Of Group Iii (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/355)
  • Patent number: 10544067
    Abstract: The present invention is a process for dehydrating an alcohol to prepare corresponding olefin(s), comprising: (a) providing a feed (A) comprising at least an alcohol having at least 2 carbon atoms, and preferably at most 5 carbon atoms, or a mixture thereof optionally water, optionally an inert component, in a dehydration unit, (b) placing the feed (A) into contact with an acidic catalyst in a reaction zone of said dehydration unit at conditions effective to dehydrate at least a portion of the alcohol to make an olefin or a mixture of olefins having the same number of carbon atoms as the alcohol, (c) recovering from said dehydration unit an effluent (B) comprising: an olefin or a mixture of olefins, water, undesired by-products including aldehydes and lighter products resulting from degradation of said aldehydes under the conditions of step (b), optionally unconverted alcohol(s) if any, optionally the inert component, wherein, said feed (A)-providing step (a) comprises adding an effective amount of one
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 28, 2020
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Delphine Minoux, Nikolai Nesterenko, Cindy Adam, Walter Vermeiren, Philip De Smedt, Jean-Pierre Dath, Vincent Coupard, Sylvie Maury, Nicolas Aribert
  • Patent number: 9566571
    Abstract: A hexaaluminate-containing catalyst for reforming hydrocarbons. The catalyst consists of a hexaaluminate-containing phase, which consists of cobalt and at least one further element from the group consisting of La, Ba, and Sr, and an oxidic secondary phase. To prepare the catalyst, an aluminum source is brought into contact with a cobalt-containing metal salt solution, dried, and calcined. The metal salt solution additionally contains the at least one further element. The reforming of methane and carbon dioxide is great economic interest since synthesis gas produced during this process can form a raw material for the preparation of basic chemicals. In addition, the use of carbon dioxide as a starting material is important in the chemical syntheses in order to bind carbon dioxide obtained as waste product in numerous processes by a chemical route and thereby avoid emission into the atmosphere.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 14, 2017
    Assignee: BASF SE
    Inventors: Stephan Schunk, Andrian Milanov, Andreas Strasser, Guido Wasserschaff, Thomas Roussiere
  • Patent number: 9132375
    Abstract: A process for the elimination of heavy metals, in particular mercury and possibly arsenic and lead, present in a gaseous or liquid effluent by means of a fixed bed process using an adsorbent in the form of monolithic or supported extrudates, said extrudates being characterized by a length h and a section comprising at least three lobes. The adsorbent is composed of at least one active phase based on sulphur in the elemental form or in the form of a metallic sulphide. The process is advantageously applicable to the treatment of gas of industrial origin, synthesis gas, natural gas, gas phase condensates and liquid hydrocarbon feeds.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 15, 2015
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Fabien Porcheron, Karin Barthelet, Arnaud Baudot, Antoine Daudin, Jean-Marc Schweitzer, Jeremy Gazarian
  • Publication number: 20150140317
    Abstract: The present invention relates to the field of catalysts, and more specifically to nanoparticle catalysts. Materials with high porosity which contain nanoparticles can be created by various methods, such as sol-gel synthesis. The invention provides catalytic materials with very high catalytically active surface area, and methods of making and using the same. Applications include, but are not limited to, catalytic converters for treatment of automotive engine exhaust.
    Type: Application
    Filed: September 23, 2014
    Publication date: May 21, 2015
    Inventors: MAXIMILIAN A. BIBERGER, Bryant Kearl, Xiwang Qi, Qinghua Yin, David Leamon
  • Patent number: 9034786
    Abstract: A catalyst which comprises nickel and/or cobalt supported on a support that includes a mixed oxide containing metals, such as aluminum, zirconium, lanthanum, magnesium, cerium, calcium, and yttrium. Such catalysts are useful for converting carbon dioxide to carbon monoxide, and for converting methane to hydrogen.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 19, 2015
    Assignee: Enerkem, Inc.
