And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/351)
  • Patent number: 7807603
    Abstract: The invention relates to a catalyst provided in the form of an extrudate, which contains 5 to 85% by weight of copper oxide and comprises, in the active material and as binders, the same oxidic carrier material. The invention also relates to the use of the catalyst for hydrogenating carbonyl compounds.
    Type: Grant
    Filed: December 4, 2004
    Date of Patent: October 5, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Schlitter, Olga Schubert, Michael Hesse, Sabine Borchers, Markus Roesch, Rolf Pinkos, Alexander Weck, Gunther Windecker
  • Patent number: 7807605
    Abstract: A process for the preparation of a TiO2-containing catalyst or catalyst support which is stable to high temperatures is described. In this process an aqueous Ti-containing solution having a concentration of dissolved Ti equivalent to 10 to 250 g TiO2 per liter of solution is added to a suspension of not more than 10 wt. % strength of a finely disperse inorganic support material in water, the inorganic support material having a specific surface area, measured by the BET method, of >20 m2/g and any primary particle agglomerates present having a particle size of d50<10 ?m, preferably <5 ?m, the rate of addition of the Ti-containing solution to the suspension being chosen such that an addition equivalent to 0.05 g TiO2 per m2 of support surface and hour is not exceeded, the TiO2 is precipitated on the inorganic support and the product obtained is filtered, washed and calcined.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: October 5, 2010
    Assignee: Sachtleben Chemie GmbH
    Inventors: Ulrich Gesenhues, Sonja Weyand
  • Patent number: 7803736
    Abstract: A process for preparing supported, titanized chromium catalysts is disclosed. The process comprises A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound; B) optionally removing the solvent; C) optionally calcining the precatalyst obtained after step B); and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: September 28, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Wolfgang Rohde, Guido Funk, Andreas Haufe, Anke Bold, Neil Nadalin
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7799732
    Abstract: A method of producing composite particles of titanium dioxide and a compound inactive as a photocatalyst, comprising the steps of preparing a water based slurry of pH 3 to 5 comprising titanium dioxide, preparing a water based solution comprising a compound inactive as a photocatalyst, and reacting the slurry and the water based solution together at a pH within a range from 4 to 10 is provided, together with highly active photocatalyst particles produced using such a method, and potential uses of such photocatalyst particles.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 21, 2010
    Assignee: Showa Denko K.K.
    Inventors: Jun Tanaka, Masayuki Sanbayashi, Yoshinori Ueyoshi, Hiroyuki Hagihara
  • Patent number: 7799729
    Abstract: In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mark Paul Lapinski, Jeffry Thurston Donner, Simon Russell Bare
  • Publication number: 20100222213
    Abstract: A honeycomb structure includes aluminum titanate, cell walls, and pore portions. The cell walls extend along a longitudinal direction of the honeycomb structure to define cells between the cell walls. The pore portions have an average pore diameter of about 10 ?m to about 20 ?m. A length of a longest pore portion among the pore portions in a binary image including substrate portions and the pore portions is about 8 times or less of the average pore diameter. The binary image is converted from a microscopic image of a cross section of the cell walls in parallel with the longitudinal direction. The length is measured along a line drawn in a direction perpendicular to a thickness direction of the cell walls.
    Type: Application
    Filed: April 8, 2010
    Publication date: September 2, 2010
    Applicant: IBIDEN CO., LTD.
    Inventors: Kazushige OHNO, Kazunori Yamayose
  • Publication number: 20100221166
    Abstract: A device and method thereof for the indoor-air purification that utilizes photocatalytic oxidation and ultraviolet lights in a fluidized bed to remove pollutants. The fluidized bed contains ultraviolet lights that are immersed within the bed for direct access to ultraviolet-irradiation. Fluidization aids such as vibration and static mixers may be employed to allow for better circulation of the catalyst bed to increase reaction rates. Photocatalytic oxidation within the device uses photocatalyst particles that were designed to be more active, fluidize better and have ten-fold higher attrition-resistant qualities than current industry standards. The device provides for the most efficient use of and longevity of ultraviolet light which reduces operating costs.
