Zsm Type Patents (Class 502/77)
  • Patent number: 7220692
    Abstract: A two phase catalyst is disclosed with one or more transition metals such as Cu, Co, Fe, Ag and Mo supported on a molecular sieve having a pore size not greater than 8 ? along with a stabilizing oxide of one or more of the oxides of Zr, Mo, V, Nb or the rare earths coating the molecular sieve. A method of preparing the two phase catalyst and using same to remediate NOx in combustion gases is also described.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: May 22, 2007
    Assignee: UChicago Argonne, LLC
    Inventors: Christopher L. Marshall, Michael K. Neylon
  • Patent number: 7220885
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 22, 2007
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Patent number: 7214637
    Abstract: The present invention relates to a process for the preparation of zeolitic catalysts of the MFI type in spheroidal form. The process consists in emulsifying and consolidating in paraffinic hydrocarbons, in the presence of a non-ionic surface-active agent or a suitable combination of a non-ionic surface-active agent and a cationic surface-active agent, a dispersion of particles of zeolitic material of the MFI type in a silica sol.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: May 8, 2007
    Assignee: Polimeri Europa S.p.A.
    Inventors: Luigi Balducci, Leonardo Dalloro, Alberto Cesana, Roberto Buzzoni
  • Patent number: 7202189
    Abstract: A catalyst, a process for using the catalyst whereby the catalyst effectively transalkylates C7, C9, and C10 aromatics to C8 aromatics are disclosed. The catalyst comprises a support such as mordenite plus a metal component. The catalyst provides an enhanced life and activity for carrying out the transalkylation reactions at relatively low temperatures. This is achieved by reducing the maximum particle diameter of cylindrical pellets to 1/32 inch (0.08 cm) or a trilobe to 1/16 inch (0.16 cm).
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 10, 2007
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Sergey V. Gurevich
  • Patent number: 7199070
    Abstract: A catalyst in which X-ray diffraction intensity ratio of the crystal lattice plane spacing d-value of 0.196±0.002 nm to the crystal lattice plane spacing d-value of 0.386±0.008 nm is in a range from 7:100 to 35:100 and a process for making the catalyst to contact with ethylbenzene containing xylenes in the presence of hydrogen.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: April 3, 2007
    Assignee: Toray Industries, Inc.
    Inventors: Kazuyoshi Iwayama, Hiroshi Konta, Masatoshi Watanabe
  • Patent number: 7196029
    Abstract: The present invention relates to the use of a catalytic system comprising a metal of group VIII, a metal of group VI, a metal oxide as carrier and suitable quantities of a component selected from a zeolite of the FER type, phosphorous, and a mixture thereof, in upgrading of hydrocarbons boiling in the naphtha range containing sulfur impurities, namely in hydrodesulfurization with contemporaneous skeleton isomerization of olefins contained in said hydrocarbons and/or with reduction of olefins hydrogenation, carried out in a single step.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: March 27, 2007
    Assignees: Enitechnologie S.p.A., Repsol Petroleo S.A., Elf Antar France S.A., AGIP Petroli S.p.A.
    Inventors: Laura Zanibelli, Virginio Arrigoni, Fernando Albertos, Evangelina Atanes, Thierry Cholley, Febronio Panarello
  • Patent number: 7141526
    Abstract: An exhaust gas purifying catalyst characterized by having zeolite subjected to ion exchange with cerium and deposited on cerium oxide as well and containing platinum and/or palladium, and a process for purifying the exhaust gas using the catalyst. The catalyst, by using zeolite and a noble metal, is enabled to acquire improved durability.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: November 28, 2006
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventor: Tatsuya Yoshikawa
  • Patent number: 7141232
    Abstract: Molecular sieves are prepared by forming a reaction mixture slurry, spray drying the reaction mixture slurry to form particles, and heating the spray dried reaction mixture at a temperature and pressure sufficient to cause crystallization of the molecular sieve. The reaction mixture contains an organic templating agent capable of forming the molecular sieve. The template may be added to the reaction mixture either by adding all of the template prior to spray drying, or by adding a portion of the template prior to spray drying with the remainder being added after spray drying.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 28, 2006
    Assignees: Chevron U.S.A. Inc., PQ Corporation
    Inventors: Stephen J. Miller, David Allen Cooper, Gerald Martin Woltermann, William Edward Cormier
  • Patent number: 7125818
    Abstract: A dewaxing catalyst is selectively activated by treatment with an oxygenate. Selective activation is accomplished by treated the dewaxing catalyst with a carrier feed containing oxygenate. The selectively activated dewaxing catalyst when used to dewax waxy hydrocarbons results in improved yield of isomerate at equivalent pour point over a dewaxing catalyst which has not been oxygenate treated.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 24, 2006
    Assignee: Exxonmobil Research & Engineering Co.
    Inventors: Ian A. Cody, William J. Murphy, Sylvain Hantzer
  • Patent number: 7122494
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of two or more elements from Groups 4–15 of the Periodic Table of the Elements and at least one of oxygen and sulfur, wherein the elements from Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Patent number: 7122496
    Abstract: Adsorbent compositions for vapor-phase adsorption processes, which are selective for para-xylene. Such compositions can be used in gas-phase adsorption processes for the separation of para-xylene or the separation of para-xylene and ethylbenzene from mixed xylenes or a C8 aromatic mixture, respectively. The adsorbent compositions generally comprise materials of a molecular sieve material and a binder, wherein the adsorbent composition has a macropore volume of at least about 0.20 cc/g and a mesopore volume of less than about 0.20 cc/g.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 17, 2006
    Assignee: BP Corporation North America Inc.
    Inventors: Ruth Ann Doyle, Bryce A. Williams, Jeffrey T. Miller
  • Patent number: 7119245
    Abstract: Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: October 10, 2006
    Assignee: Sandia Corporation
    Inventors: Steven G. Thoma, Tina M. Nenoff
  • Patent number: 7115538
    Abstract: An ethylbenzene conversion catalyst is described which comprises a molecular sieve and a hydrogenation metal, wherein the catalyst exhibits a benzene hydrogenation activity at 100° C. of less than about 100 and a metal dispersion, as measured by hydrogen chemisorption, greater than 0.4 and wherein the molecular sieve is steamed to an alpha value of less than 400 prior to incorporation of the palladium with the molecular sieve.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: October 3, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Robert A. Crane, Doron Levin, Daria N. Lissy, Gary D. Mohr, David L. Stern
  • Patent number: 7109140
    Abstract: Mixed matrix membranes are prepared from zeolites and polymers, such as polyimides, in a void free fashion where either no voids or voids of less than several Angstroms are present at the interface of the polymer and the zeolite by bonding (hydrogen, ionic, or covalent) functional groups on the zeolite with functional groups on the polymer. The mixed matrix membranes may be cast or formed by ISAM processes, and may be present on a variety of supports including hollow fibers.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Eva Marand, Todd W. Pechar, Michael Tsapatsis
  • Patent number: 7098353
    Abstract: The present invention generally relates to a process for the skeletal isomerization of unsaturated linear fatty acids and/or alkyl esters thereof to their branched counterparts. Said skeletal isomerization process comprises contacting said unsaturated linear fatty acids and/or alkyl esters thereof with at least one metal ion exchanged solid material catalyst. The present invention also relates to a process for the preparation of branched fatty acids and/or alkyl esters thereof from their straight chain counterparts. Finally, the invention also relates to various derivatives prepared from the branched fatty acids and/or alkyl esters prepared in accordance with the present invention.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: August 29, 2006
    Assignee: Akzo Nobel N.V.
    Inventors: Zongchao Zhang, Shuguang Zhang
  • Patent number: 7094722
    Abstract: The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NOx catalyst. The NOx catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 22, 2006
    Assignee: Caterpillar Inc.
    Inventors: Mari Lou Balmer-Millar, Paul W. Park, Alexander G. Panov
  • Patent number: 7078364
    Abstract: In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: July 18, 2006
    Assignee: University of Southern California
    Inventors: James F. Haw, Weiguo Song
  • Patent number: 7074739
    Abstract: The invention relates to a process for producing alkylated aromatic hydrocarbons, preferably with an oxygen or sulfur containing alkylating agent, in the presence of a multi-component molecular sieve catalyst composition that includes a molecular sieve and an active metal oxide. The invention is also directed to methods of making and formulating the multi-component molecular sieve catalyst composition useful in producing alkylated aromatics.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, James Clarke Vartuli, John Scott Buchanan, Jose G. Santiesteban, Doron Levin
  • Patent number: 7067448
    Abstract: The invention relates to a method for the production of n-alkanes from mineral oil fractions and fractions from thermal or catalytic conversion plants, containing cyclic alkanes, alkenes, cyclic alkenes and/or aromatics. The invention further relates to a catalyst for carrying out said method.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: June 27, 2006
    Assignee: Veba Oil Refining and Petrochemicals GmbH
    Inventors: Jens Weitkamp, Hilmar Bischof, Werner Doehler, Juergen Laege, Franz Fuder, Andreas Raichle, Yvonne Traa
  • Patent number: 7060644
    Abstract: A catalyst for use in aromatic alkylation, such as toluene alkylation with methanol, is comprised of a zeolite with pore size from about 5.0 to about 7.0 ? containing a hydrogenating metal. The catalyst may be used in preparing an alkyl aromatic product by providing the catalyst within a reactor. The catalyst may be contacted with an aromatic hydrocarbon and an alkylating agent in the presence of hydrogen under reaction conditions suitable for aromatic alkylation. The catalyst may also be treated to further increase its stability. This is accomplished by heating the hydrogenating metal loaded zeolite catalyst in the presence of a reducing agent prior to use in an aromatic alkylation reaction to a temperature of from about 400° C. to about 500 ° C. for about 0.5 to about 10 hours.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: June 13, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey
  • Patent number: 7060645
    Abstract: The present invention provides a method for manufacturing a zeolite comprising following steps of: (1): calcining crystals obtained by hydrothermal synthesis reaction of a silicon compound; (2): contact treating a calcined product obtained by the step (1) with an aqueous solution including an amine and/or a quaternary ammonium compound; (3): calcining a treated product obtained by the step (2); and (4): contact treating the calcined product obtained by the step (3) with an aqueous solution including ammonia and/or an ammonium salt. According to the present invention, a method is also provided wherein ?-caprolactam is manufactured by Beckmann rearrangement reaction of cyclohexanone oxime in a gaseous phase in the presence of the zeolite manufactured by the above-described method.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: June 13, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masahiro Hoshino, Masaru Kitamura, Keisuke Sugita
  • Patent number: 7049260
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 7045671
    Abstract: A process for catalytic dehydrogenation of a dehydrogenatable hydrocarbon process stream to the corresponding olefin or olefins, the process comprising contacting the dehydrogenatable hydrocarbon process stream under dehydrogenation conditions with a mesoporous zeotype catalyst having an intra-crystalline, non-crystallographic mesopore system and a mesopore volume of the zeotype crystals above 0.25 ml/g and comprising at least one element belonging to Groups 5–14 in the Periodic Table of the Elements (new notation). The invention also comprises a catalyst for use in the above process.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 16, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Iver Schmidt, Anne Krogh, Claus Hviid Christensen
  • Patent number: 7041616
    Abstract: A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: May 9, 2006
    Assignee: Sandia Corporation
    Inventors: Tina M. Nenoff, Steven G. Thoma, Mutlu Kartin
  • Patent number: 7041774
    Abstract: Disclosed herein are zeolite compositions comprising structural units of the formulae: wherein “B” and “C” are spacer groups comprising C2 to C20 hydrocarbyl groups; and R1 and R2 independently of each other comprise alkali metal, hydrogen, or C1 to C20 alkyl groups. The zeolite compositions further comprise structural units derived from a heteropolyacid compound of the formula: (M3)3(M4)(M5)12O40; where M3 comprises hydrogen or an alkali metal; M4 comprises phosphorus or silicon, and M5 comprises tungsten or molybdenum. Methods for preparing these zeolite compositions are also disclosed. The zeolite compositions are useful as catalysts for producing bisphenols.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 9, 2006
    Assignee: General Electric Company
    Inventors: Gurram Kishan, Rajappan Vetrivel, Nileshkumar Prakash Kukalyekar, Adil Minoo Dhalla, Jonathan L. Male, James L. Spivack, Arumugamangalam Venkataraman Ramaswamy, Anand Pal Singh
  • Patent number: 7033968
