Of Group Iii (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/355)
  • Patent number: 8088707
    Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
  • Patent number: 8084386
    Abstract: Method for producing a hydrogen storage material that includes a metal hydride and a non-hydrogenated material and that is doped with a metal as a catalyst, includes; mixing a catalyst precursor, which includes the metal, with the non-hydrogenated material so as to provide a first mixture; agitating the first mixture; thermally treating the first mixture so as to form a composite of the non-hydrogenated material and the metal; mixing the composite with the metal hydride so as to provide a second mixture; and grinding the second mixture so as to provide the hydrogen storage material.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: December 27, 2011
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Maximilian Fichtner, Christoph Frommen
  • Patent number: 8084387
    Abstract: The present invention relates to a cobalt/phosphorus-alumina catalyst in which cobalt is supported as an active component on a phosphorus-alumina support wherein phosphorus is supported on alumina surface. With a bimodal pore structure of pores of relatively different pore sizes, the catalyst provides superior heat- and matter-transfer performance and excellent catalytic reactivity. Especially, when Fischer-Tropsch (F-T) reaction is performed using the catalyst, deactivation by the water produced during the F-T reaction is inhibited and, at the same time, the dispersion and reducing property of cobalt and other active component are improved. Therefore, the cobalt/phosphorus-alumina catalyst for F-T reaction in accordance with the present invention provides good carbon monoxide conversion and stable selectivity for liquid hydrocarbons.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 27, 2011
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation
    Inventors: Ki-won Jun, Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee
  • Patent number: 8084389
    Abstract: A noble metal is supported on an upstream-side catalytic portion 20 at least, and an SOx storage material, such as Mg and K that lower the noble metal's activities, is supported on a downstream-side catalytic portion 21. The noble metal being supported on the upstream-side catalytic portion 20 oxidizes SO2 efficiently to turn it into SOx, because the lowering of oxidizing activities is suppressed. These SOx are retained by means of storage in the SOx storage material being loaded on the downstream-side catalytic portion 21. Therefore, the SOx storing performance improves, and it is good in terms of durability as well.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitsugu Ogura, Takayuki Endo
  • Publication number: 20110312488
    Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is disclosed. Generating the polyol involves, contacting hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one metal component with an oxidation state greater than or equal to 2+.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal
  • Publication number: 20110311392
    Abstract: A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.
    Type: Application
    Filed: December 18, 2008
    Publication date: December 22, 2011
    Inventors: Jian-Ku Shang, Pinggui Wu, Rong-Cai Xie
  • Publication number: 20110313227
    Abstract: A solid alkylation catalyst having a hydrogenation metal and a solid acid in the form of a rare earth exchanged molecular sieve, wherein the catalyst is at least characterized by a porosity of less than 0.20 ml/g in pores below 100 nm in diameter, and a total porosity of greater than 0.30 ml/g. A process for alkylation using the catalyst is also described.
    Type: Application
    Filed: February 9, 2010
    Publication date: December 22, 2011
    Applicant: Albemarle Europe SPRL
    Inventors: Emanuel Hermanus van Broekhoven, Kar-Ming Au-Yeung
  • Patent number: 8080233
    Abstract: A fuel for splitting water into hydrogen and an oxide component comprises a substantially solid pellet formed from a solid-like mixture of a solid-state source material capable of oxidizing in water to form hydrogen and a passivation surface layer of the oxide component, and a passivation preventing agent that is substantially inert to water in an effective amount to prevent passivation of the solid-state material during oxidation. The pellets are brought into contact with an alloy of the passivation preventing agent having a melting point temperature below that of the solid-like mixture to initiate the hydrogen-producing reaction at a lower temperature.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: December 20, 2011
    Assignee: Purdue Research Foundation
    Inventors: Jerry M. Woodall, Charles R. Allen, Jeffrey T. Ziebarth
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20110301392
    Abstract: A catalyst for the dehydrogenation of alkanes or alkyl substituents of hydrocarbons, is a shaped body having at least one oxide from the elements of the main or secondary group II to IV of the periodic table or of a mixed oxide thereof serving as base material of the shaped body. The catalyst further contains an additional constituent which is an oxide of an element of the main group IV of the periodic table, added during the shaping process. A platinum compound and a compound of an element of the main group IV of the periodic table is used as a surface constituent of the catalyst. The invention further relates to the production of the catalyst and to a method for the dehydrogenation of alkanes using the catalyst.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 8, 2011
    Applicant: UHDE GMBH
    Inventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Sascha Wenzel, Oliver Noll, Meinhard Schwefer, Helmut Gehrke
  • Patent number: 8071655
    Abstract: A catalyst applicable to the synthesis gas conversions especially E-T slurry processes, said catalyst comprising: a) a support containing at least a first aluminate element of mixed spinel structure of formula MxM?(1?x)Al2O4/Al2O3.SiO2, x ranging between and excluding 0 and 1, or of simple spinel structure of formula MAl2O4/Al2O3.SiO2, said support being calcined in an at least partly oxidizing atmosphere, at a temperature ranging between 850° C. and 900° C., and b) an active phase deposited on said support, which contains one or more group VIII metals, selected from among cobalt, nickel, ruthenium or iron. Said catalyst is used in a fixed bed or suspended in a three-phase reactor for hydrocarbon synthesis from a CO, H2 mixture.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 6, 2011
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Fabrice Diehl, François Hugues, Marie-Claire Marion, Denis Uzio
  • Publication number: 20110288353
    Abstract: A metal loaded catalyst comprises a support and main active metal components and optional auxiliary active metal components, wherein the main active metal components are elementary substances and obtained by ionizing radiation reducing precursors of main active metal components. The catalyst can be widely used in the catalytic reactions of petrochemistry industry with high activity and selectivity. The catalyst can be used directly without being reduced preliminarily by hydrogen.
    Type: Application
    Filed: November 26, 2009
    Publication date: November 24, 2011
    Inventors: Wei Dai, Jing Peng, Haibo Yu, Hui Peng, Genshuan Wei, Maolin Zhai, Zuwang Mao, Yi Le, Wei Mu, Haijiang Liu, Yunxian Zhu
  • Publication number: 20110275511
    Abstract: A method of preparing a catalyst support is described comprising washing a precipitated metal oxide material with water and/or an aqueous solution of acid and/or base such that contaminant levels in said precipitated metal oxide are reduced. The method may be applied to precipitated alumina materials to reduce contaminants selected from sulphur, chlorine, Group 1A and Group 2A metals. The catalyst supports may be used to prepare catalysts for the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: Johnson Matthey PLC
    Inventors: John L. Casci, Elizabeth M. Holt, Adel F. Neale
  • Patent number: 8052936
    Abstract: In a particulate filter, a catalyst layer containing Pt-carried activated alumina particles, CeZr-based mixed oxide particles and ZrNd-based mixed oxide particles is formed, the proportion of the total amount of the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles in the total amount of the Pt-carried activated alumina particles, the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles is 10% to 60% by mass, both inclusive, and the mass ratio of the CeZr-based mixed oxide particles to the ZrNd-based mixed oxide particles is 20/80 to 80/20, both inclusive. This configuration enhances the particulate burning property and the low-temperature exhaust gas conversion efficiency.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: November 8, 2011
    Assignee: Mazda Motor Corporation
    Inventors: Koichiro Harada, Kenji Suzuki, Kenji Okamoto, Hiroshi Yamada, Akihide Tamani
  • Patent number: 8052937
    Abstract: A catalyst composition for facilitating the oxidation of soot from diesel engine exhaust is provided. The catalyst composition includes a catalytic metal selected from Pt, Pd, Pt—Pd, Ag, or combinations thereof, an active metal oxide component containing Cu and La, and a support selected from alumina, silica, zirconia, or combinations thereof. The platinum group metal loading of the composition is less than about 20 g/ft3. The catalyst composition may be provided on a diesel particulate filter by impregnating the filter with an alumina, silica or zirconia sol solution modified with glycerol and/or saccharose, impregnating the filter with a stabilizing solution, and impregnating the filter with a solution containing the active metal oxide precursor(s) and the catalytic metal precursor(s). The resulting catalyst coated diesel particulate filter provides effective soot oxidation, exhibits good thermal stability, has a high BET surface area, and exhibits minimal backpressure.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: November 8, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Albert Chigapov, Alexei Dubkov, Brendan Carberry
  • Publication number: 20110268634
    Abstract: The invention relates to a monolithic support member comprising channels with walls separating the channels from each other and having a coating deposited thereon, the non-coated channels having a polygonal cross-section profile, wherein the mean thickness dC of the coating in a corner of said cross-section profile is smaller than or equal to the mean thickness dE of the coating on an edge of said cross-section profile plus 85 micrometer; and further relates to a method for the preparation of such coated monolithic support member, the method comprising (i) providing a suspension having a viscosity in the range of from 0.5 to 100 mPas and having a solid content in the range of from 1 to 40 wt.
    Type: Application
    Filed: March 31, 2011
    Publication date: November 3, 2011
    Applicants: BASF Corporation, BASF SE
    Inventors: Markus Linsenbühler, Bernd Sachweh, Saadallah Nemeh, Michel Deeba, Michael Mertler, Matthias Wilhelm Meier
  • Publication number: 20110268242
    Abstract: A recombination apparatus is provided to an off-gas system of a boiling water nuclear plant. An off-gas system pipe connected to a condenser is connected to the recombination apparatus. A catalyst layer filled with a catalyst for recombining hydrogen and oxygen is disposed in the recombination apparatus. The recombination catalyst has a percentage of the number of Pt particles whose diameters are in a range from more than 1 nm to not more than 3 nm to the numbers of Pt particles whose diameters are in a range from more than 0 nm to not more than 20 nm, falling within a range from 20 to 100%. The condenser discharges gas containing an organosilicon compound (ex. D5), hydrogen, and oxygen, which is introduced to the recombination apparatus. Use of the above recombination catalyst can improve the performance of recombining hydrogen and oxygen more than conventional catalysts and the initial performance of the catalyst can be maintained for a longer period of time.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 3, 2011
    Applicants: Nikki-Universal Co., Ltd., Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hidehiro IIZUKA, Motohiro AIZAWA, Toru KAWASAKI, Hirofumi MATSUBARA, Takashi NISHI, Shuichi KANNO, Yasuo YOSHII, Yoshinori EBINA, Takanobu SAKURAI, Tsukasa TAMAI, Michihito ARIOKA
  • Publication number: 20110270007
    Abstract: An alkylation catalyst having a zeolite catalyst component and a binder component providing mechanical support for the zeolite catalyst component is disclosed. The binder component is an ion-modified binder that can include metal ions selected from the group consisting of Co, Mn, Ti, Zr, V, Nb, K, Cs, Ga, B, P, Rb, Ag, Na, Cu, Mg, Fe, Mo, Ce, and combinations thereof. The metal ions reduce the number of acid sites on the zeolite catalyst component. The metal ions can range from 0.1 to 50 wt % based on the total weight of the ion-modified binder. Optionally, the ion-modified binder is present in amounts ranging from 1 to 80 wt % based on the total weight of the catalyst.
    Type: Application
    Filed: May 22, 2011
    Publication date: November 3, 2011
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Joseph E. Pelati
  • Patent number: 8048821
    Abstract: The present invention relates to a catalyst composition for the synthesis of thin multi-walled carbon nanotube (MWCNT) and a method for manufacturing a catalyst composition. More particularly, this invention relates to a multi-component metal catalyst composition comprising i) main catalyst of Fe and Al, ii) inactive support of Mg and iii) optional co-catalyst at least one selected from Co, Ni, Cr, Mn, Mo, W, V, Sn, or Cu. Further, the present invention affords thin multi-walled carbon nanotube having 5˜20 nm of diameter and 100˜10,000 of aspect ratio in a high yield.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: November 1, 2011
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Dong Hwan Kim, Wan Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Patent number: 8043992
    Abstract: A particulate inorganic mixed oxide comprising: aluminum; zirconium; cerium; lanthanum and an additional element selected from the group consisting of neodymium and praseodymium, wherein the inorganic mixed oxide has at least 80% of primary particles with article diameters of 100 nm or less, and at least a part of the primary particles have an enriched surface region where the additional element is locally increased in a surface layer portion thereof.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 25, 2011
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Naoki Takahashi, Takeru Yoshida, Yuki Aoki
  • Publication number: 20110257452
    Abstract: A composite catalyst for aromatization of hydrocarbons includes a molecular sieve catalyst and metal dehydrogenation catalyst present as discrete catalysts in a physical admixture. The molecular sieve catalyst can be a zeolite and the metal dehydrogenation catalyst can be in the form of a nanostructure, such as zinc oxide nanopowder. The catalyst can convert hydrocarbon feedstocks, such as alkanes and alkenes, to aromatics and can be regenerated in-situ.
    Type: Application
    Filed: March 11, 2011
    Publication date: October 20, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Olga Khabashesku, James R. Butler, Darak Wachowicz, Callum Bailey
  • Patent number: 8038745
    Abstract: A carbonaceous feedstock to alcohol conversion process in which carbon dioxide and a portion of the hydrogen produced are removed from the syngas stream issuing from a feedstock reformer, to yield a reduced hydrogen, carbon monoxide and methane syngas stream. The hydrogen and the carbon dioxide are passed through a Fischer Tropsch reactor which is catalyzed to favor the production of methanol. The methanol produced in the Fischer-Tropsch reactor is passed with the reduced hydrogen syngas through a second Fischer-Tropsch reactor which is catalyzed to favor the production of ethanol. Also disclosed, without limitation, are a unique catalyst, a method for controlling the content of the syngas formed in the feedstock reformer, and a feedstock handling system.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: October 18, 2011
    Assignee: Pearson Technologies, Inc.
    Inventor: Stanley R. Pearson
  • Patent number: 8038954
    Abstract: An emission treatment system including a catalyzed soot filter comprising a wall flow monolith and a catalyst comprising at least two types of support particles is described. The first support particle contains at least a platinum component, the second support particles contains at least a palladium component. The wall flow monolith may be washcoated with a slurry comprising at least two types of particles without applying a passivation layer to the wall flow monolith.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF Corporation
    Inventor: Yuejin Li
  • Patent number: 8038956
    Abstract: Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF CORPORATION
    Inventor: Yuejin Li
  • Publication number: 20110250122
    Abstract: The present invention provides a core-shell nanoparticle that includes a metal-oxide shell and a nanoparticle. Pores extend from an outer surface to an inner surface of the shell. The inner surface of the shell forms a void, which is filled by the nanoparticle. The pores allow gas to transfer from outside the shell to a surface of the nanoparticle. The present invention also provides a method of making a core-shell nanoparticle includes forming a metal-oxide shell on a colloidal nanoparticle, which forms a precursor core-shell nanoparticle. A capping agent is removed from the precursor core-shell nanoparticle, which produces the core-shell nanoparticle. The present invention also provides a method of using a nanocatalyst of the present invention includes providing the nanocatalyst, which is the core-shell nanoparticle. Reactants are introduced in a vicinity of the nanocatalyst, which produces a reaction that is facilitated or enhanced by the nanocatalyst.
    Type: Application
    Filed: November 3, 2009
    Publication date: October 13, 2011
    Applicant: The Regents of the University of California
    Inventors: Sang Hoon Joo, Jeong Young Park, Chia-Kuang Tsung, Peidong Yang, Gabor A. Somorjai
  • Patent number: 8034311
    Abstract: An oxidation catalyst that efficiently promotes oxidation of NO to NO2 even in a low temperature range, and an exhaust-gas purification system and method that efficiently removes exhaust-gas components even in a low temperature range are provided. This invention provides an oxidation catalyst comprising platinum and palladium as catalytically active components, which promotes oxidation of nitrogen monoxide to nitrogen dioxide, wherein the oxidation catalyst comprises 1 to 55 parts by weight of the palladium relative to 100 parts by weight of the platinum.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 11, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Masanori Ikeda, Naohiro Kato
  • Patent number: 8034743
    Abstract: To provide a method of production of an exhaust gas purification catalyst support preventing a drop in the heat resistance of alumina or other catalyst support due to the presence of titania and provided with a sulfur poisoning suppression action by titania and an exhaust gas purification catalyst support produced by the same. A method of production of an exhaust gas purification catalyst support comprising, in a basic solution, making alumina particles adsorb ammonium ions and then bringing titania sol into contact with the alumina particle so as to make the alumina particles adsorb the titania particles. An exhaust gas purification catalyst support where at least base points on the alumina particle surfaces adsorb titania particles and the pH does not rise when immersed in an ammonium nitrate solution.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 11, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Patent number: 8030242
    Abstract: The invention concerns a process for preparing metallic nanoparticles with an anisotropic nature by using two different reducing agents, preferably with different reducing powers, on a source of a metal selected from columns 8, 9 or 10 of the periodic table of the elements.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: October 4, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Denis Uzio, Catherine Verdon, Cecile Thomazeau, Bogdan Harbuzaru, Gilles Berhault
  • Publication number: 20110237758
    Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.
    Type: Application
    Filed: September 16, 2009
    Publication date: September 29, 2011
    Applicant: DIC Corporation
    Inventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
  • Publication number: 20110217781
    Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 8, 2011
    Applicant: SYNFUELS INTERNATIONAL, INC.
