Superconductor Next To Two Or More Nonsuperconductive Layers Patents (Class 505/237)
  • Patent number: 7226893
    Abstract: A superconductive article is disclosed, having a substrate a buffer layer overlying the substrate, and a superconductive layer overlying the buffer layer. According to embodiments, the article may have low density characteristics, associated with the article as a whole and/or individual layers of the article. The article may be embodied in the form of long length conductors, coiled long length conductors, and machines incorporating such coils, for example.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: June 5, 2007
    Assignee: Superpower, Inc.
    Inventors: Venkat Selvamanickam, Drew W. Hazelton, Yunfei Qiao
  • Patent number: 7220315
    Abstract: A production method for a polycrystalline thin film, depositing polycrystalline thin film on a polycrystalline substrate. The temperature of the polycrystalline substrate is set within a range from 150° C. to 250° C., the ion beam energy of the ion beam is adjusted within a range from 175 eV to 225 eV, and the ion beam is irradiated at an angle of incidence from 50° to 60° with respect to the normal for the film forming surface of the polycrystalline substrate. By this production method, the grain boundary inclination angle, formed by identical crystal axes of the crystal grains along a plane parallel to the film forming surface of the polycrystalline substrate, is limited to 20° or less, and a polycrystalline thin film having a strong crystal orientation can be stably produced.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: May 22, 2007
    Assignee: Fujikura Ltd.
    Inventor: Yasuhiro Iijima
  • Patent number: 7162287
    Abstract: This invention relates to an oxide superconducting wire comprising oxide superconducting filaments, a high-density ceramic layer uniformly surrounding each of the filaments, and a silver sheath that directly covers the ceramic layer. The ceramic layer becomes non-superconducting when the filaments are cooled to an operating temperature of oxide superconductors. The oxide superconductors can be isolated by the ceramic that acts as a highly resistive material or an insulator. A high normal resistance is achieved, and thereby AC loss is reduced remarkably.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: January 9, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Naoki Ayai
  • Patent number: 7149560
    Abstract: A superconducting cable includes a first conductor layer formed of superconducting wires, and an insulating layer formed at the outer periphery of the first conductor layer. The first conductor layer is an assembly of a plurality of superconducting wires obtained by forming an RE based superconductor layer on a metal substrate. The current is limited by an electrical resistance generated when the current of the first conductor layer exceeds the critical current, thereby preventing the superconducting cable from being damaged. A superconducting cable line is formed of a base and a current limiter, which is formed by using the above-described superconducting cable. Accordingly, when a current exceeding the rated current of the base flows, it can be damped.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: December 12, 2006
    Assignee: Sumitomo Electric Industries, Ldt.
    Inventor: Kazuya Ohmatsu
  • Patent number: 7129196
    Abstract: A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: October 31, 2006
    Assignee: Los Alamos National Security, LLC
    Inventors: Stephen R. Foltyn, Quanxi Jia, Paul N. Arendt, Haiyan Wang
  • Patent number: 7109151
    Abstract: A superconducting tape is disclosed, including a substrate, a buffer layer overlying the substrate, a superconductor layer overlying the buffer layer, and stabilizer layers overlying opposite sides of the tape. Also disclosed are components incorporating superconducting tapes, methods for manufacturing same, and methods for using same.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: September 19, 2006
    Assignee: SuperPower, Inc.
    Inventors: Hee-Gyoun Lee, Yi-Yuan Xie
  • Patent number: 7071149
    Abstract: A superconductor article includes a substrate and a first buffer film disposed on the substrate. The first buffer film includes a polycrystalline material. An IBAD (ion-beam assisted deposition) second buffer film is disposed on the first buffer film, the second buffer film having a biaxial crystal texture. A superconductor layer can be disposed on the second buffer film.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: July 4, 2006
    Assignee: SuperPower, Inc.
