Of Titanium Patents (Class 502/350)
  • Patent number: 8481453
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components such as vanadia that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Publication number: 20130172175
    Abstract: Disclosed herein are photocatalyst powder and a production method thereof, and by having photocatalyst particles corn binded without reduction of a specific surface area, the reduction of the specific surface area is nearly none while the pores are developed, as well as the absorption rate with respect to light is superior, the method of producing photocatalyst powder includes forming initial photocatalyst powder by molding nanoparticles of photocatalyst substance into a certain shape through extrusion, and splitting the initial photocatalyst powder into a plurality of photocatalyst powder by injecting the initial photocatalyst powder into a predetermined splitting solution, the initial photocatalyst powder being split into the plurality of photocatalyst powder by the predetermined spliting solution.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Patent number: 8476185
    Abstract: Disclosed are an apparatus and method for preparing a manganese oxide-titania catalyst. The apparatus for preparing a manganese oxide-titania catalyst includes: a vaporizer vaporizing a manganese precursor and a titanium precursor; a carrier gas supply line supplying a carrier gas, which carries precursor vapors vaporized by the vaporizer to a reactor, to the vaporizer; an oxygen supply line supplying an oxygen source to the reactor; the reactor reacting the precursor vapors with the oxygen source to synthesize a manganese oxide-titania catalyst; and a collector condensing and collecting the manganese oxide-titania catalyst synthesized in the reactor.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 2, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Min Chin, Jong Soo Jurng, Gwi Nam Bae, Eun Seuk Park, Min Su Kim
  • Patent number: 8476187
    Abstract: The present invention details a process for producing a catalyst powder. The steps of the process include preparing catalyst slurry, drying, pyrolyzing, and calcining the catalyst slurry to obtain a calcined catalyst powder. The catalyst slurry comprises a catalyst, a liquid carrier, a templating agent, and a catalyst substrate. The catalyst slurry is dried to obtain a raw catalyst powder. The raw catalyst powder is heated in a first controlled atmosphere to obtain a pyrolyzed catalyst powder and the pyrolyzed catalyst powder is calcined in a second controlled atmosphere to obtain a calcined catalyst powder. A method of fabricating a catalyst surface and catalytic converter using the prepared catalyst powder is also illustrated.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Larry Neil Lewis, Elliott West Shanklin, Frederic Joseph Klug, Venkat Subramaniam Venkataramani, Robert Joseph Lyons, Dan Hancu, Benjamin Hale Winkler, Hrishikesh Keshavan
  • Publication number: 20130157203
    Abstract: A gas fired catalytic heater is provided that foregoes the need for an electrical heating element to provide the activation energy for the hydrocarbon catalyst pad. An alcohol self-igniting catalyst pad is used to provide the activation energy to the hydrocarbon catalyst pad thereby removing dependence of the heater on an outside electrical energy source to initiate start-up of the heater. The catalyst pad includes a flexible wash coat; a noble metal dispersed on the wash coat; an anti-sintering element saturating the wash coat; and a catalyst promoter saturating the wash coat.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: CC/ Thermal Technologies Inc.
    Inventor: CC/ Thermal Technologies Inc.
  • Publication number: 20130156679
    Abstract: A first layer of a catalyst material is formed on a substrate and heat treated to form a first plurality of nanoparticles. A second layer of a catalyst material is then formed over the substrate and the first plurality of nanoparticles and heat treated to form a second plurality of nanoparticles. The first layer of nanoparticles is advantageously not affected by the deposition or heat treatment of the second layer of catalyst material, for example being pinned or immobilised, optionally by oxidation, before formation of the second layer.
    Type: Application
    Filed: July 19, 2011
    Publication date: June 20, 2013
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: John Robertson, C. Santiago Esconjauregui
  • Publication number: 20130153483
    Abstract: Photocatalytic composite materials, namely materials capable of promoting photo-initiated chemical reactions and processes for producing such materials, are provided. The invention further provides processes for producing photocatalytic composite materials which includes a macroporous matrix, the macroporous matrix having a surface grafting of preformed titanium dioxide nanocrystals, wherein the macroporous matrix may be produced by a sol-gel technique from a precursor of the macroporous matrix in the presence of a template-forming polymer and of hydrophobically-functionalized nano-crystalline titanium-dioxide particles.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Inventors: Franca MORAZZONI, Roberto Scotti, Maurizio Crippa, Massimiliano D'Arienzo
  • Patent number: 8466082
    Abstract: A shell catalyst for the preparation of vinyl acetate monomer, comprising an oxidic porous catalyst support with an outer shell, containing metallic Pd and Au, wherein the framework structure of the porous catalyst support contains hafnium oxide units. This shell catalyst is suitable for the preparation of VAM and is characterized by a relatively high activity and VAM selectivity and maintains this activity and selectivity over relatively long service lives. Also, processes for the preparation and use of the shell catalyst.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 18, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8465713
    Abstract: A catalyst composition represented by the general formula XVO4/S wherein XVO4 stands for TransitionMetal-Vanadate, or a mixed TransitionMetal-/RareEarth-Vanadate, and S is a support comprising TiO2.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 18, 2013
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Patent number: 8465714
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cristal USA Inc.