    Inventors: Prashant Kumar, David Lynch
  • Patent number: 9034782
    Abstract: The present invention relates to a catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range, comprising a porous support; Group III A or VA element in the range of 1-10 wt %; Group VI B elements in the range of 1 to 20 wt %; Group VIII B elements in range of 0.01 to 10 wt %. The present invention further provides the process for preparing the catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range. The present invention also provides the process for conversion of vegetable oils to hydrocarbon products in the diesel boiling range using the catalyst composition or discarded refinery spent hydro-treating catalyst.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 19, 2015
    Assignee: Bharat Petroleum Corporation Limited
    Inventors: Chiranjeevi Thota, Pragya Rai, N. Jose, Dattatraya Tammannashastri Gokak, Poyyamani Swaminathan Viswanathan
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Publication number: 20150133293
    Abstract: A method for promoting the supported catalysts using noble metal nanoparticles. Different noble metal precursors are preferentially deposited onto the supported metal catalysts through Chemical vapor deposition (CVD), and compositions so produced. Further, the promoted catalyst is used for CO and CO2 hydrogenation reactions, increasing the reaction conversion, C5+ compounds selectivity and chain growth probability. The active phase of catalyst can be either cobalt oxide, nickel oxide or their reduced format (Co0 or Ni0), and the noble metal is preferably Ruthenium.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 14, 2015
    Applicant: Sensiran
    Inventors: Abbas Ali Khodadadi, Yadollah Mortazavi, Mohammad Javad Parnian, Ali Taheri Najafabadi
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Publication number: 20150126792
    Abstract: A method of forming a dehydrogenation catalyst support is carried out by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3) and water into a support material. The support material is particulized. The particulized support material is compressed to a pressure of at least 5,000 psig to form a shaped body. The shaped body is calcined in pure steam at a temperature of at least 750° C. for at least 0.25 hours to form a catalyst support having an average pore diameter of 200 ? or greater. The catalyst support can then be treated with a dehydrogenation catalyst component so that the catalyst support contains the dehydrogenation catalyst component to form a dehydrogenation catalyst that can then be used by contacting a hydrocarbon feed with the catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118135
    Abstract: Disclosed in certain implementations is a catalysis composition that includes a metal catalyst and a support material impregnated with the metal catalyst.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Mark Thomas Buelow, Steven W. Chin, Jeffrey Barmont Hoke, Nicholas R. Leclerc, David M. Robinson
  • Publication number: 20150119235
    Abstract: Disclosed in certain implementations is a catalysis composition that includes a metal catalyst and a support material impregnated with the metal catalyst.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Mark Thomas Buelow, Steven W. Chin, Jeffrey Barmont Hoke, Nicholas R. Leclerc, David M. Robinson
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Publication number: 20150118116
    Abstract: Disclosed in certain implementations is a catalysis composition that includes a metal catalyst and a support material impregnated with the metal catalyst.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Mark Thomas Buelow, Steven W. Chin, Jeffrey Barmont Hoke, Nicholas R. Leclerc, David M. Robinson
  • Patent number: 9017576
    Abstract: Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 28, 2015
    Assignee: King Abdullah University of Science and Technology
    Inventors: Gregory Biausque, Paco Laveille, Dalaver H. Anjum, Valerie Caps, Jean-Marie Basset
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun
  • Patent number: 9012350
    Abstract: The herein disclosed exhaust gas purification catalyst is an exhaust gas purification catalyst that is provided with a porous carrier 40 and palladium 50 supported on this porous carrier 40. The porous carrier 40 is provided with an alumina carrier 42 formed of alumina and with a CZ carrier 44 formed of a ceria-zirconia complex oxide. Barium is added to both the alumina carrier 42 and the CZ carrier 44. Here, an amount of barium added to the alumina carrier 42 is an amount that corresponds to 10 mass % to 15 mass % relative to a total mass of the alumina carrier 42 excluding the barium, and an amount of barium added to the CZ carrier 44 is an amount that corresponds to 5 mass % to 10 mass % relative to a total mass of the CZ carrier 44 excluding the barium.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Aoki
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150099622
    Abstract: A method for preparing a catalyst having catalytically active materials selectively impregnated or supported only in the surface region of the catalyst particle using the mutual repulsive force of a hydrophobic solution and a hydrophilic solution and the solubility difference to a metal salt precursor between the hydrophobic and hydrophilic solutions. The hydrophobic solvent is a C2-C6 alcohol. The hydrophobic solvent is introduced into the catalyst support and then removed of a part of the pores connected to the outer part of the catalyst particle by drying under appropriate conditions. Then, a hydrophilic solution containing a metal salt is introduced to occupy the void spaces removed of the hydrophobic solvent, and the catalyst particle is dried at a low rate to selectively support or impregnate the catalytically active material or the precursor of the catalytically active material only in the outer part of the catalyst particle.
