Abstract: The present disclosure describes an evaporative emission control canister system that includes: one or more canisters comprising at least one vent-side particulate adsorbent volume comprising a particulate adsorbent having microscopic pores with a diameter of less than about 100 nm; macroscopic pores having a diameter of about 100-100,000 nm; and a ratio of a volume of the macroscopic pores to a volume of the microscopic pores that is greater than about 150%, and having a retentivity of about 1.0 g/dL or less. The system may further include a high butane working capacity adsorbent. The disclosure also describes a method for reducing emissions in an evaporative emission control system.
Type:
Grant
Filed:
December 2, 2022
Date of Patent:
November 26, 2024
Assignee:
INGEVITY SOUTH CAROLINA, LLC
Inventors:
Timothy M. Byrne, Laurence H. Hiltzik, Marta Leon Garcia, Cameron I. Thomson
Abstract: Provided are a carbon catalyst, an electrode, and a battery that exhibit excellent activity. A carbon catalyst according to one embodiment of the present invention has a carbon structure in which area ratios of three peaks fbroad, fmiddle, and fnarrow obtained by separating a peak in the vicinity of a diffraction angle of 26° in an X-ray diffraction pattern obtained by powder X-ray diffraction satisfy the following conditions (a) to (c): (a) fbroad: 75% or more and 96% or less; (b) fmiddle: 3.2% or more and 15% or less; and (c) fnarrow: 0.4% or more and 15% or less.
Type:
Grant
Filed:
September 25, 2019
Date of Patent:
July 26, 2022
Assignees:
NISSHINBO HOLDINGS INC., NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY
Abstract: A laminar stream reactor for the production of hydrochar of a solid-fluid mixture of water and a carbon-containing component, wherein the solid-fluid mixture is treated at a temperature of 100-300° C. and a pressure of 5-70 bar, consists of tubular reactor units of largely vertical holding sections (1,3) and direction-changing diverters (2,4). The holding sections are thereby flown through slower by the solid-fluid mixture than the remaining tube distances, as they have larger diameters.
Abstract: Sorbent compositions that include a base sorbent material having a high porosity and surface area and a boron-selective agent are particularly useful for the sequestration of boron from waste materials such as coal combustion residual leachate (CCRs). By using a boron-selective agent in conjunction with a high surface area base sorbent material such as activated carbon or biochar, a sorbent composition with a high capacity for sequestering boron at relatively low cost is provided.
Type:
Grant
Filed:
December 15, 2017
Date of Patent:
May 25, 2021
Assignee:
ADA Carbon Solutions, LLC
Inventors:
Micala D. Mitchek, Roger H. Cayton, Joseph M. Wong, Robert B. Huston, Lingyan Song
Abstract: Disclosed is a method for making a polymer or copolymer aerogel product by forming an aerogel polymer or copolymer solution in the presence of a polymer or copolymer catalyst and solvent therefor. The aerogel polymer or copolymer solution is drained onto a spinning disk or cup. The solvent is removed under aerogel forming conditions to produce the aerogel fiber web or yarn product.
Abstract: The present invention aims to provide an adsorbent for oral administration comprising ACF that has high adsorption or removal performance by adsorbing or removing toxic substances in the living body greatly and rapidly. The present invention is an adsorbent for oral administration comprising activated carbon fibers for treating or preventing kidney diseases or dialysis complications.
Abstract: Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Type:
Grant
Filed:
October 15, 2013
Date of Patent:
February 14, 2017
Assignee:
STC.UNM
Inventors:
Alexey Serov, Plamen B Atanassov, Barr Halevi, Paul Short
Abstract: Polyethylene aerogels and aerogel fiber webs have a high degree of molecular alignment and interconnected fibers, which offer good mechanical strength and high porosity with open interconnected three-dimensional pore structure of the aerogel fibers. The high porosity of the aerogel fibers forming the web, offer a distinct advantage over solid fibers and fiber webs formed from polymer melts, or other non-gel form of polymer solutions. In this procedure, the polymer in solution is made into cross-linked gel with three-dimensional open pore structure before introducing it to the fiber web making process.
Abstract: Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
June 30, 2015
Assignee:
California Institute of Technology
Inventors:
Nicholas P. Stadie, Brent T Fultz, Channing Ahn, Maxwell Murialdo
Abstract: The disclosure relates to methods for forming activated carbon comprising providing a feedstock mixture comprising a carbon feedstock and at least one chemical activating agent, heating the feedstock mixture to at least the fluxing temperature of the feedstock mixture to form a feedstock melt, atomizing the feedstock melt and introducing the atomized feedstock mixture into a reactor, rapidly heating the atomized feedstock to at least the solidification temperature by introducing a hot stream into the reactor, introducing the heated feedstock mixture into a reaction vessel, and holding the heated feedstock mixture in the reaction vessel at a temperature and for a time sufficient to react the carbon feedstock with the at least one chemical activating agent to form activated carbon, wherein rapidly heating the atomized feedstock comprises heating the mixture within a time period sufficient to maintain the feedstock mixture in a substantially solid state throughout the rapid heating stage.
Abstract: The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.
Abstract: Catalyst compositions comprising molybdenum, sulfur and an alkali metal ion supported on a nanofibrous, mesoporous carbon molecular sieve are useful for converting syngas to higher alcohols. The compositions are produced via impregnation and may enhance selectivity to ethanol in particular.
Type:
Grant
Filed:
December 1, 2011
Date of Patent:
April 7, 2015
Assignee:
Georgia Tech Research Corporation
Inventors:
Christopher W. Jones, Pradeep K. Agrawal, Tien Thao Nguyen
Abstract: Mesoporous activated carbon is disclosed. In at least some embodiments, virgin activated carbon to be processed may be coconut shell-based. The enhanced activated carbon may have a mesopore structure of at least about 10%. The enhanced activated carbon may be produced through a calcium-catalyzed activation process. A chelator may also be used. Catalyzed thermal activation may be carried out until a desired mass loss is achieved.
Abstract: The present invention provides a high surface area porous carbon material and a process for making this material. In particular, the carbon material is derived from biomass and has large mesopore and micropore surfaces that promote improved adsorption of materials and gas storage capabilities.
Type:
Grant
Filed:
November 8, 2007
Date of Patent:
January 6, 2015
Assignee:
The Curators of the University of Missouri
Inventors:
Peter Pfeifer, Galen J. Suppes, Parag Shah, Jacob W. Burress
Abstract: Disclosure is made of a specific process for producing activated carbon in spherical form, starting with organic polymer spherules based on styrene and divinylbenzene, wherein said polymer spherules contain chemical groups leading to the formation of free radicals and thus to cross-linkages by their thermal decomposition, in particular sulfonic acid groups. Furthermore, various application purposes for the thus-produced activated carbon spherules are named.
Abstract: An adsorbent for an oral administration, comprising a surface-modified spherical activated carbon wherein an average diameter is 0.01 to 1 mm, a specific surface area determined by a BET method is 700 m2/g or more, a volume of pores having a pore diameter of 7.5 to 15000 nm is from 0.25 mL/g to 1.0 mL/g, a total amount of acidic groups is 0.30 to 1.20 meq/g, and a total amount of basic groups is 0.20 to 0.7 meq/g, is disclosed.
Abstract: A sorbent dialysis cartridge is provided for removal of uremic toxins from dialysate wherein the sorbent cartridges can use non-enzymatic urea-binding materials in place of urease. The cartridge can have a first sorbent layer loaded with a polymerizable urea complexing agent and a second sorbent layer loaded with a crosslinker. The crosslinker can be crosslinkable with a soluble urea complex reaction product of the polymerizable urea complexing agent and urea when passing through the first sorbent layer to form a crosslinked polymeric urea complex which is attachable to the second sorbent layer. In another option, a sorbent layer can be used which has an insolubilized crosslinked polymeric urea-bindable complex attached thereto, wherein the crosslinked polymeric urea-bindable complex can be a reaction product of a crosslinker and polymerizable urea complexing agent. Methods and sorbent dialysis systems using the cartridge, and methods of making the sorbent material, are provided.