    Abstract: A process is described for the manufacture of a crystalline molecular sieve layer on a support, which process comprises impregnation of the support with an impregnating material prior to deposition of a crystalline molecular sieve layer and subsequent removal of substantially all the impregnating material.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Antonie Jan Bons, Marc H. Anthonis
  • Patent number: 7026264
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 ?. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 7026263
    Abstract: Provided herein are hybrid catalysts that are used in the deep catalytic cracking of petroleum naphthas or other hydrocarbon feedstocks, for the selective production of light olefins, in particular ethylene and propylene and BTX aromatics. The hybrid catalysts of this invention contain a chemically treated microporous crystalline silicate such as the pentasil-type silicalite, a mesoporous silica-alumina or zirconium oxide co-catalyst, into which may be incorporated aluminum oxide, molybdenum oxide, lanthanum oxide, cerium oxide or a mixture of aluminum and molybdenum oxides, and an inorganic binder such as bentonite clay.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: April 11, 2006
    Assignee: Valorbec, Société en commandite
    Inventor: Raymond Le Van Mao
  • Patent number: 6969692
    Abstract: A process for the preparation of a metal-doped pentasil-type zeolite comprising the steps of: a) preparing an aqueous precursor mixture comprising a silicon source and an aluminum source, at least one of these sources being doped with a rare earth metal or a transition metal of Groups Vb–VIIIb, Ib, or IIb of the Periodic System, and b) thermally treating the precursor mixture to form a metal-doped pentasil-type zeolite. With this process, metal-doped pentasil-type zeolites can be prepared while the risk of precipitation of the dopant as a separate phase is minimized.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: November 29, 2005
    Assignee: Albemarle Netherlands B.V.
    Inventors: Mike Brady, Erik Jeroen Laheij, Paul O'Connor, Dennis Stamires
  • Patent number: 6964934
    Abstract: The present invention relates to a process for the preparation of doped pentasil-type zeolite, which process comprises the steps of: a) preparing an aqueous precursor mixture from a silicon source, an aluminium source, and doped non-zeolitic seeds; and b) thermally treating the precursor mixture to form a doped pentasil-type zeolite. The term “non-zeolitic seeds” includes seeds made from materials selected from the group consisting of (i) X-ray amorphous materials, (ii) milled crystalline materials, such as milled zeolites, that have a relative crystallinity of not more than 75%, and (iii) crystalline materials other than zeolites, such as clays (e,g, bentonite and kaolin) and (low) crystalline aluminas.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: November 15, 2005
    Assignee: Albemarle Netherlands B.V.
    Inventors: Mike Brady, Erik Jeroen Laheij, Paul O'Connor, Dennis Stamires
  • Patent number: 6958305
    Abstract: There is provided a zeolite bound zeolite catalyst which can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises a first zeolite and a binder comprising a second zeolite. The structure type of the second zeolite is different from the structure type of the first zeolite. The zeolite bound zeolite finds particular application in hydrocarbon conversion process, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: October 25, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary D. Mohr, Johannes Petrus Verduijn
  • Patent number: 6951638
    Abstract: A process is described for producing synthetic zeolites with a MFI structure, a Si/Al atomic ratio from roughly 8 to 45 and very small primary crystallites, a Si source, an Al source and an organic template being reacted with one another under hydrothermal conditions, the Si/Al atomic ratio being roughly 9 to 50 and the ratio between the longest and shortest axis of the primary crystallites being roughly 1.0 to 1.5:1; the process is characterized in that the reaction is carried out in the presence of seed crystals with an average particle size from roughly 10 to 100 nm, preferably from 20 to 50 nm from an earlier batch without separation from the mother liquor. The zeolites as claimed in the invention which are characterized by the combination of the following features: (a) Si/Al atomic ratio 8 to 45:1 (b) Size of the primary crystallites roughly 0.01 to 0.05 microns; (c) Ratio between longest and shortest axis of the primary crystallites: roughly 1.0 to 1.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: October 4, 2005
    Assignee: Sud-Chemie AG
    Inventors: Götz Burgfels, Josef Schönlinner, Friedrich Schmidt
  • Patent number: 6951968
    Abstract: A process for the production of olefins by catalytic cracking, the process comprising feeding a hydrocarbon feedstock containing at least one olefin of C4 or greater over a MFI-type crystalline silicate catalyst to produce an effluent containing at least one olefin of C2 or greater by catalytic cracking which is selective towards light olefins in the effluent, whereby for increasing the catalyst stability by limiting formation of coke thereon during the cracking process the catalyst has a silicon/aluminum atomic ratio of at least about 180, the olefin partial pressure is from 0.1 to 2 bars, and the feedstock contacts the catalyst at an inlet temperature of from 500 to 600° C.