    Inventors: Marvin M. JOHNSON, Edward R. Peterson, Sean C. Gattis
  • Publication number: 20110218288
    Abstract: A method of producing a carbon fiber aggregate, including bringing a supported catalyst into contact with a carbon-containing compound in a heated zone, the supported catalyst being prepared by heat-treating aluminum hydroxide which has a BET specific surface area of 1 m2/g or less and a cumulative 50% volume particle diameter of 10 to 300 ?m until the BET specific surface area reaches to 50 to 200 m2/g, thereby yielding a support, and then supporting a metal catalyst or a catalytic metal precursor on the support. Also provided is a carbon fiber aggregate produced by the method, a resin composite material including the carbon fiber aggregate, and a catalyst for producing the carbon fiber aggregate.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Applicant: SHOWA DENKO K.K.
    Inventor: Eiji Kambara
  • Patent number: 8012906
    Abstract: A high-temperature catalytic material and a method for producing the same are disclosed. The high-temperature catalytic material is obtained by subjecting a mixture of gibbsite and boehmite in a desired weight ratio to a single dry thermal treatment in the air, without alkaline or hydrothermal treatment, so as to obtain multiphase alumina powder as the high-temperature catalytic material. The multiphase alumina powder applied in the high-temperature catalytic material can raise the temperature of phase transformation, maintain its high specific surface area when suffering high temperatures for a long time, prolongs its lifetime, and reduces the usage of noble metals, resulting in great reduction of cost.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 6, 2011
    Assignee: National Cheng Kung University
    Inventors: Fu-Su Yen, Tan-Gin Lin
  • Patent number: 8007750
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 30, 2011
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 8003567
    Abstract: The present teachings are directed toward hexagonally patterned porous titania synthesized from a titanium isopropoxide precursor using a viscous template of surface-active agents separating nanoscopic bicontinuous channels of water and isooctane. Subsequent catalyst metal salt reduction in the aqueous nanochannels deposits well-separated catalyst metal nanoparticles on the pore surfaces. These nanocomposites exhibit significantly higher carbon monoxide oxidation efficiency than that obtained with known supports with higher specific surface area; efficiency is believed to be due to decreased mass transfer resistance provided the presently disclosed support material.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 23, 2011
    Assignees: Honda Motor Co., Ltd., The Administrators of the Tulane Educational Fund, Rhode Island Board of Governors for Higher Education, Rensselaer Polytechnic Institute
    Inventors: Christopher Brooks, Arijit Bose, Jayashri Sarkar, Ganapathiraman Ramanath, Vijay T. John
  • Patent number: 7998896
    Abstract: An exhaust gas purifying catalyst having a good ignition performance is provided. The exhaust gas purifying catalyst 1 includes a catalyst substrate 3 and a catalyst coating layer 5 which contains a noble metal and a refractory inorganic oxide and is formed on the catalyst substrate. The exhaust gas purifying catalyst is characterized in that the catalyst coating layer 5 includes an upstream portion 11 located upstream and a downstream portion 13 located downstream in a flow direction of an exhaust gas. The upstream portion 11 has a layered structure including an upstream portion inside layer 17 and an upstream portion outside layer 15. The upstream portion inside layer contains a cerium-zirconium composite oxide in which a relative proportion of CeO2 is 50 to 95 wt %, as the refractory inorganic oxide, and the upstream portion outside layer 15 and the downstream portion 13 contain a cerium-zirconium composite oxide in which a relative proportion of ZrO2 is 50 to 95 wt %, as the refractory inorganic oxide.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 16, 2011
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Kenichi Taki, Akimasa Hirai
  • Patent number: 7998897
    Abstract: Catalyst for use in the high temperature shift reaction comprising in its active form a mixture of zinc alumina spinel and zinc oxide in combination with an alkali metal selected from the group consisting of Na, K, Rb, Cs and mixtures thereof. The catalyst has a Zn/Al molar ratio in the range 0.5 to 1.0 and a content of alkali metal in the range 0.4 to 8.0 wt % based on the weight of oxidized catalyst.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: August 16, 2011
    Assignee: Haldor Topsøe A/S
    Inventor: Niels Christian Schiødt
  • Publication number: 20110195013
    Abstract: The present invention provides a supported catalyst for synthesizing carbon nanotubes. The supported catalyst includes a metal catalyst supported on a supporting body, and the supported catalyst has a surface area of about 15 to about 100 m2/g. The supported catalyst for synthesizing carbon nanotubes according to the present invention can lower production costs by increasing surface area of a catalytic metal to thereby allow production of a large amount of carbon nanotubes using a small amount of the catalyst.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Seung Yong BAE, Byeong Yeol KIM, Yun Tack LEE, Young Kyu CHANG, Young Sil LEE
  • Patent number: 7994089
    Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 9, 2011
    Assignee: University of Houston System
    Inventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
  • Publication number: 20110189589
    Abstract: A composite catalyst for a chemical reaction includes a porous metal catalyst that catalyzes a plurality of reactants to provide a reaction product, and a reaction-enhancing material disposed within pores defined by the porous metal catalyst. The reaction-enhancing material enhances attraction of at least one reactant of the plurality of reactants into the pores defined by the porous metal catalyst and enhances expulsion of the reaction product from the pores defined by the porous metal catalyst. A fuel cell according to an embodiment of the current invention has a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. The at least one of the first and second electrodes is at least one of coated with or comprises a composite catalyst.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: The Johns Hopkins University
    Inventors: Jonah Daedalus Erlebacher, Joshua Synder
  • Publication number: 20110182804
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 28, 2011
    Applicant: VELOCYS INC.