Abstract: An orally administered adsorbent which has a high ability of adsorbing indoxylsulfuric acid, indoleacetic acid, and indole, a method permitting easy and advantageous production of the same, and a drug using the same. The orally administered adsorbent is obtained from spherical particles of activated carbon by carbonizing and activating spherical particles of a furfuryl alcohol resin obtained by resinifying furfuryl alcohol through a self-condensation reaction and curing the resinified furfuryl alcohol.
Type:
Grant
Filed:
January 2, 2013
Date of Patent:
October 21, 2014
Assignee:
Asahi Organic Chemicals Industry Co., Ltd.
Abstract: The present invention is a preparation method for asphalt-based spherical activated carbon which requires no infusibilization process. Placing coal tar asphalt into a melting device; introducing compressed air of 0.1 MPa-0.5 MPa into the device and stirring until a melting temperature of 280° C.-350° C. is reached; continuing for 2-8 hours until the base material has a softening point of 200° C.-260° C.; after cooling down, pulverizing the base material to obtain asphalt powder. Obtaining 34%-79% by mass of carbon powder, 1%-10% by mass of binder, and 20%-65% by mass of the asphalt powder and then forming spherical particles with a diameter of 0.5 mm-5 mm with the carbon powder, the binder and the asphalt powder at room temperature. Introducing the spherical particles of asphalt directly into an asphalt carbonization furnace for carbonization at a temperature of 600° C.-900° C. under protection of an inert gas to obtain asphalt spherical carbon.
Abstract: Adsorbed natural gas (ANG) technology is an energy efficient approach for storing NG at room temperature and low pressure. ANG technology can be applied to several aspects of the NG industry. The usage of an adsorbent material in natural gas storage and transport may provide increased storage density of NG at a given pressure and decreased pressure of gaseous fuel at a given gas density. Such adsorbent materials have been shown to store substantial quantities of natural gas at relatively modest pressures. Because lower-pressure vessels can be far less expensive than comparable sized high-pressure vessels, ANG based storage can be used to lower the cost of storing natural gas in various applications.
Type:
Application
Filed:
March 14, 2014
Publication date:
September 18, 2014
Applicant:
OSCOMP SYSTEMS INC.
Inventors:
Jimmy ROMANOS, Pedro T. SANTOS, Scott RACKEY
Abstract: An additive for hydroconversion processes includes a solid organic material having a particle size of between about 0.1 and about 2,000 ?m, a bulk density of between about 500 and about 2,000 kg/m3, a skeletal density of between about 1,000 and about 2,000 kg/m3 and a humidity of between 0 and about 5 wt %. Methods for preparation and use of the additive are also provided. By the use of the additive of the present invention, the hydroconversion process can be performed at high conversion level.
Type:
Grant
Filed:
November 7, 2012
Date of Patent:
September 16, 2014
Assignee:
Intevep, S.A.
Inventors:
Carlos Canelon, Angel Rivas, Omayra Delgado, Miguel Paiva, Giuseppe Di Sarli, Luis Zacaris
Abstract: A method of fabricating a porous carbon composition, the method comprising subjecting a precursor composition to a thermal annealing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer and (ii) a lignin component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material comprising a carbon structure in which is included mesopores having a diameter within a range of 2 to 50 nm, wherein said porous carbon composition possesses a mesopore volume of at least 50% with respect to a total of mesopore and micropore volumes. Also described are the resulting mesoporous carbon composition, a composite of the mesoporous carbon material and at least one pharmaceutical agent, and the administration of the carbon-pharmaceutical dosage form to a subject.
Abstract: Disclosed is a method of producing an adsorbent. The method includes hydrophilizing a surface of activated carbon with an oxidizing agent, and immersing the activated carbon in a solution of a basic compound.
Abstract: A novel method to increase volumetric hydrogen storage capacity for Pt/AC materials, which comprises a material providing step, an acid washing step, a glucose mixing step, a pellet pressing step combining liquefaction and carbonization, a impurity removing step, a mixed solution introducing step, and a washing and filtering step to provide a method for high quality hydrogen storage material production by supporting platinum on active carbon.
Type:
Grant
Filed:
December 22, 2011
Date of Patent:
June 17, 2014
Assignee:
Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
Abstract: Methods and systems for producing activated carbon from a particulate coal feedstock that include the introduction of a buffering gas, a moisture spray, a finest carbon fraction as a fuel, and certain gas ratios. Different methods and system configurations allow the production of activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions.
Abstract: To obtain adsorbent (10), meltable core which melts away during baking and binder are added to powdery activated carbon having microscopic pore whose size is less than 100 nm together with water and mixed together, then this mixture is molded into hollow cylindrical shape whose outside diameter is 4˜6 mm and baked. Although macroscopic pore whose side is 100 nm or more is formed by the meltable core, proportion of volume of the macroscopic pore to volume of the microscopic pore is adjusted to 65%˜150%. The adsorbent (10) has shape in cross section formed from cylindrical wall (10A) and cross-shaped radial wall (10B), and thickness of each part is within a range of 0.6˜3 mm. The adsorbent (10) of the present invention can satisfy adsorbing/desorbing performance of fuel vapor, flow resistance as a canister and strength of the adsorbent at the same time.
Type:
Application
Filed:
May 29, 2012
Publication date:
May 8, 2014
Inventors:
Koji Yamasaki, Mitsunori Hitomi, Takashi Nagamine
Abstract: The invention is directed to a method for producing an oxygenated biochar material possessing a cation-exchanging property, wherein a biochar source is reacted with one or more oxygenating compounds in such a manner that the biochar source homogeneously acquires oxygen-containing cation-exchanging groups in an incomplete combustion process. The invention is also directed to oxygenated biochar compositions and soil formulations containing the oxygenated biochar material.
Type:
Grant
Filed:
February 27, 2013
Date of Patent:
April 29, 2014
Assignee:
UT-Battelle, LLC
Inventors:
James W. Lee, Archibald C. Buchanan, III, Barbara R. Evans, Michelle K. Kidder
Abstract: Carbon cryogels, methods for making the carbon cryogels, methods for storing a gas using the carbon cryogels, and devices for storing and delivering a gas using the carbon cryogels.
Abstract: A system for activating carbonaceous material including a carbonaceous material feedstock unit for producing a carbonaceous material of less than 5% mineral content; a digestion unit in communication with the carbonaceous material feedstock unit; an acid feedstock unit in communication with the digestion unit for providing an acid mixture solution; a separation unit in communication with the digestion unit for separating the digested carbonaceous material from the acid mixture solution; a dryer unit in communication with the separation unit for drying the digested carbonaceous material and separating the carbonaceous material; and a thermal unit for activating the carbonaceous material to produce activated carbonaceous material, the thermal unit having an inlet for receiving the carbonaceous material from the dryer unit and an outlet for exiting the activated carbonaceous material from thermal unit.
Abstract: A process for the production of low-temperature activated or partially activated partially decomposed organic matter for use as an ion-exchange medium comprising the steps of granulating partially decomposed moisture-bearing organic matter, drying the granules and activating the granules at a temperature of about 175-520° C., wherein the granule has a hardness and cation-exchange capacity suitable for a particular application desired.
Abstract: Nanoporous and mesoporous carbon materials are fabricated in a pyrolysis process in which a starting mixture including a carbonizing polymer and a pyrolyzing polymer are employed. In one instance, the carbonizing polymer and pyrolyzing polymer are joined together in the form of a block copolymer. In another instance, the carbonizing polymer is a polyfurfuryl alcohol and the pyrolyzing polymer is polyethylene glycol diacid. These two polymer materials are mixed together and not copolymerized. The pore structure of the material may be controlled by controlling the molecular weight of various of the polymer components.