    Inventor: Steven M. Augustine
  • Publication number: 20130142693
    Abstract: Embodiments of the present disclosure combine a suitable photocatalyst with a non-conducting matrix such as plastic, glass or rubber for the purpose of the production of activated electrons, needed in the creation of hydrogen peroxide, in the presence of light of a suitable frequency or frequencies and water. A suitable photocatalyst such as anatase titanium dioxide is combined with a plastic such as polypropylene as one would a pigment. The impregnated plastic can be immersed in water whereupon activated electrons and holes (electron absences in the valence band of the plastic substrate acting as a semiconductor) are produced on the surface of the photocatalyst upon irradiation. Activated electrons are an excellent oxidizer, disinfectant, purifier and go on to kill bacteria, algae, etc. in the water, as well as to reduce water hardness including mineral deposits. Unused hydrogen peroxide breaks down into hydrogen ion and free oxygen in a short time.
    Type: Application
    Filed: November 26, 2012
    Publication date: June 6, 2013
    Applicant: EARTH TONE ENERGIES, LLC
    Inventor: Earth Tone Energies, LLC
  • Publication number: 20130137566
    Abstract: Disclosed is a nanoporous photocatalyst having a high specific surface area and high crystallinity and a method for preparing the same, capable of preparing nanoporous photocatalysts, which satisfy both of the high specific surface area of 350 m2/g to 650 m2/g and high crystallinity through a simple synthetic scheme, in mass production at a low price. The nanoporous catalyst having a high specific area and high crystallinity includes a plurality of nanopores having an average diameter of about 1 nm to about 3 nm. A micro-framework of the nanoporous photocatalyst has a single crystalline phase of anatase or a bicrystalline phase of anatase and brookite, and a specific surface area of the nanoporous photocatalyst is in a range of about 350 m2/g to 650 m2/g.
    Type: Application
    Filed: February 21, 2012
    Publication date: May 30, 2013
    Inventors: Hae-Jin Kim, Jou-Hahn Lee, Soon-Chang Lee, Hyun-Uk Lee, Won-Ki Hong, Hye-Ran Kim, Jung-Hye Seo
  • Publication number: 20130136664
    Abstract: A catalyst which remediates hydrocarbon fuel combustion exhaust, including a non-PGM containing aerogel which catalyzes the oxidation of carbon monoxide and hydrocarbons and the reduction of nitrogen oxides present in the exhaust, a catalytic converter made therefrom, and a method for the production thereof is disclosed.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Union College
    Inventors: Michael S. BONO, Nicholas J.H. Dunn, Lauren B. Brown, Stephen J. Juhl, Ann M. Anderson, Bradford A. Bruno, Mary K. Mahony
  • Patent number: 8450236
    Abstract: A process for making a catalyst having precious metal nanoparticles deposited on a support includes first providing an aqueous dispersion of support particles. A pre-treatment slurry is prepared by mixing the aqueous dispersion of support particles with a water-soluble precious metal precursor and a reducing agent. The pre-treatment slurry is hydrothermally treated at a temperature in the range of from about 40° C. to about 220° C. for a time sufficient to deposit precious metal nanoparticles on the surface of the support particles, the precious metal nanoparticles having an average particle size less about 50 nm.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 28, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Mark B. Watson, Charles B. Muehlberger
  • Patent number: 8445401
    Abstract: It has been demanded to produce titanium dioxide having an excellent photocatalytic activity and an excellent super-hydrophilic property by a simple procedure suitable for the production on an industrial scale. Rutile-type titanium dioxide having an excellent photocatalytic activity can be produced by carrying out the anodic oxidization of the surface of a base material comprising titanium or a titanium alloy by applying a voltage (e.g., a high voltage) or carrying out the anodic oxidation of the surface of the base material under high current density conditions. Further, a film is produced on the surface of the base material by the anodic oxidation technique by applying a voltage or the anodic oxidization technique under high current density conditions, and the film is subjected to heat treatment, thereby producing rutile-type titanium dioxide having excellent crystallinity.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 21, 2013