    Type: Application
    Filed: December 26, 2006
    Publication date: September 2, 2010
    Inventor: Darrin S. Muggli
  • Publication number: 20100216634
    Abstract: A method for manufacturing a honeycomb structure includes molding a wet mixture containing an aluminum titanate powdery material to form a honeycomb molded body. The aluminum titanate powdery material contains about 40% to about 60% by mass of Al2O3, about 30% to about 50% by mass of TiO2, and about 1% to about 15% by mass of (MgO+SiO2). The honeycomb molded body has cells provided substantially in parallel with one another in a longitudinal direction of the honeycomb molded body. The honeycomb molded body is fired at a temperature of about 1200° C. to about 1700° C.
    Type: Application
    Filed: March 23, 2010
    Publication date: August 26, 2010
    Applicant: IBIDEN CO., LTD.
    Inventors: Kazushige OHNO, Kazunori Yamayose
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Publication number: 20100197487
    Abstract: In a thermocatalytically active titanium dioxide coating, based on a sol-gel system, the titanium dioxide coating contains a structuring component and/or is produced by a structuring method.
    Type: Application
    Filed: August 14, 2007
    Publication date: August 5, 2010
    Applicant: SIEMANS AKTIENGESELLSCHAFT
    Inventors: Florian Eder, Hans-Dieter Feucht, Rudolf Gensler
  • Patent number: 7767619
    Abstract: A promoted calcium-alumina supported reforming catalyst that is particularly useful for reforming reactions where low H2/CO ratio synthesis gas, such as less than 2.3 is generated directly is disclosed. The catalyst comprises from about 25 wt % to about 98 wt % alumina, from about 0.5 wt % to about 35 wt % calcium oxide, from about 0.01 wt % to about 35 wt % of a promoter, and from about 0.05 wt % to about 30 wt % of an active metal. The promoter is selected from the group consisting of titanium, zirconium, yttrium, niobium, elements of the lanthanum-series, such as, without limitation, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, ytterbium, and combinations thereof. The active metal is selected from the group consisting of nickel, cobalt, rhodium, ruthenium, palladium, platinum, iridium and combinations thereof as active metal, wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 3, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Shizhong Zhao, Yeping Cai, Xiao D. Hu, Jon P. Wagner, Jürgen Ladebeck, R. Steve Spivey
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7759530
    Abstract: The invention relates to a method for hydrogenation of an organic compound comprising at least one carbonyl group, whereby the organic compound is brought into contact with a moulded body in the presence of hydrogen. Said body may be produced by a method in which (i) an oxidic material is prepared, comprising copper oxide, aluminum oxide, and at least one oxide of lanthanum, tungsten, molybdenum, titanium, or zirconium, followed by (ii) addition of powdered metallic copper, copper platelets, powdered cement, graphite, mixtures or a mixture thereof with graphite to the oxidic material and (iii) moulding the mixture from (ii) to give a moulded body, characterised in that the moulded body is in the form of catalyst tablets or catalyst extrudates with a diameter d and/or height h<2.5 mm, catalyst beads with a diameter d<2.5 mm or catalyst honeycomb with a cell diameter rz<2.5 mm.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: July 20, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Christophe Houssin, Henrik Junicke, Andrea Haunert
  • Patent number: 7754647
    Abstract: The present invention provides a process for preparing a supported catalyst (catalyst C) having a support (support S) selected from among oxides, phosphates, silicates, carbides, borides and nitrides of main group elements and elements of transition groups VI and II and mixtures of the abovementioned compounds and an active component (activator A) comprising one or more compounds containing one or more elements of transition groups V, VI and VII customary for the catalysis of metathesis reactions.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: July 13, 2010
    Assignee: Basf Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Juergen Stephan, Volker Boehm, Andreas Brodhagen, Frank Poplow, Martina Sinner-Lang, Uwe Diehlmann, Gerhard Cox, Jochen Pfeifer
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Patent number: 7745370
    Abstract: A catalyst for selective hydrogenation of acetylenes and diolefins, particularly in a raw gas feed stream for front end selective hydrogenation. The catalyst contains a low surface area carrier with a surface area from about 2-20 m2/g, wherein the pore volume of the pores of the carrier is greater than about 0.4 cc/g, at least 90 percent of the pore volume of the pores is contained within pores having a pore diameter greater than about 500 ? and about 1 to about 2 percent of the total pore volume is contained in pores with a pore diameter from about 500 to about 1,000 ?. The palladium comprises about 0.01 to about 0.1 weight % and a Group IB metal comprises about 0.005 to about 0.06 weight % of the catalyst.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: June 29, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Steven A. Blankenship, Jennifer A. Boyer, Gary R. Gildert