    Type: Application
    Filed: August 23, 2014
    Publication date: April 9, 2015
    Inventors: Chang Hyun KO, Gyeong Ju SEO, Min Su JANG, Seong Mi AHN
  • Patent number: 8999880
    Abstract: A method for producing a dehydrogenation catalyst including an immersion step of impregnating an alumina layer of an alumina carrier with a platinum solution containing hexahydroxo platinate (IV) ions with an immersion method, wherein the alumina carrier has the alumina layer formed by anodic oxidation on at least a part of the surface of an aluminum support; and a calcination step of calcining the alumina carrier subjected to the immersion step to provide a dehydrogenation catalyst.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 7, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Nanako Obata, Atsushi Segawa, Yuichiro Hirano
  • Publication number: 20150093686
    Abstract: A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 2, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Ulises A Martinez, Plamen B Atanassov
  • Patent number: 8992870
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 31, 2015
    Assignee: Yara International ASA
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8969231
    Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 3, 2015
    Assignee: GTL.FI AG
    Inventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
  • Patent number: 8969239
    Abstract: A method of hydroprocessing a heavy hydrocarbon feedstock using a hydroprocessing catalyst having specific properties making it effective in the hydroconversion of at least a portion of the heavy hydrocarbon feedstock to lighter hydrocarbons. The hydroprocessing catalyst comprises a Group VIB metal component (e.g., Cr, Mo, and W), a Group VIII metal component (e.g., Ni and Co) and, optionally, a potassium metal component that are supported on a support material comprising alumina. The alumina has novel physical properties that, in combination with the catalytic components, provide for the hydroprocessing catalyst. The hydroprocessing catalyst is particularly effective in the conversion of the heavy hydrocarbon feedstock. The alumina is characterized as having a high pore volume and a high surface area with a large proportion of the pore volume being present in the pores within a narrow pore diameter distribution about a narrowly defined range of median pore diameters.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 3, 2015
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, Russell Craig Ackerman, Christian Gabriel Michel
  • Patent number: 8968601
    Abstract: Disclosed is a catalyst used for steam carbon dioxide reforming of natural gas, wherein an alkaline earth metal alone or an alkaline earth metal and a group 8B metal are supported on a hydrotalcite-like catalyst containing nickel, magnesium and aluminum. The disclosed catalyst is useful as a steam carbon dioxide reforming (SCR) catalyst of natural gas at high temperature and high pressure, while minimizing deactivation of the catalyst due to sintering of the active component nickel and deactivation of the catalyst due to coke generation at the same time. A synthesis gas prepared using the catalyst has a H2/CO molar ratio maintained at 1-2.2. A synthesis gas having a H2/CO molar ratio of 1.8-2.2 may be used as a raw material for Fischer-Tropsch synthesis or methanol synthesis and a synthesis gas having a H2/CO molar ratio of may be used as a raw material for dimethyl ether synthesis.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Yun Ju Lee, Jae Sun Jung, Jin Hee Lee, Seung Hwan Lee, Bang Hee Kim, Hyun Jin Kim, Eun Hyeok Yang
  • Patent number: 8962897
    Abstract: In one embodiment, the invention is to a catalyst composition for converting ethanol to higher alcohols, such as butanol. The catalyst composition comprises one or more metals and one or more supports. The one or more metals selected from the group consisting of cobalt, nickel, palladium, platinum, zinc, iron, tin and copper. The one or more supports are selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and mixtures thereof, wherein the catalyst is substantially free of alkali metals and alkaline earth metals.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150051068
    Abstract: The present invention relates to an improvement in a process for the thermal fixation of a catalytically active component onto an alumina support and, more specifically, to an improvement in a process for the thermal fixation of a catalytically active component onto an alumina support for preparing a thermally stable catalyst for treating exhaust gas from an internal combustion engine, by means of thermally stable dispersion and fixation of the catalytically active component(s) for treating exhaust gas from an internal combustion engine, onto a surface or an internal space of the alumina support.
