søren Birk Rasmussen, Steffen Buss Kristensen, Andreas Jonas Kunov-Kruse
  • Patent number: 8968931
    Abstract: The present invention relates to the preparation of a mesoporous substantially pure anatase titanium oxide (meso-TiO2) and its use in electrochemical devices, in particular lithium-ion batteries.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 3, 2015
    Assignee: National University of Singapore
    Inventors: Palani Balaya, Ananthanarayanan Krishnamoorthy, Saravanan Kuppan
  • Publication number: 20150057149
    Abstract: This application discloses catalysts and methods of making the catalysts. In one embodiment, a catalyst comprising: a reduced precious group metal in an amount greater than about 30 wt % based on the total precious group metal weight in the catalyst, wherein the catalyst oxidizes volatile organic compounds and/or carbon monoxide at a temperature of about 150° C. or lower, is disclosed. In another embodiment, a catalyst for oxidation of formaldehyde, methanol, formic acid, and/or carbon monoxide to form carbon dioxide at a temperature of from about 20° C. to about 45° C. and at about atmospheric pressure, the catalyst comprising: a reduced precious group metal dispersed on a support selected from the group consisting of CeO2, TiO2, ZrO2, Al2O3, SiO2, and combinations thereof, is disclosed.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Applicant: BASF Corporation
    Inventors: Xiaolin Yang, Pascaline Tran, Qingyuan Hu
  • Publication number: 20150057378
    Abstract: A method of preparing a modified catalyst support comprises contacting a catalyst support material with a modifying component precursor in an impregnating liquid medium. The impregnating liquid medium comprises a mixture of water and an organic liquid solvent for the modifying component precursor. The mixture contains less than 17% by volume water based on the total volume of the impregnating liquid medium. The modifying component precursor comprises a compound of a modifying component selected from the group consisting of Si, Zr, Co, Ti, Cu, Zn, Mn, Ba, Ni, Al, Fe, V, Hf, Th, Ce, Ta, W, La and mixtures of two or more thereof. A modifying component containing catalyst support material is thus obtained. Optionally, the modifying component containing catalyst support material is calcined at a temperature above 100° C. to obtain a modified catalyst support.
    Type: Application
    Filed: November 30, 2012
    Publication date: February 26, 2015
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jacobus Lucas Visagie, Tanja Allers, Frederik Marie Paul Rafael Van Laar, Frederik Borninkhof, Jana Heloise Taljaard, Rita Meyer
  • Publication number: 20150057151
    Abstract: TiO2 nanoparticles having improved consistent particle morphology, uniform particle size, and which contain uniform intra-particle pores in the mesopore size range are produced by wet chemical hydrolysis.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Guoyi Fu, Mark Watson
  • Patent number: 8962508
    Abstract: The present invention provides a process for treating shaped catalyst bodies which has the following steps: a) providing finished shaped catalyst bodies, b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies, c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. and d) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C. A shaped catalyst body which has increased mechanical strength and can be produced by the process of the invention is also provided. The present invention relates to the use of the shaped catalyst bodies of the invention for preparing amines and also in fixed-bed reactors or fluidized-bed reactors and to a chemical synthesis process in the presence of shaped catalyst bodies according to the present invention.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Thomas Heidemann, Claudia Özkozanoglu
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8956995
    Abstract: The invention provides a catalyst for thermal decomposition of an organic substance having the form of spherical granule having a particle diameter of 0.1 to 1.2 mm, a pore volume of 0.1 to 0.3 mL/g, a tap density of 1.05 to 1.4 g/mL, and a wear rate of 2% by weight or less, the catalyst being obtained by mixing and granulating a pulverized product of an inorganic oxide exemplified by titanium oxide with at least one sol selected from a titania sol, a silica sol, an alumina sol, and a zirconia sol to make spherical granules, calcining the spherical granules at a temperature from 400 to 850° C., and sieving the calcined granules.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: February 17, 2015
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Mitsuru Masatsugu, Toshikatsu Umaba, Itsushi Kashimoto
  • Patent number: 8951931
    Abstract: The noble metal fine particle supported catalyst of the present invention includes a substrate, and a porous membrane formed on the substrate. The porous membrane contains support particles, noble metal fine particles, and an inorganic binder. In the porous membrane, the noble metal fine particles are supported on surfaces of the support particles, and the support particles form secondary particles each having a porous structure. The porous membrane is formed by binding, with the inorganic binder, the secondary particles formed of the support particles so that a gap is present at least partly between the secondary particles adjacent to each other.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 10, 2015
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Ryohei Ogawa, Kiyoshi Miyashita
  • Patent number: 8945497
    Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
  • Patent number: 8946116
    Abstract: A TiO2-containing composite nano-powder catalyst obtained by combining a titanium-based metal ceramic compound in powder form with a mixing solution containing compound(s) of a platinum group metal and/or a non-noble metal, drying the resulting mixture, and then performing oxidative thermal decomposition on the dried mixture. This catalyst also can be used as a support to further support platinum group metal(s) and/or non-noble metal(s) to obtain another composite nano-powder catalyst. A method for preparing a TiO2-containing composite nano-powder catalyst is also disclosed.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: February 3, 2015
    Assignee: Ocean University of China
    Inventors: Haibo Xu, Yonghong Lu, Jia Wang, Renxing Sun
  • Patent number: 8940924
    Abstract: The invention relates to a catalyst for the reaction of formaldehyde with a carboxylic acid or ester to produce an ethylenically unsaturated carboxylic acid or ester, preferably ?, ? ethylenically unsaturated carboxylic acids or ester. The catalyst includes a metal oxide having at least two types of metal cations, M1 and M2, wherein M1 is at least one metal selected from group 3 or 4 in the 4th to 6th periods of the periodic table, group 13 in the 3rd to 5th periods of the periodic table, or the remaining elements in the lanthanide series and M2 is at least one metal selected from group 5 in the 5th or 6th periods of the periodic table or group 15 in the 4th or 5th periods of the periodic table. The production includes reacting formaldehyde with a carboxylic acid or esterin the presence of the catalyst effective to catalyze the reaction.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 27, 2015
    Assignee: Lucite International UK Limited
    Inventors: David William Johnson, Sabina Ziemian
  • Publication number: 20150024930
    Abstract: Present disclosure provides a process for the synthesis of visible light responsive doped titania photocatalysts. The process involves step a) milling a mixture containing titania and a precursor compound, the compound selected from the group consisting of chloroauric acid and a mixture containing chloroauric acid and silver nitrate, in the presence of water and oxide milling media, at a temperature in the range of 20 to 50° C. for a period of 60-120 minutes, to form a slurry, wherein the amount of water is in the range of 15 to 25% by weight of the total mixture; and b) filtering the slurry to separate the oxide milling media and obtain a filtrate containing doped titania nanoparticles.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Applicant: TATA CONSULTANCY SERVICES LTD
    Inventors: Auhin Kumar MAPARU, Beena RAI
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20150018439
    Abstract: A method for the preparation of a modified catalyst support comprising: (a) treating a bare catalyst support material with an aqueous solution or dispersion of one or more titanium metal sources and one or more carboxylic acids; and (b) drying the treated support, and (c) optionally calcining the treated support. Also provided are catalyst support materials obtainable by the methods, and catalysts prepared from such supports.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 15, 2015
    Inventors: Francis Daly, Laura Richard, Sreekala Rugmini
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt