Of Group Iii (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/355)
  • Publication number: 20140005449
    Abstract: A composition comprising a support formed from a high surface area alumina and having a low angularity particle shape; and at least one catalytically active metal, wherein the support has pores, a total pore volume, and a pore size distribution; wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum; wherein a first peak has a first maximum of pore diameters of equal to or greater than about 200 nm and a second peak has a second maximum of pore diameters of less than about 200 nm; and wherein greater than or equal to about 5% of a total pore volume of the support is contained within the first peak of pore diameters.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 2, 2014
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly, Michael Joseph Breen, Joseph C. Dellamorte, Danna Rehms Mooney
  • Publication number: 20130345047
    Abstract: A metal compound catalyst is formed by vaporizing a quantity of catalyst material and a quantity of carrier thereby forming a vapor cloud, exposing the vapor cloud to a co-reactant and quenching the vapor cloud. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal compound catalysts comprises means for vaporizing a quantity of catalyst material and a quantity of carrier, quenching the resulting vapor cloud, forming precipitate nanoparticles comprising a portion of catalyst material and a portion of carrier, and subjecting the nanoparticles to a co-reactant. The system further comprises means for impregnating the of supports with the nanoparticles.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Applicant: SDCmaterials, Inc.
    Inventors: Maximilian A. BIBERGER, Stephen Edward Lehman, JR., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Patent number: 8614161
    Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
  • Patent number: 8614163
    Abstract: A Raney-type metal porous material of which at least the inner surface of the pores constituting the porous structure is an alloy of the skeletal metal constituting it and a metal differing from the skeletal metal. The invention has made it possible to alloy a Raney-type metal with a porous structure, to realize a novel method of enabling remarkable enhancement of the function and the activity of the alloy based on the porous structure thereof, and to use the alloy as catalysts, etc.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 24, 2013
    Assignee: National Institute for Materials Science
    Inventors: Anpang Tsai, Satoshi Kameoka, Tomofumi Kimura
  • Patent number: 8609570
    Abstract: The present invention relates to a method for producing a precursor of a supported platinum catalyst. To provide a method for producing a platinum catalyst precursor, by means of which supported platinum catalysts can be produced which have a relatively high activity, a method is proposed, comprising the steps of: a) impregnating an open-pored support material with platinum sulphite acid; b) calcining the impregnated zeolite material under a protective gas.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: December 17, 2013
    Assignee: Sud-Chemie IP GmbH & Co. KG
    Inventors: Hans-Christoph Schwarzer, Arno Tissler, Markus Hutt
  • Patent number: 8609578
    Abstract: An exhaust gas purifying catalyst is constituted by: noble metal particles (1); first compounds (2) which support the noble metal particles (1); second compounds (3) different in type from the first compounds (2); and oxides (4) which surround the noble metal particles (1), the first compounds (2) and the second compounds (3). A median diameter of the first compounds (2) and a median diameter of the second compounds (3) satisfy a relationship of a following inequality: median diameter of first compounds<median diameter of second compounds.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Yoshiaki Hiramoto, Hiroto Kikuchi, Hironori Wakamatsu, Kazuyuki Shiratori, Tetsuro Naito, Katsuo Suga
  • Publication number: 20130330260
    Abstract: Provided is an alumina-based sulfur recovery catalyst as well as its preparation method, characterized in that the catalyst has a specific surface area of at least about 350 m2/g, a pore volume of at least about 0.40 ml/g, and the pore volume of pores having a pore diameter of at least 75 nm comprises at least about 30% of the pore volume. The alumina-based catalyst according to present invention is made from flashed calcined alumina, pseudoboehmite and optionally, a binder. The present invention further relates to an use of the alumina-based sulfur recovery catalyst and a method for recovering sulfur by using this catalyst.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Aihua LIU, Zhaoshun Sheng, Jianli Liu, Jianhua Wang, Dehua Zhu, Zengrang Liu, Yingjie Liang
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Patent number: 8604248
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Union Carbide Chemicals & Plastics Technolgy LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Patent number: 8592767