    Type: Grant
    Filed: December 5, 1998
    Date of Patent: October 4, 2005
    Assignee: Fina Research S.A.
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 6943131
    Abstract: A method of modifying a zeolite catalyst to increase selectivity of the catalyst is achieved by dissolving alumina in a phosphorus-containing acid solution, and treating the zeolite catalyst with the dissolved alumina solution. A method of preparing an aromatic product, such as a xylene product, is also achieved by contacting the modified zeolite catalyst with an aromatic hydrocarbon, such as toluene, and an alkylating agent, such as methanol, under reaction conditions suitable for aromatic alkylation. For xylene products the aromatic hydrocarbon may be toluene and the reaction conditions may be suitable for at least one of toluene methylation and transalkylation.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: September 13, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Pamela Harvey
  • Patent number: 6936560
    Abstract: A zeolite laminated composite of the present invention is characterized in that it has a separation membrane being constituted by a zeolite, and a porous substrate being constituted by a zeolite and having a catalyst function, and that the separation membrane is formed on the porous substrate. The composite shows a small pressure loss and hardly generates defects such as cracks in the separation membrane even under a high temperature condition.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: August 30, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuhiko Mori, Toshihiro Tomita, Hitoshi Sakai
  • Patent number: 6916757
    Abstract: A catalyst composition suitable for reacting hydrocarbons, e.g., conversion processes such as fluidized catalytic cracking (FCC) of hydrocarbons, comprises attrition resistant particulate having a high level (30-85%) of stabilized zeolites having a constraint index of 1 to 12. The stabilized zeolite is bound by a phosphorous compound, alumina and optional binders wherein the alumina added to make the catalyst is about 10% by weight or less and the molar ratio of phosphorous (P2O5) to total alumina is sufficient to obtain an attrition index of about 20 or less. The composition can be used as a catalyst per se or as additive catalyst to a conventional catalyst and is especially suitable for enhancing yields of light olefins, and particularly ethylene, produced during conversion processes.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: July 12, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Terry G. Roberie, Philip S. Deitz
  • Patent number: 6908544
    Abstract: The present invention relates to a cracking catalyst comprising layered clays and a process for cracking hydrocarbon oils using said catalyst. Said catalyst is prepared by the process comprising the following steps: mixing and slurrying an expandable clay, a modifier component, pseudo-boehmite and water for 0.1-10 h to obtain a slurry, aging the slurry at 50-85° C. for 0.1-10 h, then drying and forming the slurry to obtain a formed material, water washing and aging the solid, and finally drying and calcining the solid, and said modifier being one or more selected from the group consisting of hydroxyl polymers of silicon, aluminum, zirconium or titanium, and substances comprising one or more of said hydroxyl polymers.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: June 21, 2005
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing,
    Inventors: Zhiqing Yu, Zhijian Da, Zhenyu Chen, Enze Min, Jun Long, Caiying Li, Zhiqing Huang
  • Patent number: 6887444
    Abstract: An exhaust gas purifying catalyst for purifying exhaust gas discharged from an automotive internal combustion engine. The exhaust gas purifying catalyst comprises a monolithic substrate. A HC adsorbing layer for adsorbing hydrocarbons (HC) is formed on the monolithic substrate. The HC absorbing layer contains zeolite. A catalytic layer for producing hydrogen (H2) and reducing NOx is formed on the HC adsorbing layer. The catalytic layer functions to produce hydrogen (H2) from at least one of hydrocarbons and carbon monoxide (CO) and to reduce nitrogen oxides (NOx) with the produced hydrogen and at least one of hydrocarbons and carbon monoxide in exhaust gas.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: May 3, 2005
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shinji Yamamoto
  • Patent number: 6887815
    Abstract: Porous material (1) for catalytic conversion of exhaust gases including a carrier with a first porous structure (2, 2?), and an oxidation catalyst (OX) which in the presence of oxygen (O2), according to a first reaction (3), has the ability to catalyze oxidation of nitrogen monoxide (NO) into nitrogen dioxide (NO2) and, according to a second reaction (4, 4?), to catalyze oxidation of a reducing agent (HC), which oxidation catalyst (OX) is enclosed inside the first porous structure (2, 2?). The invention is characterized in that the oxidation catalyst (OX) includes iron (Fe) and silver (Ag) loaded on a zeolite. The invention also relates to a method and an arrangement and a catalytic conversion device that utilizes the porous material, and indicates an advantageous use of the porous material.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: May 3, 2005