Type:
Grant
Filed:
April 26, 2007
Date of Patent:
February 11, 2014
Assignee:
The Penn State Research Foundation
Inventors:
Henry C. Foley, Ramakrishnan Rajagopalan, Andrew P. Marencic, Christopher L. Burket
Abstract: The invention relates to a method of preparing an oil absorbent composition. The method comprises heating and then de-mineralising a precursor plant material under conditions suitable to produce an oil absorbent composition comprising charcoal. The invention extends to oil absorbent compositions per se, such as charcoal-based compositions, and to various uses of the compositions for efficiently and rapidly absorbing spilled oil, for example from water surfaces, or from bituminous sands.
Type:
Application
Filed:
October 3, 2013
Publication date:
February 6, 2014
Applicant:
The Forestry Commission
Inventors:
Franciscus Antonius Anna Maria De Leij, James Stratford, Tony Hutchings
Abstract: A sorbent that is particularly effective for the efficient adsorption and subsequent desorption of ammonia is produced from a high-purity carbon material which is exposed to an oxidizing environment so as to produce an effective amount of at least one oxygen species on its exposed surfaces. The high purity carbon material may be produced by carbonizing a polymer material, and the sorbent may comprise a support having an open-cell, three dimensional, lattice-like structure.
Type:
Application
Filed:
July 12, 2013
Publication date:
January 16, 2014
Applicant:
Advanced Fuel Research, Inc.
Inventors:
Marek A. Wójtowicz, Joseph E. Cosgrove, Michael A. Serio
Abstract: Activated carbon having a low contact pH and their use in the purification of water, as well as methods for making such low contact pH activated carbon and filters and methods for purifying water are described herein. The methods for preparing such low contact pH activated carbons provides an effective and less costly means for preparing activated carbons for purification processes.
Abstract: A sorbent structure comprising a continuous activated carbon body in the form of a flow-through substrate; and an additive provided on the flow-through substrate, wherein the additive is capable of enhancing the sorption of CO2 on the sorbent structure. Methods of making the sorbent structure, its use for CO2 capture, and methods for regenerating the structure for further use.
Type:
Grant
Filed:
February 26, 2009
Date of Patent:
July 30, 2013
Assignee:
Corning Incorporated
Inventors:
Kishor Purushottam Gadkaree, Youchun Shi
Abstract: Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.
Type:
Application
Filed:
March 8, 2013
Publication date:
July 25, 2013
Applicant:
The Curators of the University of Missouri
Inventor:
The Curators of the University of Missouri
Abstract: The invention relates to the use of a particulate active carbon, in particular in the form of active carbon particles, preferably active carbon beads, for the field of medicine and/or for the production of a medicament, wherein the active carbon employed has a large micropore volume content, based on the total pore volume of the active carbon. A microporous active carbon of this type if particularly suitable for medicinal use.
Type:
Grant
Filed:
December 18, 2006
Date of Patent:
July 23, 2013
Assignee:
Blucher GmbH
Inventors:
Hasso Von Blücher, Oliver Böhm, Michael Klemund
Abstract: A method for preparing carbon aerogels and carbon aerogels obtained therefrom are disclosed. The method for preparing carbon aerogels comprises: mixing organic starting materials including phloroglucinol and furfural with a solvent capable of dissolving the organic materials in a predetermined ratio to form a sol solution; adjusting pH of the sol solution adequately by using an acidic or basic catalyst, gelling the sol solution at room temperature under atmospheric pressure, and aging the resultant gels; substituting the solvent in thus obtained gels with liquid carbon dioxide, followed by drying in a supercritical state, to form organic aerogels; and pyrolyzing the organic aerogels in an electric furnace under inert atmosphere to obtain carbon aerogels. Particularly, the gels are formed at room temperature in a short period of time by adequately adjusting pH of the sol solution. Therefore, the method provides improved time efficiency and energy efficiency as compared to existing methods for preparing gels.