    Abstract: Disclosed are tunable catalysts and methods of controlling the activity of a catalyst. For example, disclosed are methods of controlling the activity of a catalyst, comprising providing a catalyst, comprising a ferroelectric substrate of finite thickness comprising two opposing surfaces, the ferroelectric substrate being characterized as having a polarization; an electrode surmounting one of the surfaces of the ferroelectric substrate; and a catalytically active material surmounting the surface of the ferroelectric substrate opposing the electrode; and subjecting the ferroelectric substrate to a controllable electric field to give rise to a modulation of the polarization of the ferroelectric substrate, whereby the modulation of the polarization controllably alters the activity of one or more chemical species on the catalytically active material.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 26, 2013
    Assignee: The Trustees of The University of Pennsylvania
    Inventors: Andrew M. Rappe, Alexie M. Kolpak, Ilya Grinberg
  • Patent number: 8586501
    Abstract: According to various embodiments, a catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The substrate is a product of adding a substrate precursor to a water-in-oil microemulsion including a catalytic metal salt, a solvent, a templating agent, and water.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colborn, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Patent number: 8586769
    Abstract: An improved carrier for an ethylene epoxidation catalyst is provided. The carrier includes an alumina component containing a first portion of alumina particles having a particle size of, or greater than, 3 ?m and up to 6 ?m, and a second portion of alumina particles having a particle size of, or less than, 2 ?m. An improved catalyst containing the above-described carrier, as well as an improved process for the epoxidation of ethylene using the catalyst are also provided.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 19, 2013
    Assignees: Scientific Design Company, Inc., Noritake Co., Limited
    Inventors: Serguei Pak, Andrzej Rokicki, Shuji Kawabata, Takayuki Ohashi
  • Patent number: 8585908
    Abstract: A ceramic structure for water treatment, a water treatment apparatus and method are provided. Immersion efficiency of a photo catalyst and a specific surface area of the immersed photo catalyst can be improved using a ceramic medium including a ceramic paper prepared of a ceramic fiber. Accordingly, it is possible to provide the water treatment apparatus and method capable of increasing decomposition efficiency of contaminated materials due to irradiation of ultraviolet light, and so on, enabling continuous purification treatment, and remarkably reducing preparation, management and water treatment expenses.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 19, 2013
    Assignee: LG Hausys, Ltd.
    Inventors: Moonsuk Han, Ju-Hyung Lee, Seongmoon Jung
  • Patent number: 8586808
    Abstract: The invention concerns a catalyst comprising nickel on an aluminum oxide support. The aluminum oxide support has, in the calcined state, a diffractogram obtained by X ray diffractometry comprising peaks which correspond to the following interplanar spacings and relative intensities: Interplanar spacings Relative intensities d (10?10 m ) I/I0 (%) 5.03 to 5.22 1-5 4.56 to 4.60 ?1-10 4.06 to 4.10 1-5 2.80 to 2.85 ?5-20 2.73 15-35 2.60 ?5-10 2.43 35-40 2.29 30-40 1.99 60-95 1.95 25-50 1.79 ?1-10 1.53 ?5-10 1.51 ?5-10 1.41 40-60 1.39 100 1.23 to 1.26 1-5 1.14 ?5-10 1.11 1-5 1.04 1-5 1.00 ?5-10 0.97 ?1-5.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 19, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Anne Claire Dubreuil, Lars Fischer, Bernadette Rebours, Renaud Revel, Cecile Thomazeau
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Publication number: 20130303365
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 14, 2013
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Patent number: 8580706
    Abstract: An exhaust gas-purifying catalyst according to the present invention includes a substrate, a first catalytic layer facing the substrate and includes at least one precious metal selected from the group consisting of palladium and platinum, and alumina doped with an alkaline-earth metal element, and a second catalytic layer facing the substrate with the first catalytic layer interposed therebetween or intervening between the substrate and the first catalytic layer, the second catalytic layer includes rhodium and alumina doped with the alkaline-earth metal element.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 12, 2013
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Akimasa Hirai, Kenichi Taki, Yuji Yabuzaki
  • Patent number: 8575058
    Abstract: An activated carbon catalyst is described which is sufficiently active in the presence of catalytic poisons in crude gas to convert nitrogen oxides to nitrogen in the presence of ammonia.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 5, 2013