    Assignees: Volvo Technology Corporation, Süd-Chemie AG
    Inventors: Arno Tissler, David Habermacher, Edward Jobson, Johan A. Martens, Lennart Cider
  • Patent number: 6887814
    Abstract: The invention concerns a process for the immobilization of a homogeneous catalyst comprising immobilizing the homogeneous catalyst in zeotype crystals with a non-crystallographic mesopore system and a mesopore volume of the zeotype crystals above 0.25 ml/g. The invention also concerns a catalytic material prepared by the immobilization process.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: May 3, 2005
    Assignee: Haldor Topsoe A/S
    Inventors: Konrad Herbst, Michael Brorson, Iver Schmidt, Claus J. H. Jacobsen
  • Patent number: 6884743
    Abstract: The present invention relates to the manufacture of solid materials or shaped bodies containing at least one zeolite and being at least partly crystalline. Furthermore, the present invention relates to the solid materials or shaped bodies as such and to the use of these materials for reactions of compounds having at least one C—C double bond with at least one hydroperoxide. Specifically, the present invention relates to a process for the manufacture of a solid material containing at least one zeolite and being at least partly crystalline, wherein the synthesis of the said solid material involves at least one partial step of contacting at least one transition metal oxide source with at least one epoxide or hydrolysate thereof prior to or during the at least partial crystallization of said solid material.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 26, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Müller, Georg Krug, Peter Bassler, Hans-Georg Göbbel, Peter Rudolf, Joaquim Henrique Teles
  • Patent number: 6864200
    Abstract: A repeated “soak and dry” selectivation process for preparing a modified metallosilicate catalyst composite is disclosed comprising of a mixture of amorphous silica, alumina and a pore size controlled metallosilicate useful for alkylaromatic conversion. The process comprises (a) contacting an intermediate pore metallosilicate with an organosilicon compound in a solvent for a specific duration and then recovering the solvent, (b) combining the organosilicon compound treated metallosilicate with water and then drying the catalyst, (c), repeating the steps a) and b) above and (d) calcining the catalyst in an oxygen containing atmosphere sufficient to remove the organic material and deposit siliceous matter on the metallosilicate. In a another embodiment, when the organosilicon compound is water soluble, step (b) may be avoided.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: March 8, 2005
    Assignee: Indian Petrochemicals Corporation Limited
    Inventors: Jagannath Das, Anand Bhimrao Halgeri
  • Patent number: 6858555
    Abstract: A catalyst composition for the cracking of heavy oil, which has high cracking activity for heavy components in the heavy oil and features reduced deposition of coke. The catalyst composition is comprised of a zeolite, a mixed metal oxide, clay and a metal oxide, and the total acidity of a portion of said catalyst, said portion being composed of said catalyst components other than said zeolite, is from 0.02 to 0.08 mmol/g.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Masato Shibasaki, Nobuo Ootake
  • Patent number: 6858556
    Abstract: A process for the preparation of a stabilized dual zeolite catalyst-comprising two types of zeolites, a low silica molecular sieve and a stabilized high silica zeolite is disclosed. The catalyst is useful for cracking heavier hydrocarbons into lighter useful products.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: February 22, 2005
    Assignee: Indian Oil Corporation Limited
    Inventors: Mohan Prabhu Kuvettu, Sanjay Kumar Ray, Gopal Ravichandran, Venkatchalam Krishnan, Satyen Kumar Das, Satish Makhija, Sobhan Ghosh
  • Patent number: 6855247
    Abstract: A hydroconversion catalyst for hydrodesulfurizing feedstock while preserving octane number of the feedstock includes a support having a mixture of zeolite and alumina, the zeolite having an Si/Al ratio of between about 1 and about 20, and an active phase on the support and including a first metal selected from group 6 of the periodic table of elements, a second metal selected from the group consisting of group 8, group 9 and group 10 of the period table of elements and a third element selected from group 15 of the periodic table of elements. A hydroconversion process is also disclosed.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 15, 2005
    Assignee: Intevep, S.A.