Type:
Grant
Filed:
October 9, 2008
Date of Patent:
July 9, 2013
Assignee:
Korea Institute of Science and Technology
Inventors:
Dong Jin Suh, Tae Jin Park, Young-Woong Suh, Young Hyun Yoon, Hyun-Joong Kim
Abstract: Provided is a hydrogen-storing carbon material with improved hydrogen storage capacity. The hydrogen-storing carbon material has a total pore volume of 0.5 cm3/g or more, and a ratio of a total mesoporous volume to a total microporous volume per unit weight of 5 or more. In addition, the hydrogen-storing carbon material may have a nitrogen content of 0.5 wt % or more and less than 20 wt %. In addition, the hydrogen-storing carbon material may have a stable potential of ?1.28 V or more when a cathode current with respect to the hydrogen-storing carbon material is held at 1,000 mA/g in electrochemical measurement by chronopotentiometry involving using the hydrogen-storing carbon material in a working electrode in a three-electrode method.
Type:
Grant
Filed:
February 21, 2011
Date of Patent:
July 2, 2013
Assignees:
National University Corporation Gunma University, National University Corporation Hokkaido University, Nisshinbo Holdings Inc.
Abstract: Activated cellulosic-based carbon is rendered more thermally stable by exposure to water or aqueous acid, and optionally, to a halogen and/or a halogen-containing compound. Such treated cellulosic-based carbon has enhanced thermal properties and is suitable for use in mitigating the content of hazardous substances in flue gases, especially flue gases having a temperature within the range of from about 100° C. to about 420° C.
Type:
Application
Filed:
August 19, 2011
Publication date:
June 27, 2013
Applicant:
Albemarle Corporation
Inventors:
Christopher J. Nalepa, Gregory H. Lambeth, Qunhui Zhou, Jonathan P. O'Dwyer
Abstract: Mercury adsorbed from combustion gas by activated carbon can be sequestered in concrete containing air entraining admixtures. The activated carbon may be made by providing a carbon char made from anthracite or low-volatile bituminous coal that was devolatilized and carbonized in an oxygen-depleted environment and activating this char in the presence of steam to provide an activated carbon with an acid blue 80 index of less than about 30 milligrams per gram of carbon. The activated carbon may also be made by providing a carbon char that was devolatilized and carbonized in an oxygen-depleted environment and activating this char in the presence of oxygen to provide an activated carbon. The carbon may be injected into a combustion gas stream containing fly ash and mercury and may then be removed with fly ash from the gas stream. The resulting composition may be used as a partial substitute for cement in air-entrained concretes.
Type:
Grant
Filed:
November 23, 2007
Date of Patent:
April 16, 2013
Assignee:
Albemarle Corporation
Inventors:
Yinzhi Zhang, Qunhui Zhou, Sidney G. Nelson
Abstract: Mercury adsorbed from combustion gas by activated carbon can be sequestered in concrete containing air-entraining admixtures. The activated carbon may be made by providing a carbon char made from coconut shell, wood, or lignite that was activated by a method selected from the group consisting of activating with steam, activating with CO2, activating in an environment containing free oxygen, and combinations thereof to provide an activated carbon with an Acid Blue 80 Index of less than about 30 milligrams per gram of carbon. The activated carbon may be injected into a combustion gas stream containing fly ash and mercury and may then be removed with fly ash from the gas stream. The resulting composition may be used as a partial substitute for cement in air-entrained concretes.
Type:
Grant
Filed:
March 25, 2011
Date of Patent:
March 26, 2013
Assignee:
Albemrle Corporation
Inventors:
Ronald Ray Landreth, Sidney G. Nelson, Jr., Yinzhi Zhang, Qunhui Zhou, Christopher J. Nalepa
Abstract: The invention is directed to a method for producing an oxygenated biochar material possessing a cation-exchanging property, wherein a biochar source is reacted with one or more oxygenating compounds in such a manner that the biochar source homogeneously acquires oxygen-containing cation-exchanging groups in an incomplete combustion process. The invention is also directed to oxygenated biochar compositions and soil formulations containing the oxygenated biochar material.
Type:
Grant
Filed:
January 13, 2010
Date of Patent:
March 19, 2013
Assignee:
UT-Battelle, LLC
Inventors:
James W. Lee, Archibald C. Buchanan, III, Barbara R. Evans, Michelle K. Kidder
Abstract: A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.