    Type: Application
    Filed: February 4, 2013
    Publication date: February 19, 2015
    Applicant: HEESUNG CATALYSTS CORPORATION
    Inventors: Hyun-sik Han, Seung Chul Na, Sang Yun Han
  • Patent number: 8952076
    Abstract: A method of producing an alumina-supported catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature of at least 550° C. to produce a modified alumina support material; impregnating the modified alumina support material with a source cobalt; calcining the impregnated support material at a temperature of 700° C. to 1200° C., and activating the catalyst.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 10, 2015
    Assignee: Statoil ASA
    Inventors: Erling Rytter, Torild Hulsund Skagseth, Hanne Wigum, Nonyameko Sincadu
  • Patent number: 8945497
    Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
  • Patent number: 8940659
    Abstract: Disclosed is a gas purifying catalyst for an internal combustion engine comprising: a carrier and a catalyst layer formed on the carrier, the catalyst layer including a first catalyst, a second catalyst and a third catalyst. The first catalyst comprises Pd supported in a first support, the first support comprising alumina. The second catalyst comprises Rh supported in a second support, the second support comprising a complex oxide of ceria-zirconia. The third catalyst comprising Pd supported in a third support, the third support comprising a complex oxide of ceria-zirconia.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 27, 2015
    Assignee: Hyundai Motor Company
    Inventors: Cheol Beom Lim, Yoon Sang Nam, Jin Woo Choung, Youngil Song
  • Patent number: 8940657
    Abstract: An exhaust emission control catalyst disclosed herein is equipped with a rhodium catalytic layer and a platinum catalytic layer, and is characterized in that a relationship between a mole average (X) of a Pauling's electronegativity that is calculated as to elements included in the rhodium catalytic layer except platinum group elements and oxygen and a mole average (Y) of a Pauling's electronegativity that is calculated as to elements included in the platinum catalytic layer except platinum group elements and oxygen is 1.30?X?1.45 and 1.47?Y?2.0. According to this exhaust emission control catalyst, an interlayer transfer of platinum and/or rhodium and the alloying of platinum and/or rhodium are suppressed during use of the catalyst, and high exhaust gas purification performance can be exerted.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihide Segawa
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20150018204
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides an enhanced process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variation of rheological properties by the solid content of the overcoat slurry and variation of the overcoat slurry particle size distribution to produce desirable homogeneity, specific loading, and adherence of the coating on metallic substrates. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 8932982
    Abstract: An exhaust gas purification catalyst includes a catalytic layer containing a particle component A-1 and a particle component A-2 with different catalytic metal contents, each of which is composed of catalytic-metal-doped CeZr-based mixed oxide powder. The particle component A-1 having the lower catalytic metal content is supported on a particle component B composed of Zr-based-oxide-supported alumina powder, and the particle component A-2 having the higher catalytic metal content is supported on a particle component C composed of CeZr-based mixed oxide powder in which catalytic metal is not solid-dissolved.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 13, 2015
    Assignee: Mazda Motor Corporation
    Inventors: Masaaki Akamine, Masahiko Shigetsu, Yasuhiro Ochi, Yuki Murakami
  • Patent number: 8932546
    Abstract: A catalytically active particulate filter is proposed which is suitable for use in an exhaust gas cleaning system for diesel engines. The particulate filter removes diesel soot particles from the exhaust gas and is also effective to oxidize carbon monoxide and hydrocarbons and to convert nitrogen monoxide at least proportionally into nitrogen dioxide. The particulate filter comprises a filter body (3) and two catalytically active coatings (1) and (2) which contain platinum and palladium, or platinum or palladium respectively, wherein the platinum content of the second catalytically active coating (2) is higher than the platinum content of the first catalytically active coating (1).