    Assignee: CarboTech AC GmbH
    Inventors: Klaus-Dirk Henning, Wolfgang Bongartz
  • Patent number: 8575060
    Abstract: A fuel reforming catalyst is fabricated. The catalyst is used in solid oxide fuel cell. By using the catalyst, the hydrogen generation is enhanced with a great reforming ratio. In addition, the catalyst is coking-resistant and will not be broken into powder after a long time of use.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 5, 2013
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Ning-Yih Hsu, Chun Ching Chien
  • Patent number: 8568675
    Abstract: Provided are catalyst composites that can be used in methods for treating exhaust gas from internal combustion engines, including diesel and gasoline engines, systems including such catalyst composites and methods of using the catalyst composites to treat internal combustion engine exhaust. The catalyst composites may provide diesel oxidation catalysts and three-way catalysts. A catalyst composite is provided which a catalytic material on a carrier, the catalytic material including a palladium component dispersed on a first support comprising at least 60% by weight of a zirconia component, and one or more rare earth oxides selected from the group consisting of lanthana, neodymia, praseodymia, yttria, the first support optionally containing no more than 15% by weight ceria, and being free of alumina. Layered catalyst composites having one or more washcoats on the carrier are also provided.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventors: Michel Deeba, Tian Luo, Josephine Ramos
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8562926
    Abstract: A method and device for catchment of platinum group metals (PGM) in a gaseous steam, where the method comprises using a catalyst comprising a porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s), and where the device comprises the porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s). In a further aspect, the invention also relates to a method for producing the inventive device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Yara International ASA
    Inventors: David Waller, David M. Brackenbury, Ketil Evjedal
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557203
    Abstract: A device is described which provides thermally durable NO2 generation in conjunction with efficient heat-up performance for filter regeneration, and low temperature HC (hydrocarbon) and CO activity. Importantly, it provides both functions while minimizing PGM (platinum group metals) utilization and its associated impact on catalyst cost.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Owen Herman Bailey, Matthew Hedgecock, Frank-Walter Schuetze, Anke Woerz
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Publication number: 20130267411
    Abstract: Methods are described for making a texturized catalyst. The textural promoter may be a high-surface area, high-porosity, stable metal oxide support. The catalyst is manufactured by reacting catalyst precursor materials and support materials in a single, solvent deficient reaction to form a catalyst. The catalyst may be particles or a coating or partial coating of a support surface.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Applicant: BRIGHAM YOUNG UNIVERSITY,
    Inventors: Brian F. Woodfield, Stacey Smith, David Selck, Calvin H. Bartholomew, Xuchu Ma, Fen Xu, Rebecca E. Olsen, Lynn Astle
  • Patent number: 8551910
    Abstract: The invention relates to a porous structure comprising a ceramic material comprising mainly or consisting of an oxide material of the pseudobrookite type comprising titanium, aluminum, magnesium and zirconium in proportions such that the phase of the pseudobrookite type substantially satisfies the formula: (Al2TiO5)x(MgTi2O5)y(MgTiZrO5)z. This material satisfies the following composition, in mol % on the basis of just the oxides Al2O3, TiO2, MgO and ZrO2: 90<2a+3m<110; 100+a<3t<210?a; and a+t+m+zr=100, in which: a is the molar content of Al2O3; t is the molar content of TiO2; m is the molar content of MgO; and zr is the molar content of ZrO2.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 8, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Stephane Raffy, Philippe Auroy
  • Patent number: 8551908
    Abstract: An exhaust gas purification catalyst includes: a lower catalyst layer that contains a ceria-zirconia mixed oxide having 50 to 70 mass % of CeO2 and 5 mass % or more of Pr2O3 and carries at least one of Pt and Pd; and an upper catalyst layer that contains at least zirconia and carries at least Rh, wherein the total amount of CeO2 per liter of the carrier base is 15 to 30 g. Because the amount of CeO2 is small, formation of H2S is suppressed and a high capability of adsorbing and releasing oxygen is brought out in spite of the small amount of CeO2.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akemi Satou, Masahiko Takeuchi, Keizo Hiraku, Yusuke Kawamura, Takahiro Fujiwara, Tadashi Suzuki, Naoki Takahashi