  • Publication number: 20100160153
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Administrators Of The Tulane Education Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Patent number: 7740817
    Abstract: A catalyst which efficiently removes particulate matter, SOF, sulfate, and SOOT and the like from the exhaust gas from such an internal combustion engine as a diesel engine without inducing a rise in the back pressure of the engine is provided. The catalyst for the purification of the exhaust gas of an internal combustion engine is formed by using an open flow honeycomb containing in the channel walls thereof such pores as possess an average diameter in the range of 10-40 ?m.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: June 22, 2010
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Publication number: 20100152413
    Abstract: The invention provides a method for producing a catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, the method comprising hydrolyzing an organic titanium compound in an organic solvent in which particles of a solid base are dispersed thereby to form a coat layer of titanic acid on the surface of the particles of solid base.
    Type: Application
    Filed: August 14, 2008
    Publication date: June 17, 2010
    Inventors: Hiromitsu Shimizu, Keiichi Tabata, Akihiro Kamon
  • Patent number: 7737078
    Abstract: The formation of H2S in a stoichiometric or reducing atmosphere is restrained without using Ni or Cu as an environmental load substance. An additional oxide composed of an oxide of at least one kind of metal selected from the group consisting of Bi, Sn and Zn was added to a three-way catalyst for purifying an exhaust gas emitted from an internal combustion engine of which the combustion is controlled in near a stoichiometric atmosphere in the amount of from 0.02 mol to 0.2 mol per liter of the catalyst. The additional oxide forms SO3 or SO4 from SO2 in an oxidizing atmosphere, and stores sulfur components as a sulfide in a reducing atmosphere so that emission of H2S can be restrained. And since no environmental load substance is contained, the catalyst can be used safely.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 15, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromasa Suzuki
  • Publication number: 20100137128
    Abstract: A thermocatalytically active titanium dioxide coating has a high BET surface area. With this coating, a catalytic effect can be achieved with only moderately increased temperatures (>200 DEG C.).
    Type: Application
    Filed: February 13, 2008
    Publication date: June 3, 2010
    Inventors: Anett Berndt, Florian Eder, Rudolf Gensler, Heinrich Zeininger
  • Patent number: 7713907
    Abstract: The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: May 11, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Michael J. Pellin, Peter C. Stair
  • Patent number: 7713908
    Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
  • Patent number: 7713911
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 11, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
  • Patent number: 7709414
    Abstract: An engine exhaust catalyst exhibits improved CO oxidation performance relative to conventional engine exhaust catalysts and includes a first supported catalyst comprising platinum and a second supported catalyst comprising palladium and gold species in close contact. The first supported catalyst may be a platinum catalyst, a platinum—palladium catalyst, or a platinum catalyst promoted with bismuth, and the second supported catalyst preferably has a palladium to gold weight ratio of about 0.85:1.0. To improve aged catalyst performance, the first and second supported catalysts are coated onto different layers, zones, or monoliths of the substrate for the engine exhaust catalyst.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 4, 2010
    Assignee: NanoStellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7709541
    Abstract: An improved skeletal iron catalyst is provided for use in Fischer-Tropsch synthesis reactions for converting CO and H2 to hydrocarbon products. The skeletal iron catalyst is manufactured using iron and a removable non-ferrous component such as aluminum. The iron and removable non-ferrous component are mixed together to form a precursor catalyst and then a portion of the removable non-ferrous component is removed to leave a skeletal iron catalyst. One or more first promoter metals and optionally one or more second promoter metals are incorporated into the skeletal iron catalyst either by blending the promoter into the precursor catalyst during the formation thereof or by depositing the promoter on the skeletal iron. The first promoter metals comprises a metal selected from the group consisting of titanium, zirconium, vanadium, cobalt, molybdenum, tungsten, and platinum-group metals.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: May 4, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Yijun Lu, Zhihua Wu, Zhenhua Zhou, Bing Zhou
  • Publication number: 20100099552
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNox catalyst applications.