    Assignees: Tohoku University, Osaka Prefecture University
    Inventors: Naoya Masahashi, Yoshiteru Mizukoshi, Naofumi Ootsu, Yu Matsuda, Satoshi Senboshi
  • Publication number: 20130122074
    Abstract: A method for preparing a neutral, stable and transparent photocatalytic titanium dioxide sol is provided. The method comprises (1) contacting an alkaline titanium dioxide sol with an alkaline peptizing agent to provide a peptized alkaline titanium dioxide sol; (2) neutralizing the peptized alkaline titanium dioxide sol; and (3) obtaining or collecting the neutral, stable and transparent photocatalytic titanium dioxide sol. The titanium dioxide sol is stable and transparent over a range of pH of about 7.0 to about 9.5. The titanium dioxide sol may include crystallites of titanium dioxide having an average particle size of less than about 10 nm with at least 90% of the crystallites being in the anatase form.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 16, 2013
    Inventors: Julie Elizabeth Kerrod, Anthony Roy Wagstaff
  • Patent number: 8440144
    Abstract: Through innovative design of a titanium dioxide coated metal reflector, which uses the negative space of a U-shaped ultraviolet lamp, maximum airborne chemical, vapor and/or odor abatement through photochemical reaction, yet eliminates most UV irradiation obstruction emanating from the lamp, thereby insuring maximum germicidal effect.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 14, 2013
    Inventors: Helder Pedro, Ken Henricksen
  • Publication number: 20130115308
    Abstract: A doped material comprises TiO2 and three non-metal dopants. The first non-metal dopant comprises sulfur, the second non-metal dopant comprises fluorine, and the third non-metal dopant comprises carbon. The sulfur dopant comprises a cationic dopant, the carbon dopant comprises a cationic dopant, and the fluorine dopant comprises an anionic dopant. The molar ratio of the TiO2 to the sulfur is approximately 99.75:0.25. The molar ratio of the TiO2 to the fluorine is approximately 99.1:0.9. The molar ratio of the TiO2 to the carbon is approximately 98.7:1.3. The material has a transparent, lateral growth crystalline atomic structure. The crystallite particle size is approximately 1 nm. The material is soluble to facilitate dissolving of the material in a solvent without requiring any dispersants to form a true solution.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 9, 2013
    Inventors: Paul Gannon, Cormac O'Keeffe
  • Patent number: 8435918
    Abstract: Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: May 7, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Edward M. Eyring, Richard D. Ernst, Gregory C. Turpin, Brian C. Dunn
  • Patent number: 8435915
    Abstract: The TiO2 catalyst structure consisting of TiO2 nano-particles in the anatase crystal form, doped with 0.05-5 wt % phosphorus on the TiO2 basis, organized in the circular planar aggregates with the specific surface area ranging from 40 to 120 m2/g, suitable for catalytic processes at the temperature up to 800° C., and the TiO2 catalyst structure of with the morphology of the aggregated compact particles, with the specific surface area from 20 to 40 m2/g, suitable for the catalytic processes at the temperature up to 1000° C. Active substances selected from the group consisting of silver, copper, gold, platinum metals, nickel, molybdenum and metal oxides except for alkaline metals oxides can be applied onto the surface of both types of the structure.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Advanced Materials—JTJ S.R.O.
    Inventors: Jan Procházka, Jr., Jan Procházka, Sr.
  • Publication number: 20130102458
    Abstract: The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 25, 2013
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Patent number: 8425763
    Abstract: Disclosed are sorbent compositions that include a porous titanium dioxide support impregnated with a silver material. The sorbent compositions may be utilized in systems and methods for removing sulfur compounds from hydrocarbon streams such as jet fuel.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: April 23, 2013
    Assignee: Auburn University
    Inventors: Bruce Tatarchuk, Hongyun Yang, Sachin Nair
  • Patent number: 8414854
    Abstract: This invention relates to crystalline boehmitic aluminas the crystallites of which exhibit unusual dimensional differences in the space directions 020 and 120. This invention further relates to a method for preparing such aluminas and the follow-up products obtained therefrom by calcination.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: April 9, 2013
    Assignee: Sasol Germany GmbH
    Inventors: Klaus Noweck, Jürgen Schimanski, Jens Juhl, Frank Michael Bohnen, Reiner Glöckler, Arnold Meyer
  • Publication number: 20130085293
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium and titanium. The catalyst composition further comprises ethylene glycol and citric acid. Preferably, the catalyst composition is substantially free of oxalic acid and lactic acid.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Craig Peterson, Mark Scates, Heiko Weiner, Josefina T. Chapman, Alexandra S. Locke
  • Patent number: 8410014
    Abstract: Especially physically stable metal oxide catalyst supports are prepared by suspending a metal oxide in a continuous phase, activating by fine dispersion, coagulation to a viscoelastic mass, shaping, drying, and calcining. The catalyst support thus prepared may be treated with catalytic agents to produce supported catalysts for olefin oxidation.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 2, 2013
    Assignee: Wacker Chemie AG
    Inventors: Roland Heidenreich, Hans-Jurgen Eberle, Johann Weis
  • Publication number: 20130079216
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: November 19, 2012
    Publication date: March 28, 2013
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20130079553
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium and titanium. The catalyst composition has a surface area of at least 22.6 m2/g and a plurality of pores, and the plurality of pores have a pore diameter of less than 11.9 nm.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: Celanese International Corporation
    Inventors: Heiko Weiner, Josefina T. Chapman, Alexandra S. Locke, Craig J. Peterson, Mark O. Scates, Dick Nagaki
  • Publication number: 20130079577
    Abstract: In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600° C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Brian J. INGRAM, Vilas G. POL, Donald C. CRONAUER, Muruganathan RAMANATHAN
  • Publication number: 20130079219
    Abstract: Disclosed is a method of preparing high crystalline nanoporous titanium dioxide, in which the high crystalline nanoporous titanium dioxide, which is harmless to the human body and self-purified through the decomposition of organic matters, is prepared in mass production at the room temperature through a simply synthesis method. The method includes the steps of (a) mixing a titanium precursor and a surfactant in a solvent and performing a sol-gel reaction at a room temperature; (b) maturing a reactant obtained through the sol-gel reaction at the room temperature; (c) filtering the matured reactant and washing the matured reactant; and (d) drying the washed reactant to obtain titanium dioxide having nanopores.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 28, 2013
    Inventors: Hae-Jin Kim, Jou-Hahn Lee, Soon-Chang Lee, Hyun-Uk Lee, Won-Ki Hong, Hye-Ran Kim, Jung-Hye Seo
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Publication number: 20130071318
    Abstract: Provided is a catalyst for fuel reformation that causes carbon monoxide contained in hydrogen gas, which is produced from a variety of hydrocarbon fuels, to react with hydrogen and thereby to be transformed into methane, while inhibiting methanation of carbon dioxide contained in the hydrogen gas. The selective CO methanation catalyst includes at least one of a halogen, an inorganic acid, and a metal oxo-acid adsorbed or bonded as a carbon dioxide reaction inhibitor to a carbon monoxide methanation active component.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 21, 2013
    Applicant: UNIVERSITY OF YAMANASHI
    Inventor: University of Yamanashi
  • Patent number: 8399376
    Abstract: The invention relates to a particle blend comprising mainly or consisting of an oxide phase of the pseudo-brookite type comprising at least titanium and aluminum, said blend being obtained from at least two particle size fractions, namely a coarse particle size fraction, the median diameter d50 of which is greater than 12 microns, and a fine particle size fraction, the median diameter d50 of which is between 0.5 and 3 microns, the mass ratio of said coarse fraction to said fine fraction being between 1.5 and 20, limits inclusive, and the ratio of the median diameter of the coarse fraction to that of the fine fraction being greater than 12.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 19, 2013
    Assignee: Saint-Gobain Centre de Recherches et D'etudes Europeen
    Inventors: Carine Dien-Barataud, Matthias Schumann
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Publication number: 20130058862
    Abstract: It is provided that the catalyst shows a high activity in an ammonia decomposition reaction and can efficiently decompose ammonia into hydrogen and nitrogen. The catalyst for decomposing ammonia of the present invention comprises at least one element (component (A)) selected from the elements of groups 6 to 10 of the long-form periodic table, and an oxide and/or complex oxide of at least one element (component (B)) selected from the elements of groups 2 to 5 and groups 12 to 15 of the long-form periodic table, wherein the calculated specific surface area (S2) of the component (A) is 20 m2/g or larger, and the ratio (S2/S1) of the calculated specific surface area (S2) of the component (A) to the specific surface area (S1) of the catalyst per se is 0.15 to 0.85.
    Type: Application
    Filed: March 29, 2011
    Publication date: March 7, 2013
    Inventors: Junji Okamura, Toshitaka Horiuchi, Hideaki Tsuneki, Masanori Yoshimune, Masami Ichinose
  • Patent number: 8388898
    Abstract: The reduction of nitrogen oxides in gas is carried out, by means of selective reaction of the nitrogen oxide with the reducing agent in the in the solid catalyst. In order to achieve high catalytic activity, the above is carried out at high gas temperatures. As a rule, ceramic filter elements, coated with catalytic material are used. This does, however, give rise to the risk the catalytically active components are stripped from the filter during the hot gas filtration. A ceramic filter element with support material in the form of particles, with binder material and catalytic material is thus disclosed, whereby the binder material comprises catalytic material, or the binder material is partly replaced by the catalyst material and the support material particles (1) are connected to each other by means of the catalyst and/or binder material.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Pall Corporation
    Inventors: Steffen Heidenreich, Max-Eckhard Roessler, Astrid Walch, Manfred Gutmann, Sven Chudzinski
  • Publication number: 20130053595
    Abstract: A catalyst composition comprising at least an heteropolyacid deposited on a porous titania carrier. A catalyst composition comprising at least an heteropolyacid in which protons in the heteropolyacid may be partially exchanged by at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements that have been deposited on a porous titania carrier. A method for preparing the catalyst composition, comprising impregnating a titania carrier with a solution of at least one metal selected from elements belonging to the Group 1 to Group 16 of the Periodic Table of Elements or onium, drying and firing the resulting solid mixture, secondly impregnating the resulting solid mixture with a solution of heteropolyacid, drying, and firing the resulting solid mixture. A process for preparing acrolein and acrylic acid by dehydration of glycerin, carried out in the presence of the catalyst.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 28, 2013
    Applicants: ARKEMA FRANCE, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois, Jean-Francois Devaux
  • Patent number: 8383708
    Abstract: An unhindered polyol is used to react with an epoxidized soyate to make epoxidized soyate diester in the presence of a catalyst. The unhindered polyol can be 1,3-propanediol or any polyol having four or more carbon atoms with no two adjacent carbon atoms having hydroxyl functionality. Preferably, a combination of catalysts is used to promote the transesterification reaction of the epoxidized soyate with the unhindered polyol to yield a high percentage of epoxidized soyate diester with epoxy functionality retained. The primary catalyst is a metallic hydroxide, and the secondary catalyst is a titanate. Bioderived epoxidized soyate diester plasticizers useful for thermoplastics and thermosets result.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 26, 2013
    Assignee: Polyone Coporation
    Inventors: Kebin Geng, Roger W. Avakian, Louis Dupont, Stephen D. Horton
  • Publication number: 20130045858
    Abstract: A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 21, 2013
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventor: Nahid Mohajeri
  • Patent number: 8377342
    Abstract: A titanium suboxide powder comprising Ti4O7, Ti5O9 and Ti6O11, wherein the Ti4O7, Ti5O9 and Ti6O11 provide over 92% of the powder, and wherein the Ti4O7 is present at above 30% of the total powder.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: February 19, 2013
    Assignee: Atraverda Limited
    Inventors: Keith Ellis, Vaughan Griffiths, David Pugh, Adam Morgan
  • Publication number: 20130040808
    Abstract: A catalyst composition comprising a vanadate represented by the formula XVO4/S, wherein XVO4 stands for a Bi-, Sb-, Ga- and/or Al-vanadate optionally in mixture with one or more rare earth metal-vanadates, or in mixture with one or more transition metal-vanadates, or in mixture with one or more transition metal-vanadates and one or more rare earth met-al-vanadates, and S is a support comprising TiO2, optionally in combination with a dopant and a process for the preparation of such catalyst composi-tions.
    Type: Application
    Filed: April 12, 2011
    Publication date: February 14, 2013
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Publication number: 20130032202
    Abstract: A material includes a glass substrate provided on at least one portion of one of its faces with a photocatalytic coating based on titanium dioxide that covers at most 15% of the subjacent surface, the photocatalytic coating being in the form of a two-dimensional network of interconnected strands.