  • Publication number: 20130261355
    Abstract: Aspects of the invention relate to a catalyst system for the conversion of biomass material. In an exemplary embodiment, the catalyst system has a specific combined mesoporous and macroporous surface area in the range of from about 1 m2/g to about 100 m2/g. The catalyst system can be used in a two-stage reactor assembly unit for the catalytic thermoconversion of biomass material wherein the thermolysis process and the catalytic conversion process are optimally conducted separately.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: KIOR, INC.
    Inventor: Dennis Stamires
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Patent number: 8546294
    Abstract: The present invention provides rhenium-promoted epoxidation catalysts based upon shaped porous bodies comprising a minimized percentage of their total pore volume being present in pores having diameters of less than one micron, and a surface area of at least about 1.0 m2/g. Processes of making the catalysts and using them in epoxidation processes are also provided.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 1, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Albert C. Liu, Hwaili Soo
  • Publication number: 20130248414
    Abstract: Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.
    Type: Application
    Filed: January 23, 2013
    Publication date: September 26, 2013
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventor: GOVERNORS OF THE UNIVERSITY OF ALBERTA
  • Patent number: 8541626
    Abstract: Ketones may be produced in high yields from glycerides of short chain fatty acids by reaction with a carboxylic acid. The reaction is conducted in the presence of a catalyst and under conditions effective for ketonization of decanoate with the carboxylic acid to produce free ketones. Reaction of a glyceride comprising at least one ester of decanoic acid with a carboxylic acid selected from acetic acid and/or propionic acid produces 2-undecanone and/or 3-dodecanone, respectively. Catalysts of the formula FemCenAlpOx, wherein m is between about 0.2 to about 0.6, n is about 0.2, p is between about 0.6 to about 0.2, and x is greater than 0, produce significantly higher yields of the ketones than other known metal oxides.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 24, 2013
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Michael A. Jackson, Steven C. Cermak
  • Publication number: 20130244867
    Abstract: The present invention relates to a novel catalyst for producing N-substituted carbamates, the preparation of the catalyst and an improved method for producing N-substituted carbamates from these novel catalysts. The active component of the catalyst is a heteropoly acid and the catalyst support comprises a metal oxide or a metalloid oxide. The catalyst can be used to promote the reaction of carbamate and amine, thereby generating N-substituted carbamates with high yield. In the presence of the catalyst, the reaction conditions are relatively mild, the catalytic activity and selectivity of the reaction are high, and the reaction time is relatively short. Furthermore, the catalyst can be conveniently separated from the reaction system and recycled, therefore, the catalyst can be used to facilitate the further scale-up test and commercial application.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Inventors: Stefan Wershofen, Stephan Klein, Hongchao Li, Xinkui Wang, Qifeng Li, Maoquing Kang
  • Patent number: 8535632
    Abstract: The present invention relates to a catalyst-containing nanofiber composition, comprising a ceramic nanofiber having a plurality of metal catalysts wherein the metal catalysts exist as dispersed particles partially embedded in the nanofiber and cover from about 1% to about 90% of the surface area of the ceramic nanofiber.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Akron
    Inventors: George G. Chase, George R Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Publication number: 20130237729
    Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
  • Patent number: 8530372
    Abstract: Catalysts, systems and methods for abating emissions in an exhaust stream are provided. Systems comprising a transition metal oxide stabilized oxygen storage catalyst are described. The emissions treatment system is advantageously used for the treatment of exhaust streams from lean burn engines including diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: September 10, 2013
    Assignee: BASF Corporation
    Inventors: Tian Luo, Michel Deeba
  • Publication number: 20130230721
    Abstract: A method for producing a catalyst using an additive layer method includes: (i) forming a layer of a powdered catalyst or catalyst support material, (ii) binding or fusing the powder in said layer according to a predetermined pattern, (iii) repeating (i) and (ii) layer upon layer to form a shaped unit, and (iv) optionally applying a catalytic material to said shaped unit.