    Inventor: Venkat Selvamanickam
  • Patent number: 7067458
    Abstract: A multi-layered unit according to the present invention includes a support substrate formed of fused quartz, an electrode layer formed on the support substrate, made of BSCCO (bismuth strontium calcium copper oxide) having a stoichiometric composition represented by Bi2Sr2CaCu2O8, having an anisotropic property and conductivity and enabling epitaxial growth of a dielectric material containing a bismuth layer structured compound thereon and oriented in the c axis direction, and a dielectric layer formed by epitaxially growing a dielectric material containing a bismuth layer structured compound having a composition represented by SrBi4Ti4O15 on the electrode layer.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: June 27, 2006
    Assignee: TDK Corporation
    Inventor: Yukio Sakashita
  • Patent number: 6946428
    Abstract: This invention uses a novel approach for the fabrication of low temperature superconducting (LTS) magnesium di-boride (MgB2) wire or cable. This approach employs the use of a “high temperature fiber or tape” as a high performance substrate material. High temperature fiber substrates are low-cost, round, light-weight, non-magnetic, and capable of withstanding, without degradation, the high reaction temperatures necessary to form the superconducting phase of Mg—B.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: September 20, 2005
    Inventor: Christopher Mark Rey
  • Patent number: 6943136
    Abstract: A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 13, 2005
    Assignee: The Regents of the University of California
    Inventors: Chuhee Kwon, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6933065
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: August 23, 2005
    Assignee: The Regents of the University of California
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 6925316
    Abstract: A method of forming magnets using stacked superconducting films-disks of coated conductor is described. The superconducting material may be either from the oxide high temperature superconducting (HTS) class or the metallic/inter-metallic low temperature superconducting (LTS) class. An LTS metallic or inter-metallic compound can include Nb, Va, Ti, Hg, Pb, NbTi, Nb3Sn, Nb3Al, etc. or the more recently discover MgB2. An oxide superconductor refers to the RE-Ba2Cu3Ox compound, wherein RE=Y, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu; the Bi2Sr2CaCu2Ox, the (Bi, Pb)2Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox or (Bi, Pb)2Sr2Ca2Cu3Ox compound; the Tl2Ca1.5BaCu2Ox or Tl2Ca2Ba2Cu3Ox compound; or a compound involving substitution such as the Nd1+xBa2?xCu3Ox compounds.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: August 2, 2005
    Inventor: Christopher Mark Rey
  • Patent number: 6921741
    Abstract: A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc?s of 2.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: July 26, 2005
    Assignee: The Regents of the University of California
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Quanxi Jia
  • Patent number: 6884527
    Abstract: An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTixRu1?xO3 layer.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: April 26, 2005
    Assignee: The Regents of the University of California
    Inventors: James R. Groves, Stephen R. Foltyn, Paul N. Arendt
  • Patent number: 6849580
    Abstract: A superconductor article includes a substrate and a first buffer film disposed on the substrate. The first buffer film has a uniaxial crystal texture characterized (i) texture in a first crystallographic direction that extends out-of-plane of the first buffer film with no significant texture in a second direction that extends in-plane of the first buffer film, or (ii) texture in a first crystallographic direction that extends in-plane of the first buffer film with no significant texture in a second direction that extends out-of-plane of the first buffer film. A second buffer film is disposed on the first buffer film, the second buffer film having a biaxial crystal texture. A superconductor layer can be disposed on the second buffer film. Ion-beam assisted deposition (IBAD) can be used to deposit the second buffer film.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: February 1, 2005
    Assignees: University of Florida, Superpower, Inc.
    Inventors: David P. Norton, Venkat Selvamanickam
  • Patent number: 6845255
    Abstract: A composite superconducting tape which includes at least one constituent superconducting tape that may be a multiplicity of stacked and bonded tapes including a pair of exposed opposite major faces, and at least one outer layer of metal tape overlying and bonded to one of the exposed major faces. In the case where two outer layer metal tapes are included, the strength thereof differ.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: January 18, 2005
    Assignee: Metal Manufacturers Limited
    Inventor: Rupeng Zhao
  • Patent number: 6845254
    Abstract: By rapidly heating a precursor wire having a multifilamentary structure in which multiple composite cores in which a composite compound of an Nb—Ga compound and Nb is embedded in Nb are embedded in Nb, Ta, Nb-base alloy or Ta-base alloy as a matrix material to a temperature range of 1400 to 2100° C. in 2 seconds, quenching the precursor wire at a rate of 5000° C./second or larger, and subjecting the precursor wire to additional heat treatment at a temperature range of 600 to 850° C. for 1 to 400 hours, a superconducting wire having a multifilamentary structure in which multiple composite cores in which a composite compound containing Nb3Ga of a stoichiometric composition embedded in Nb are embedded in Nb, Ta, Nb-base alloy or Ta-base alloy as a matrix material is obtained.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: January 18, 2005
    Assignee: National Institute for Materials Science
    Inventors: Kiyoshi Inoue, Yasuo Iijima, Akihiro Kikuchi, Yuji Yoshida
  • Publication number: 20040248743
    Abstract: A superconductor article includes a substrate and a first buffer film disposed on the substrate. The first buffer film has a uniaxial crystal texture characterized (i) texture in a first crystallographic direction that extends out-of-plane of the first buffer film with no significant texture in a second direction that extends in-plane of the first buffer film, or (ii) texture in a first crystallographic direction that extends in-plane of the first buffer film with no significant texture in a second direction that extends out-of-plane of the first buffer film. A second buffer film is disposed on the first buffer film, the second buffer film having a biaxial crystal texture. A superconductor layer can be disposed on the second buffer film. Ion-beam assisted deposition (IBAD) can be used to deposit the second buffer film.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 9, 2004
    Applicants: University of Florida, SuperPower, Inc.