    Type: Application
    Filed: August 24, 2006
    Publication date: April 22, 2010
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7691781
    Abstract: This invention provides layered porous titanium oxide comprising an inorganic oxide as a core and titanium oxide deposited on the surface of the inorganic oxide, wherein the titanium localization index B/A represented by the ratio of the proportion of titanium (Ti) to the sum of the constituent metal (M) of the inorganic oxide and titanium (Ti) determined by X-ray photoelectron spectroscopy (XPS) [B=Ti XPS/(Ti XPS+M XPS)] to the bulk mixing molar ratio of titanium (Ti) to the sum of the constituent metal (M) of the inorganic oxide and titanium (Ti) [A=Ti/(Ti+M)] is 1.6 or more and the titanium oxide is deposited on the surface of the inorganic oxide so as to be chemically and/or microscopically united to the inorganic oxide and also provides a process for producing the same and a catalyst comprising the same. The layered porous titanium oxide of this invention has a regulated pore structure, a large specific surface area, and excellent mechanical strength and is useful as a catalyst or a catalyst carrier.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: April 6, 2010
    Assignee: Chiyoda Corporation
    Inventors: Shinichi Inoue, Akihiro Mutou, Yukitaka Wada, Hidehiko Kudou, Tateo Ono, Hisashi Nomura
  • Publication number: 20100075836
    Abstract: A photocatalyst formed using a sol-gel process provides high photoactivity, increased photocatalyst lifetime, and improved resistance to performance degradation caused by siloxane-based contaminants. The photocatalyst is formed by a method including the steps of photocatalyst template creation, template conditioning, template refinement, and coating application.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik
  • Patent number: 7674744
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: March 9, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Publication number: 20100041913
    Abstract: The invention provides a polycondensation catalyst for producing polyester by an esterification reaction or a transesterification reaction between a dicarboxylic acid or ester-forming derivative thereof and a glycol, wherein the polycondensation catalyst comprises particles of a solid base having on their surfaces either a coat layer of titanic acid in an amount of from 0.1 to 50 parts by weight in terms of TiO2 per 100 parts by weight of the solid base, or an inner coat layer of an oxide of at least one element selected from silicon, aluminum and zirconium or a composite oxide of at least two elements selected from silicon, aluminum and zirconium in an amount of from 1 to 20 parts by weight per 100 parts by weight of the solid base and an outer coat layer of titanic acid in an amount of from 0.
    Type: Application
    Filed: June 28, 2006
    Publication date: February 18, 2010
    Inventors: Toshikatsu Umaba, Hiromitsu Shimizu, Kenji Mori, Keiichi Tabata
  • Patent number: 7655749
    Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Patent number: 7655137
    Abstract: The reforming catalysts include a halogen promoter and a plurality of nanocatalyst particles supported on a support material. The nanocatalyst particles have a controlled crystal face exposure of predominately (110). The controlled coordination structure is manufactured by reacting a plurality of catalyst atoms with a control agent such as polyacrylic acid and causing or allowing the catalyst atoms to form nanocatalyst particles. The catalysts are used in a reforming reaction to improve the octane number of gasoline feedstock. The reforming catalysts show improved C5+ hydrocarbon production and improved octane barrel number increases as compared to commercially available reforming catalysts.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Horacio Trevino, Zhihua Wu
  • Publication number: 20100022383
    Abstract: The present invention relates to photocatalytically active coatings for surfaces of buildings, vehicles, equipment, paths and the like which comprise interference pigments as photocatalytically active material and optionally an infrared light-absorbent material, to processes for the production of such surfaces, and to objects coated therewith.