    Inventors: Jorge Tejada, Nelson P. Martínez, José Antonio Pérez, Leonardo Escalante, José M. Larrauri, José A. Salazar
  • Patent number: 6843971
    Abstract: A process for reducing the nitrogen oxides present in a lean exhaust gas from an internal combustion engine by selective catalytic reduction on a reduction catalyst using ammonia, wherein a fraction of the nitrogen monoxide present in the exhaust gas is oxidized to nitrogen dioxide before the exhaust gas, together with ammonia, is passed over the reduction catalyst. The reduction catalyst contains a zeolite exchanged with transition metals and oxidation of the nitrogen monoxide is performed in such a way that the exhaust gas contains 30 to 70 vol. % of nitrogen dioxide before contact with the reduction catalyst.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: January 18, 2005
    Assignee: UMICORE AG & Co. KG
    Inventors: Adolf Schäfer-Sindlinger, Marcus Pfeifer, Paul Spurk, Yvonne Demel, Thomas Kreuzer, Egbert Lox
  • Patent number: 6841510
    Abstract: This invention is directed to a molecular sieve composition or a catalyst containing molecular sieve which has a relatively high residual silica index, preferably at least about 1.5. The molecular sieve or catalyst can be made by contacting a template-containing molecular sieve with a silicon containing material having an average kinetic diameter that is larger than the average pore diameter of the sieve or catalyst, and heating to leave residual silica at the sieve or catalyst surface. The molecular sieve or catalyst is particularly effective in making an olefin product from an oxygenate feedstock.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: January 11, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, John Di-Yi Ou, Jar-Lin Kao, Hsiang-Ning Sun
  • Patent number: 6838406
    Abstract: The present invention relates to a process for the preparation of zeolitic catalysts of the MFI type in spheroidal form. The process consists in emulsifying and consolidating in paraffinic hydrocarbons, in the presence of a non-ionic surface-active agent or a suitable combination of a non-ionic surface-active agent and a cationic surface-active agent, a dispersion of particles of zeolitic material of the MFI type in a silica sol.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: January 4, 2005
    Assignee: Polimeri Europa S.p.A.
    Inventors: Luigi Balducci, Leonardo Dalloro, Alberto Cesana, Roberto Buzzoni
  • Patent number: 6831184
    Abstract: The present invention relates to a process for the skeletal isomerization of unsaturated linear fatty acids to branched fatty acids which comprises contacting said unsaturated linear fatty acids with at least one large pore zeolite catalyst wherein said at least one zeolite catalyst comprises a material having a three dimensional channel structure having a pore diameter of at least 6.0 Å. In another embodiment, the invention relates to a process for the skeletal isomerization and hydrogenation of unsaturated linear fatty acids to saturated branched fatty acids which comprises contacting said unsaturated linear fatty acids with at least one metal-zeolite catalyst.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: December 14, 2004
    Assignee: Akzo Nobel N.V.
    Inventors: Shuguang Zhang, Zongchao Zhang, Dale Steichen
  • Publication number: 20040249226
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventors: An-Hsiang Wu, Charles A. Drake