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Stephanie Frantz, Ulrich Goebel, Franz Dornhaus, Michael Schiffer
  • Patent number: 8926925
    Abstract: A catalyst for the selective catalytic reduction of nitrogen oxides in diesel engine exhaust gases using ammonia or a precursor compound decomposable to ammonia. The catalyst includes two superposed coatings applied to a support body, of which the first coating applied directly to the support body includes a transition metal-exchanged zeolite and/or a transition metal-exchanged zeolite-like compound, and effectively catalyzes the SCR reaction. The second coating is applied to the first coating to cover it on the exhaust gas side and prevent hydrocarbons having at least three carbon atoms present in the exhaust gas from contacting the first coating, without blocking the passage of nitrogen oxides and ammonia to the first coating. The second coating may be formed from small-pore zeolites and/or small-pore, zeolite-like compounds, and from suitable oxides, especially silicon dioxide, germanium dioxide, aluminum oxide, titanium dioxide, tin oxide, cerium oxide, zirconium dioxide and mixtures thereof.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 6, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8927454
    Abstract: An exhaust gas-purifying catalyst includes a support provided with one or more through-holes through which exhaust gas flows, and a catalytic layer supported by the support and containing an oxygen storage material. The exhaust gas-purifying catalyst includes a first section to which the exhaust gas is supplied, and a second section to which the exhaust gas having passed through the first section is supplied. The catalytic layer includes a layered structure of a first catalytic layer containing platinum and/or palladium and a second catalytic layer containing rhodium in the first catalytic section and further includes a third layer containing rhodium in the second section. The second section is smaller in oxygen storage material content per unit volumetric capacity than the first section.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Cataler Corporation
    Inventors: Minoru Itou, Michihiko Takeuchi, Tetsuya Shinozaki, Takaaki Kanazawa, Masaya Kamada, Tadashi Suzuki, Satoru Katoh, Naoki Takahashi
  • Publication number: 20150005158
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Patent number: 8921258
    Abstract: Disclosed is a catalyst which can convert ammonia contained in exhaust gas from an engine of a vehicle equipped with a Urea-SCR (Urea-Selective Catalytic Reduction) system, to nitrogen, and a method for preparating the same. The catalyst can convert ammonia which is failed to participate in a conversion reaction of NOx to N2 and slipped out of the SCR catalyst, to nitrogen via a SCO (Selective Catalytic Oxidation) reaction, before the ammonia is released to the air.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 30, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Seong Ho Lee, Woo Jin Lee, Young Eun Cheon, Seung Hoon Oh, Sung Hwan Kim, Hong Seok Jung, Yong Woo Kim, Gi Ho Goh
  • Patent number: 8906330
    Abstract: The present invention relates to a catalyst composition comprising a carrier substrate, a layer (i) coated on said carrier substrate comprising at least one precious group metal, a layer (ii) comprising Rh, and a layer (iii) comprising Pd and/or Pt and being substantially free of Ce, Ba and Rh, wherein the layer (iii) has a lower weight than the layer (i) or the layer (ii). Furthermore, the present invention relates to a method for treating an exhaust gas stream using said catalyst composition.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 9, 2014
    Assignee: BASF Corporation
    Inventors: Marcus Hilgendorff, Wen Mei Xue, Cesar Tolentino
  • Patent number: 8889587
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8889588
    Abstract: Disclosed is a catalyst support for steam carbon dioxide reforming reaction utilizing the advantages of superior thermal conductivity and thermal dispersion of a metal foam support and a large specific surface area of a carrier material, which allows selective control of coating amount and the thickness of a support layer and prevents cracking on the support surface, using both the sol-gel method and the slurry method that have been used for coating of a metal foam support.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Tae Gyu Kim, Dae Il Park
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Patent number: 8883118
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 3006 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Patent number: 8877674
    Abstract: Carbon monoxide (CO) is selectively reacted with hydrogen (H2) over a ruthenium (Ru) on alumina catalyst at a temperature of about 210 to about 290° C. To be a viable option for micro catalytic fuel processing devices, highly active, selective, and stable catalysts must be demonstrated with as large a temperature window for feasible operation as possible. We have studied the effects of metal loading, preparation method, pretreatment conditions, and choice of support on the performance of Ru-based catalysts for such applications. Catalyst testing results and catalyst characterization using XRD and BET are discussed. In one example, operating at a gas hourly space velocity (GHSV) of 13,500 hr?1, a 3% Ru/Al2O3 catalyst yielded CO outputs less than 100 ppm in a temperature range from 240° C. to 285° C., while not exceeding a hydrogen consumption of 10%. This catalyst was further successfully demonstrated in a microchannel device.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: November 4, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Robert A. Dagle, Yong Wang, Guanguang Xia
  • Patent number: 8877670
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Hui Wang