    Type: Application
    Filed: August 24, 2007
    Publication date: January 28, 2010
    Inventors: Matthias Kuntz, André Salie
  • Publication number: 20100022385
    Abstract: The disclosure relates to a process for making a surface treated suspension of finely divided titanium (IV) oxide particles, typically, finely divided titanium (IV) oxide nanoparticles, comprising: vigorously mixing (a) a volume of a first component comprising a major proportion of alcohol, a minor proportion of titanium alkoxide and a minor proportion of a titanium alkoxide activator selected from the group consisting of water and a first aqueous base, and b) a volume of a second component selected from the group consisting of water and a second aqueous base, at least one of the first component or the second component having a base therein, the second component being substantially free of alcohol, to form a mixture comprising a suspension of finely divided titanium (IV) oxide particle, the mixture having a water to titanium molar ratio ranging from about 40 to about 1 to about 5000 to about 1, wherein the proportion of the titanium alkoxide, the proportion of the activator, the mixing vigor, and the ratio
    Type: Application
    Filed: December 20, 2007
    Publication date: January 28, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: David M. Scott, Carmine Torardi, Vladimir Grushin
  • Patent number: 7651972
    Abstract: Disclosed herein is a method for manufacturing a high-crush-strength iridium catalyst for hydrazine decomposition for spacecraft and satellite propulsion using bauxite, the method including: an acid treatment step of bringing bauxite into contact with a 0.1-10 M acid solution for 10-14 hr; a filtration step of filtering the acid-treated bauxite as a solid to remove the remaining acid and impurities; a thermal treatment step of bringing the filtered bauxite into contact with hot air at a temperature of 500-700° C. for 2-6 hr; a catalyst loading step of loading an iridium catalyst onto the thermally treated bauxite; and a reduction step of reducing the catalyst of the catalyst-loaded bauxite.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: January 26, 2010
    Assignee: Korean Aerospace Research Institute
    Inventors: Myoung-Jong Yu, Kyun-Ho Lee, Su-Kyum Kim, Joon-Min Choi, Sung-June Cho
  • Publication number: 20090325787
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 31, 2009
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7635461
    Abstract: Composite combustion catalyst particles are described and disclosed. A metal core of a combustible metal can be coated with a metal oxide coating. Additionally, a catalyst coating can at least partially surround the metal oxide coating to form a composite catalyst particle. The composite catalyst particles can be dispersed in a variety of fuels such as propulsion fuels and the like to form an enhanced fuel. During initial stages of combustion, the catalyst coating acts to increase combustion of the fuel. As combustion proceeds, the metal core heats sufficiently to disturb the metal oxide coating. The metal core then combusts in highly exothermic reactions with an oxidizer and the catalyst coating to provide improved energy densities to the enhanced fuel.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 22, 2009
    Assignee: University of Utah Research Foundation
    Inventor: Scott L. Anderson
  • Publication number: 20090312179
    Abstract: A method of supporting a hydrocarbon synthesis catalyst material comprising a catalytically active metal and a carrier material on a substrate comprising the steps of: (a) applying the catalyst material to the substrate; and (b) heating the catalyst material to form a catalyst material layer fixed to the substrate, characterised in that—the catalyst carrier is a porous inorganic refractory oxide or precursor therefor; the catalyst material applied in step (a) comprises 60 to 90 weight % solvent calculated on the total weight of the catalyst material layer; when the catalyst material is subjected to the heating step (b) it comprises at most 10 weight % of solvent, calculated on the total weight of the catalyst material layer; in heating step (b) the catalyst material is heated to a temperature in the range between 250° C. and 800° C.; cracks having sub-millimetre widths are uniformly formed in the layer; after step (b) the catalyst material layer has a thickness of 5-200 microns.
