Exposure To Hot Flue Or Exhaust Gas Patents (Class 502/435)
  • Patent number: 9688934
    Abstract: A method of and device for processing carboneceous material into gas and activated carbon together with blower.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: June 27, 2017
    Assignee: BIXBY ENERGY SYSTEMS, INC.
    Inventor: Sherman Aaron
  • Patent number: 8512569
    Abstract: Fluid filtration articles, including composite nonwoven fibrous webs, and methods of making and using such articles as gas or liquid filtration elements. The articles include a population of coarse microfibers having a population median diameter of at least 1 micrometer (?m) formed as a first layer, and a population of fine fibers having a population median diameter less than 10 ?m formed as a second layer adjoining the first layer. At least one of the fiber populations may be oriented. In one implementation, the coarse microfibers and fine fibers are polymeric, the coarse microfibers have a population median diameter of at least 10 ?m, and the fine fibers have a population median diameter less than 10 ?m. In another implementation, the population of fine fibers has a population median diameter less than 1 ?m. Optionally, one or both of the first and second layers may include particulates.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: August 20, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Bradley W. Eaton, Michael R. Berrigan, William J. Feil, III
  • Patent number: 8150776
    Abstract: Methods involve adding sorbent components, such as calcium oxide, alumina, and silica, as well as optional halogens as part of environmental control. Use of the sorbents leads to significant reductions in sulfur and mercury emissions that otherwise would result from burning coal. Use of the sorbents leads to production of waste coal ash that, while higher in mercury, is nevertheless usable as a commercial product because the mercury in the ash is non-leaching and because the coal ash has a higher cementitious nature by virtue of the increased content of the sorbent components in the ash. Thus, the methods involve adding powders having qualities that lead to the production of a cementitious coal ash while at the same time reducing emissions from a coal burning facility.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: April 3, 2012
    Assignee: NOx II, Ltd.
    Inventor: Douglas C Comrie
  • Patent number: 7759290
    Abstract: To provide an exhaust gas purifying catalyst capable of exhibiting designed characteristics without incurring a material loss. An exhaust gas purifying catalyst (1) of the present invention is characterized in that the catalyst comprises a catalyst support substrate (10) having a plurality of cells to be axially passed through by exhaust gases; a first catalyst portion (11) having a first carrier layer formed on a surface of the cells of the catalyst support substrate and a first catalytic metal loaded on the first carrier layer; and a second catalyst portion (12) having a second carrier layer formed on a surface of the cells of the catalyst support substrate where the first catalyst portion is not formed and a second catalytic metal loaded on the second carrier layer, and that the catalyst support substrate (10) is exposed between the first catalyst portion (11) and the second catalyst portion (12).
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Cataler Corporation
    Inventor: Katsunori Murabayashi
  • Patent number: 6595147
    Abstract: A method and apparatus for controlling or removing mercury, mercury compounds and high molecular weight organics, if present, from a resource recovery exhaust stream by separately adding a carbonaceous char to the flue gas while it is still within the unit. The char can be produced in situ by adding a carbonaceous material and allowing it to thermally decompose.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 22, 2003
    Assignee: Hamon Research-Cottrell, Inc.
    Inventors: Aaron J. Teller, Jonathan R. Lagarenne
  • Patent number: 6589904
    Abstract: The present invention provides an activated carbon produced by a process, which includes: activating a carbonaceous material, to obtain an activated carbonaceous material; and contacting the activated carbonaceous material with an acid. Another embodiment of the present invention provides an electrode for an electric double-layer capacitor, which includes the above-described activated carbon. Another embodiment of the present invention provides a filter, which includes the above-described activated carbon. Another embodiment of the present invention provides a shaped article, which includes the above-described activated carbon. Another embodiment of the present invention provides a method for producing activated carbon, which includes activating a carbonaceous material, to obtain an activated carbonaceous material; and contacting the activated carbonaceous material with an acid, to obtain the activated carbon.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: July 8, 2003
    Assignees: Kuraray Co., Ltd., Kuraray Chemical Co., Ltd.
    Inventors: Hideharu Iwasaki, Nozomu Sugo, Shushi Nishimura, Yoshifumi Egawa, Hajime Aoki
  • Patent number: 6558454
    Abstract: A process for removing vapor phase contaminants from a gas stream includes the step of adding a raw carbonaceous starting material into a gas stream having an activation temperature sufficient to convert the raw carbonaceous starting material into an activated material in-situ. The raw carbonaceous starting material can be either a solid-phase, liquid phase or vapor-phase material. The activated material then adsorbs the vapor phase contaminants, and the activation material containing the vapor phase contaminants is removed from the gas stream using a particulate collection device. The process is particularly suited for the removal of vapor phase air toxics, such as mercury, from the flue gas of a combustion process. An apparatus for the removal of vapor phase contaminants from a gas stream is also described.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: May 6, 2003
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Massoud Rostam-Abadi, Sharon Sjostrom
  • Patent number: 6465554
    Abstract: The invention relates to compositions of hexacoordinated ruthenium and osmium carbenes with a carbonyl group as ligand and a vinyl group as substituent on the carbene group as catalysts for the photoinduced ring-opening metathesis of strained cycloolefins. It also relates to novel hexacoordinated ruthenium and osmium carbenes having a carbonyl group as ligand and a vinyl group as substituent on the carbene group, to compositions of the catalyst with cycloolefins, and to the polymerization process.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: October 15, 2002
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Paul Adriaan Van Der Schaaf, Roman Kolly, Andreas Mühlebach, Andreas Hafner
  • Patent number: 6451094
    Abstract: A process for removing vapor phase contaminants from a gas stream includes the step of adding a raw carbonaceous starting material into a gas stream having an activation temperature sufficient to convert the raw carbonaceous starting material into an activated material in-situ. The activated material then adsorbs the vapor phase contaminants, and the activation material containing the vapor phase contaminants is removed from the gas stream using a particulate collection device. The process is particularly suited for the removal of vapor phase air toxics, such as mercury, from the flue gas of a combustion process. An apparatus for the removal of vapor phase contaminants from a gas stream is also described.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: September 17, 2002
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ramsay Chang, Massoud Rostam-Abadi, Shiaoguo Chen
  • Patent number: 6439138
    Abstract: A method and apparatus for controlling or removing mercury, mercury compounds and high molecular weight organics, if present, from a waste incineration apparatus exhaust stream by separately adding a carbonaceous char to the flue gas while the flue gas is still within the unit. The char can be produced in situ by adding a carbonaceous material and allowing the carbonaceous material to thermally decompose.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: August 27, 2002
    Assignee: Hamon Research-Cottrell, Inc.