    Type: Application
    Filed: January 10, 2011
    Publication date: February 7, 2013
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Bernard Nghiem, Rosiana Aguiar
  • Patent number: 8367579
    Abstract: A self-cleaning surface coating is easy and inexpensive to produce because it has only a simple titanium dioxide layer.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: February 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rudolf Gensler, Heinrich Kapitza, Heinrich Zeininger
  • Patent number: 8361924
    Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
  • Patent number: 8354358
    Abstract: Titanium dioxide having a ratio Dtop/D50 of 1 to 3, between the maximum particle diameter Dtop and the average particle diameter D50, as determined based on observing the primary particles by a field emission-type scanning electron microscope. A production process of the titanium dioxide comprises performing a vapor phase process of reacting a titanium tetrachloride-containing gas with an oxidative gas to produce titanium dioxide, wherein when the titanium tetrachloride-containing gas and the oxidative gas are reacted by introducing each gas into a reaction tube, the temperature in the reaction tube is from 1,050 to less than 1,300° C.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 15, 2013
    Assignee: Showa Denko K.K.
    Inventors: Susumu Kayama, Hisao Kogoi
  • Patent number: 8349762
    Abstract: The present invention provides a method for producing a catalyst for use in preferential carbon monoxide oxidation, which catalyst has a high preferential carbon monoxide oxidation activity and a high methanation activity with respect to the carbon monoxide contained in hydrogen gas, can thus stably reduce the carbon monoxide concentration to an extremely lower level and comprises porous inorganic oxide support particles and, on the basis of the mass thereof, 0.01 to 10 percent by mass of ruthenium and 0.01 to 1 percent by mass of platinum, loaded on the support. The method comprises (1) a step of loading 30 to 70 percent of the total amount of ruthenium to be loaded, on the support particles by a competitive adsorption method and (2) a step of loading the rest of the total amount of ruthenium to be loaded and the total amount of platinum to be loaded, on the ruthenium-loaded support particles produced in step (1) without using a competitive adsorption agent.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 8, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Patent number: 8349761
    Abstract: A catalyst material for use at elevated temperatures is provided. The material can include a plurality of fibers and a plurality of particles supported on the fibers. In addition, a porous layer can cover the plurality of particles and allow for process fluid to come into contact with the particles, and yet retard sintering of the particles at elevated temperatures is present. The plurality of fibers can be a plurality of nanofibers which may or may not be oxide nanofibers. The particles can be metallic nanoparticles and the porous layer can be a porous oxide layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 8, 2013
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., University of Washington Center for Commercialization, Washington University
    Inventors: Younan Xia, Charles Taylor Campbell, Yunqian Dai, Byungkwon Lim, Benjamin Alan Grayson, Paul T. Fanson
  • Patent number: 8344238
    Abstract: Systems and materials to improve photovoltaic cell efficiency by implementing a self-cleaning function on photovoltaic cells and on albedo surfaces associated with photovoltaic cell assemblies are provided. Materials for protecting albedo surfaces that surround photovoltaic cell assemblies, thereby maximizing energy input into the photovoltaic cell assemblies, are provided. Materials for self-cleaning photovoltaic cell panels, thereby maintaining their efficiency, are provided. Portable albedo collecting devices associated with photovoltaic cell assemblies are provided.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: January 1, 2013
    Assignee: Solyndra LLC
    Inventors: Chris M Gronet, James K. Truman
  • Publication number: 20120329643
    Abstract: The noble metal fine particle supported catalyst of the present invention includes a substrate, and a porous membrane formed on the substrate. The porous membrane contains support particles, noble metal fine particles, and an inorganic binder. In the porous membrane, the noble metal fine particles are supported on surfaces of the support particles, and the support particles form secondary particles each having a porous structure. The porous membrane is formed by binding, with the inorganic binder, the secondary particles formed of the support particles so that a gap is present at least partly between the secondary particles adjacent to each other.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 27, 2012
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Ryohei Ogawa, Kiyoshi Miyashita
  • Publication number: 20120322650
    Abstract: One exemplary embodiment can be a layered catalyst for use in a selective hydrogenation of acetylenes and diolefins to olefins. The layered catalyst may include an inner core having an inert material, an outer layer including a metal oxide bonded to the inner core, and a metal deposited on the outer layer. Generally, the metal is an IUPAC Group 8-10 metal and the layered catalyst has an accessibility index of about 3- about 500.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: UOP, LLC
    Inventors: Gregory J. Gajda, Bryan K. Glover, Antoine Negiz, John Joseph Senetar, Erik Holmgreen, Mark G. Riley