    Inventors: David P. Norton, Venkat Selvamanickam
  • Patent number: 6828507
    Abstract: This invention relates to a practical superconducting conductor based upon biaxially textured high temperature superconducting coatings. In particular, methods for producing flexible and bend strain-resistant articles and articles produced in accordance therewith are described which provide improved current sharing, lower hysteretic losses under alternating current conditions, enhanced electrical and thermal stability and improved mechanical properties between otherwise isolated films in a coated high temperature superconducting (HTS) wire. Multilayered materials including operational material which is sensitive to bend strain can be constructed, in which the bend strain in the region in which such operational material is located is minimized. The invention also provides a means for splicing coated tape segments and for termination of coated tape stack ups or conductor elements.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: December 7, 2004
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, Cornelis Leo Hans Thieme, Steven Fleshler, John D. Scudiere, Gregory L. Snitchler, Bruce B. Gamble, Robert E. Schwall, Dingan Yu, Alexander Otto, Elliott D. Thompson, Gilbert N. Riley, Jr.
  • Patent number: 6800591
    Abstract: An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO3 buffer material in such an article, Jc's of up to 1.3×106 A/cm2 have been demonstrated with projected Ic's of over 200 Amperes across a sample 1 cm wide.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: October 5, 2004
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Stephen R. Foltyn, Paul N. Arendt, James R. Groves
  • Publication number: 20040192560
    Abstract: Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.
    Type: Application
    Filed: April 6, 2004
    Publication date: September 30, 2004
    Inventors: Terry G. Holesinger, Stephen R. Foltyn, Paul N. Arendt, James R. Groves, Quanxi Jia, Alicia Ayala
  • Patent number: 6794338
    Abstract: Described is an article having a substrate; a thermochemically stable, amorphous layer comprising tantalum or a tantalum-containing material; a layer of material having a rock salt-like structure having substantial alignment both in-plane and out-of-plane; a superconducting layer formed on said rock salt-like layer having substantial in-plane and out-of-plane alignment; wherein said rock salt-like layer provides a template for the epitaxial growth of said superconducting layer; and an optional buffer layer or layers having substantial alignment both in-plane and out-of-plane, between the rock salt-like structure layer and the superconducting layer.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: September 21, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Jonathan G. Storer, Bruce C. Williams
  • Patent number: 6784139
    Abstract: The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: August 31, 2004
    Assignees: Applied Thin Films, Inc., UT-Battelle, LLC
    Inventors: Sambasivan Sankar, Amit Goyal, Scott A. Barnett, Ilwon Kim, Donald M. Kroeger
  • Patent number: 6777376
    Abstract: In order to provide a superconducting wire that has a high critical current value, has no defects such as bulges, and has high mechanical strength, an oxide superconducting material (1) is covered, and ceramic particles or fibers (3) are buried in the surface of a covering (2) made of metal
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: August 17, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuyuki Kaneko, Munetsugu Ueyama, Akira Mikumo, Naoki Ayai, Shin-ichi Kobayasi
  • Patent number: 6764770
    Abstract: Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO3, R1−xAxMnO3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: July 20, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan P. Paranthaman, Tolga Aytug, David K. Christen, Roeland Feenstra, Amit Goyal
  • Patent number: 6756139
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO3 buffer material in such an article, Jc′s of up to 1.3×106 A/cm2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: June 29, 2004
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Stephen R. Foltyn, Paul N. Arendt, James R. Groves
  • Patent number: 6743533