Type:
Grant
Filed:
January 21, 2011
Date of Patent:
February 5, 2013
Assignees:
UT-Battelle, LLC, University of Tennessee Research Foundation
Inventors:
Sheng Dai, Georges A. Guiohon, Chengdu Liang
Abstract: The invention provides a method for preparing activated charcoal from a precursor material comprising high mineral content plant or algal material by heating the precursor material under suitable conditions sufficient to produce activated charcoal therefrom. The invention also provides various applications of the activated charcoal per se.
Type:
Application
Filed:
January 11, 2010
Publication date:
January 24, 2013
Applicant:
THE UNIVERSITY OF SURREY
Inventors:
Franciscus Antonius, Anna Maria De Leij, James Peter Stratford
Abstract: Catalytically activated carbon fibers and methods for their preparation are described. The activated carbon fibers are engineered to have a controlled porosity distribution that is readily optimized for specific applications using metal-containing nanoparticles as activation catalysts. The activated carbon fibers may be used in all manner of devices that contain carbon materials, including but not limited to various electrochemical devices (e.g., capacitors, batteries, fuel cells, and the like), hydrogen storage devices, filtration devices, catalytic substrates, and the like.
Abstract: An adsorbent for oral administration, characterized by comprising a spherical activated carbon, wherein a diameter is 0.01 to 1 mm, a specific surface area determined by Langmuir's adsorption equation is 1000 m2/g or more, and a diffraction intensity ratio, an R value, determined by an equation (1): R=(I15?I35)/(I24?I35)??(1) wherein I15 is a diffraction intensity when a diffraction angle (2?) of an X-ray diffractometry is 15°, I35 is a diffraction intensity when a diffraction angle (2?) of an X-ray diffractometry is 35°, and I24 is a diffraction intensity when a diffraction angle (2?) of an X-ray diffractometry is 24°, is 1.4 or more; and an adsorbent for an oral administration, characterized by comprising a surface-modified spherical activated carbon, wherein a diameter is 0.01 to 1 mm, a specific surface area determined by Langmuir's adsorption equation is 1000 m2/g or more, a total amount of acidic groups is 0.40 to 1.00 meq/g, a total amount of basic groups is 0.40 to 1.
Abstract: Methods for producing devolatilized and/or activated carbon in a reactor or reaction vessel of a heat treatment system from a suitable carbonaceous feedstock by introducing the feedstock into the reactor tangentially at a rotational velocity of at least 90 RPM. The methods include the steps of providing a combination of conveying means and a gas flow having various compositions and creating distinct carbonaceous feedstock material flow patterns and process conditions such that the feedstock is conveyed through the reactor or reaction vessel and heated via combustion, thereby producing activated carbon or other heat-treated carbons while concurrently avoiding adverse reaction conditions. Single and two-stage heat treatment systems may be used to heat a carbon feedstock, to which one or more industrial minerals may be added to co-produce compositions such as lime with the heat-treated carbon.
Abstract: A system and process for gasification of a carbonaceous feedstock uses pyrolysis to produce a gas product, which may include methane, ethane, and other desirable hydrocarbon gases, and a solids product, which includes activated carbon or carbon. The gas product may then be filtered using at least a portion of the activated carbon from the solids product as a filtering medium. In an embodiment, at least some of the noxious chemicals are sequestered or removed from the gas product in one or more filtering steps using the activated carbon as a filtering medium. In a further embodiment, the filtering steps are performed in stages using activated carbon at different temperatures. A high-temperature pyrolysis system that produces activated carbon may be combined with another high-temperature pyrolysis system that does not produce activated carbon to provide filtering of noxious compounds using activated carbon from the first high-temperature pyrolysis system.
Abstract: The method enables control over carbon pore structure to provide sorbents that are particularly advantageous for the adsorption of specific gases. It involves preparation of a sorbent precursor material, carbonization of the precursor material, and, usually, activation of the carbonized material. The resultant material is subjected to heat treatment and/or to surface conditioning by a reducing gas at elevated temperatures.
Type:
Grant
Filed:
December 24, 2009
Date of Patent:
July 31, 2012
Assignee:
Advanced Fuel Research, Inc.
Inventors:
Marek A. Wójtowicz, Eric Rubenstein, Michael A. Serio