    Type: Application
    Filed: July 9, 2007
    Publication date: December 17, 2009
    Inventors: Abderrahmane Chettouf, Gerardus Petrus Lambertus Niesen, Marinus Johannes Reynhout, David Schaddenhorst
  • Patent number: 7629289
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 8, 2009
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Jones, Peter Kokayeff
  • Patent number: 7628968
    Abstract: The present invention is directed to high activity titanium oxide DeNOx catalysts. In preferred embodinents, by depositing vanadium oxide on a titania supported metal oxide such as tungsten oxide, an improved catalyst may be generated. This catalyst may be used in the treatment of exhaust from sources such as automobiles and industrial plants.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 8, 2009
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventors: Steven M Augustine, Guoyi Fu
  • Publication number: 20090298680
    Abstract: An aluminum product includes an aluminum substrate, a porous alumina film formed on the aluminum substrate, and a photo-catalyst film. The alumina film has an array of pores defined on a surface thereof. The photo-catalyst film is formed on the surface of the alumina film and inner walls of the alumina film located in the pores. An exemplary method for producing the aluminum product is also provided.
    Type: Application
    Filed: April 10, 2009
    Publication date: December 3, 2009
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIEN-HAO HUANG
  • Patent number: 7625840
    Abstract: A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: December 1, 2009
    Assignee: UChicago Argonne, LLC.
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 7618919
    Abstract: A method of producing a catalyst support comprising a substrate, and coating formed on the surface of the substrate and including powder of a first metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, wherein the coating is obtained by heat treating the substrate after applied with a coating composition obtained by mixing the first metal oxide powder together with a fluid raw material composition containing raw material of a second metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, at a shear rate of 1000 sec?1 or higher.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 17, 2009
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Shimazu, Ryusuke Tsuji, Hideo Sobukawa
  • Publication number: 20090275463
    Abstract: A method for making a catalyst includes providing a sol that sol includes a catalyst and a catalyst substrate; drying the sol via freeze-drying, spray drying, freeze granulation, or supercritical fluid drying to form a powder; mixing the powder with a solvent to form a slurry; and washcoating the slurry onto a catalyst support. Another method for making a catalyst includes providing a sol, wherein the sol includes a catalyst substrate; drying the sol via freeze-drying, spray drying, freeze granulation, or supercritical fluid drying to form a powder; mixing the powder with a solvent to form a slurry; washcoating the slurry onto a catalyst support; and depositing a catalyst onto the catalyst substrate.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hrishikesh Keshavan, Robert Joseph Lyons, Larry Neil Lewis, Dan Hancu
  • Patent number: 7612244
    Abstract: The invention provides a catalyst containing active elements including copper deposited on alumina containing at least 0.03 g of titanium, expressed in metal form, per kg of alumina and use thereof in gas hase reactions, such as the oxychlorination of ethylene to 1,2-dichloroethane. This catalyst is suitable for maintaining a constant oxygen content in the tail gases and hence in the recycled gases. The invention further pertains to the use of an alumina containing at least 0.03g titanium, expressed in metal form, per Kg of alumina, as catalyst support and as catalyst diluent. In an example a catalyst containing CuCl2, MgCl2, KCl and LiCl deposited on alumina containing 1.13 g of titanium, expressed in metal form, per Kg of alumina was used for the oxychlorination of ethylene to 1,2-dichloroethane in a fluidized bed reactor.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 3, 2009
    Assignee: Solvay (Societe Anonyme)
    Inventors: Michel Strebelle, Andre Petitjean
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7605108
    Abstract: A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: October 20, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Katsuo Suga, Toru Sekiba