    Type: Application
    Filed: August 22, 2011
    Publication date: September 5, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 8524630
    Abstract: A mesoporous oxide composition includes, other than oxygen, a major amount of aluminum and lesser amounts of phosphorus and at least one rare earth element. The compositions have high surface area and excellent thermal and hydrothermal stability, with a relatively narrow pore size distribution in the mesoporous range. These compositions may be prepared by a hydrothermal co-precipitation method using an organic templating agent. These mesoporous oxide compositions may be used as catalysts or as supports for catalysts, for example, in a fluid catalytic cracking process.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Robert C. Lemon
  • Publication number: 20130225882
    Abstract: An alpha-alumina support for a hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Application
    Filed: April 4, 2013
    Publication date: August 29, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Patent number: 8518242
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Hui Wang
  • Patent number: 8518846
    Abstract: In the present invention, slurry is formed by mixing noble metal-supported powder particles (3) and a binder (4) with each other in a liquid (Step S1), and the noble metal-supported powder particles (3) are dispersed by applying vibrations to the slurry (Step S2), and thereafter, the slurry is spray dried while keeping a state where the noble metal-supported powder particles (3) are dispersed (Step S3), whereby noble metal-supported powder (1) is produced. In the noble metal-supported powder (1) produced by such a method, pores through which exhaust gas flows are formed appropriately, and accordingly, exhaust gas purification performance can be enhanced.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: August 27, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Fumihiro Uchikawa, Yoshiaki Hiramoto, Haruhiko Shibayama, Keita Manyu
  • Patent number: 8518845
    Abstract: A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 27, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Publication number: 20130213018
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 22, 2013
    Applicant: SDCmaterials, Inc,
    Inventors: Qinghua YIN, Xiwang QI, Maximilian A. BIBERGER, Jayashir SARKAR
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Patent number: 8513156
    Abstract: A catalyst for the manufacture of alkylene oxide, for example ethylene oxide, by the vapor-phase epoxidation of alkene containing impregnated silver and at least one efficiency-enhancing promoter on an inert, refractory solid support, said support incorporating a sufficient amount of zirconium component (present and remaining substantially as zirconium silicate) as to enhance at least one of catalyst activity, efficiency and stability as compared to a similar catalyst which does not contain the zirconium component.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 20, 2013
    Inventors: Juliana G. Serafin, Seyed R. Seyedmonir, Albert C. Liu, Hwaili Soo, Thomas Szymanski
  • Patent number: 8513154
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 20, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Timothy L. Allen, Todd R. Bryden, Kevin E. Howard, Steven R. Lakso, Peter C. Lebaron, Jamie L. Lovelace, Juliana G. Serafin, Sten A. Wallin
  • Patent number: 8507720
    Abstract: A catalyst comprising palladium supported on a titania-alumina extrudate is disclosed. The extrudate comprises at least 80 wt % titania and 0.1 to 15 wt % alumina. A palladium catalyst prepared from the titania-alumina extrudate has significantly higher crush strength. Its catalytic performance in vinyl acetate production is improved.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Daniel Travis Shay