    Inventors: Richard Long, Barry L. Yang, Francis P. Daly, Junko M. Watson, Terry Mazanec, Sean P. Fitzgerald, Bradley R. Johnson, Xiaohong Li, Chunshe Cao, Ya-Huei Chin, Anna Lee Tonkovich, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang
  • Publication number: 20110184216
    Abstract: The present invention relates to a process of formulating and preparing supported multi-metal catalysts based on metal oxides and inorganic salts of metals. The impregnation technique is employed by two methods: the slurry method and the modified-pH variation method, which are used in two steps for obtaining the catalyst. The present invention also relates to a process called Glycerol to Propene (GTP) process, corresponding to the transformation of glycerol or glycerin to propene. The reaction involved in the process of the present invention is the selective hydrogenation of glycerin, which takes place by contact of the charge of glycerin carried by hydrogen in a continuous stream system on the catalytic bed containing multi-metal catalysts, specifically prepared for this purpose.
    Type: Application
    Filed: June 24, 2009
    Publication date: July 28, 2011
    Inventors: Jose Carlos Sousa Fadigas, Rossano Gambetta, Cláudio José Araújo Mota, Valter Luiz da Conceicão Goncalves
  • Publication number: 20110182792
    Abstract: The present invention provides a method for producing a highly active catalyst for reforming tar-containing gas used to treat crude gas for chemical energy conversion consisting of converting to a fuel composition consisting mainly of methane, hydrogen and the like, by utilizing sensible heat possessed by crude gas generated during thermal decomposition of carbonaceous raw materials, and using the high chemical reaction activity of high-temperature tar contained in and incidental to the crude gas to convert the tar to light hydrocarbons in the presence of a catalyst; a tar reforming method; and, a method for regenerating a catalyst for reforming tar-containing gas.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 28, 2011
    Inventors: Kimihito Suzuki, Kenichiro Fujimoto
  • Patent number: 7985395
    Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 26, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
  • Patent number: 7985708
    Abstract: A catalyst support is made by coating a metal substrate with a solution containing a precursor for a ceramic and an amphiphilic compound, and treating the coating such that it forms a micelle structure. The coating is then treated to form a mesoporous ceramic coating on the metal substrate. The micelle structure acts as a template, so that the pores are of regular size. The active catalytic material can then be deposited in the pores. The metal substrate may for example be a corrugated foil, which can enable reaction heat to be dissipated from hot spots.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: July 26, 2011
    Assignee: CompactGTL plc
    Inventors: Michael Joseph Bowe, David Leslie Segal
  • Patent number: 7981834
    Abstract: An object of the present invention is to improve hydrocarbon adsorbing property when zeolite is used as an adsorbent for hydrocarbons. The present invention provides an adsorbent for hydrocarbons characterized by comprising A Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range of 10 or more and less than 200 and B Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range from 200 to 1,000, and a catalyst for exhaust gas purification containing said adsorbent for hydrocarbons.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 19, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Hideki Goto, Akihisa Okumura
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20110172086
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Application
    Filed: August 24, 2009
    Publication date: July 14, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 7976989
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 12, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Patent number: 7976804
    Abstract: A catalyst for the decomposition of N2O under the conditions of the Ostwald process, comprising a carrier and a coating made of rhodium, rhodium/palladium or rhodium oxide applied thereto, ensures to yield NO with a particularly low content of laughing gas as the first process product.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 12, 2011
    Assignee: W.C. Heraeus GmbH
    Inventors: Uwe Jantsch, Jonathan Lund, Marek Gorywoda, Marcus Kraus