    Inventors: Aaron J. Teller, Jonathan R. Lagarenne
  • Patent number: 5972826
    Abstract: The present invention discloses an adsorbent comprising a densified carbon black. The densified carbon black comprising the adsorbent preferably has an increase in density of from about 100% to about 500% above the undensified form of the adsorbent. The densified carbon black adsorbent has an increase in adsorption capacity per unit volume over the undensified form of the adsorbent in excess of 100%. The densified carbon blacks are particularly useful as adsorbents for gases.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: October 26, 1999
    Assignee: Cabot Corporation
    Inventors: Ralph Ulrich Boes, Douglas M. Smith, Ranjan Ghosal
  • Patent number: 5438029
    Abstract: A preparing process of activated carbon includes steps of: combusting scrap tires containing metal wire at 400.degree. C. to 900.degree. C. under the presence of oxygen, carbon dioxide and vapor; reheating the generated combustible gases up to 800.degree. C. to 900.degree. C. by adding a further fuel; causing the exhaust gas to heat-exchange with a water pipe boiler so that the temperature of the exhaust gas downs to 180.degree. C. to 250.degree. C.; and introducing the exhaust having a temperature of 180.degree. C. to 250.degree. C. into an electric dust collector so as to collect activated carbon. The particle size of the thus obtained distributed substantially in a range of 90 to 110 mesh and the CEC (cation exchange capacity) of the activated carbon falls within 30 to 40.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: August 1, 1995
    Assignee: The Social Welfare Foundation Hokkaido Rehabily
    Inventors: Takeji Kobata, Yoshihiro Ikenaga
  • Patent number: 5124292
    Abstract: Process for the regeneration of an activated carbon or activated coke product comprising loading the activated product into a reaction vessel having two ends, initiating a flame front at one end of the vessel, introducing an oxidant to the other end of the vessel, and allowing the flame front to move through the activated product toward the end through which the oxidant is introduced.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: June 23, 1992
    Assignee: Chem Char Research, Inc.
    Inventors: David W. Larsen, Stanley E. Manahan
  • Patent number: 4985150
    Abstract: Oxidized coal is used to remove dissolved or suspended matter from aqueous mediums. It is particularly effective in removing metal ions dissolved in aqueous mediums and/or bacteria from aqueous mediums.
    Type: Grant
    Filed: April 18, 1989
    Date of Patent: January 15, 1991
    Assignee: National Energy Council
    Inventors: Izak J. Cronje, Johannes Dekker, Thomas E. Cloete
  • Patent number: 4734394
    Abstract: Molecular sieve carbon fibers capable of separating and purifying nitrogen from air in large quantities are provided. The carbon fibers have diameters of 5 to 50 .mu.m and micropores opening directly at the surface of the carbon fibers with pore sizes of 0.5 nm or less. They are capable of separating nitrogen at a purity of 98% or higher, even 99.9% or higher from air, etc., with a relatively low adsorbing pressure and deadsorbing vacuum. The molecular sieve carbon fibers do not deteriorate during operation since they are resistant to division or powdering and the adsorbing pressure and deadsorbing vacuum are relatively low.
    Type: Grant
    Filed: August 19, 1986
    Date of Patent: March 29, 1988
    Assignee: Nippon Soken, Inc.
    Inventors: Atushi Kosaka, Makoto Takemura, Naohisa Ohyama, Minoru Hatano
  • Patent number: 4615993
    Abstract: Untreated coal is activated with steam at temperatures of 600.degree. to 950.degree. C. in a vibrating fluid bed, which is directly heated. The untreated coal is pre-dried by counter-current passage of the waste gases from the reaction either during feeding of the untreated coal or in the first part of the vibrating fluid bed trough. During the activation, secondary air can be passed in through a sparge pipe which is arranged parallel to the vibrating fluid bed trough. It is possible to carry out the heating exclusively with the supply of secondary air.
    Type: Grant
    Filed: February 11, 1985
    Date of Patent: October 7, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Rudiger Schirrmacher, Gisbert Semmerau
  • Patent number: 4492771
    Abstract: Carbon material for de-sulfurization excellent in adsorptibility and mechanical strength can be produced from coal by controlling the physical properties of the raw material coal before its shaping to particular ranges, and subjecting the shaped coal to carbonization treatment.
    Type: Grant
    Filed: September 24, 1982
    Date of Patent: January 8, 1985
    Assignee: Mitsubishi Chemical Industries Limited
    Inventors: Takashi Hasegawa, Koji Tsuchihashi, Hiroshi Yamashita