    Abstract: An oxide superconductor of the present invention characterized in that it comprises: a substrate 1 made of metals having a high melting temperature; at least one oxide intermediate layer 2 and 3 which is formed on at least one surface of the substrate 1; and a thick film oxide superconductor layer 5 which is formed on the oxide intermediate layer 2 and 3 the liquid phase epitaxial method in which the substrate 1 provided with the oxide intermediate layer 2 and 3 is put into a solution 7 containing the elements comprising an oxide superconductor layer, and is then pulled out from the solution 7.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 1, 2004
    Assignees: Fujikura Ltd., Tokyo Electric Power Company, Inc., Railway Technical Research Institute, Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center
    Inventors: Kazuomi Kakimoto, Natsuro Hobara, Teruo Izumi, Yuh Shiohara, Yuichi Nakamura, Kazuya Ohmatsu, Koso Fujino
  • Patent number: 6743531
    Abstract: The object of the present invention is to provide an oxide superconducting conductor having superior strength and superconductor characteristics, and its production method.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: June 1, 2004
    Assignees: Fujikura Ltd., Chubu Electric Power Company Incorporated
    Inventors: Kazunori Onabe, Takashi Saito, Naoji Kashima, Shigeo Nagaya
  • Patent number: 6730410
    Abstract: Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 4, 2004
    Assignees: Electronic Power Research Institute, Incorporated, The Regents of the University of California
    Inventors: Leslie G. Fritzemeier, Qi Li, Martin W. Rupich, Elliott D. Thompson, Edward J. Siegal, Cornelis Leo Hans Thieme, Suresh Annavarapu, Paul N. Arendt, Stephen R. Foltyn
  • Patent number: 6716545
    Abstract: Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: April 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Stephen R. Foltyn, Paul N. Arendt, James R. Groves, Quanxi Jia, Alicia Ayala
  • Patent number: 6716795
    Abstract: The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO2, HfO2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO2 and/or HfO2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO2, HfO2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO2 and HfO2.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: April 6, 2004
    Assignee: UT-Battelle, LLC
    Inventors: David P. Norton, Chan Park, Amit Goyal
  • Patent number: 6716796
    Abstract: A polycrystalline thin film B consisting mainly of oxide crystal grains 20 which have a crystal structure of a Type C rare earth oxide represented by one of the formulas Y2O3, Sc2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, and Pm2O3 formed on a film forming surface of a polycrystalline substrate A wherein grain boundary inclination angles between the corresponding crystal axes of different crystal grains in the polycrystalline thin film along a plane parallel to the film forming surface of the polycrystalline substrate are controlled within 30 degrees.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: April 6, 2004
    Assignees: Fujikura Ltd, International Superconductivity, Technology Center, The Juridical Foundation
    Inventors: Yasuhiro Iijima, Mariko Kimura, Takashi Saito
  • Patent number: 6711421
    Abstract: There is provided a reinforced superconducting tape. The reinforced tape includes a superconducting tape containing a superconducting ceramic material, a first metal reinforcing layer having a greater coefficient of thermal expansion than that of the superconducting tape, and a second metal reinforcing layer having a greater modulus of elasticity than the superconducting tape and the first reinforcing layer.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: March 23, 2004
    Assignee: General Electric Company
    Inventors: Yu Wang, Evangelos Trifon Laskaris
  • Publication number: 20040053079
    Abstract: A high temperature superconducting device includes a substrate (1), a ground plane (2) formed on the substrate with a prescribed pattern and made of an oxidic superconducting material, and a dielectric layer (3) formed on the substrate so as to surround the ground plane. The dielectric layer has the same crystal structure as the oxidic superconducting material and with a heat absorbance closer to that of the oxidic superconducting material than to that of the substrate.
    Type: Application
    Filed: August 6, 2003
    Publication date: March 18, 2004
    Applicants: FUJITSU LIMITED, INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER
    Inventors: Masahiro Horibe, Yoshihiro Ishimaru, Osami Horibe, Keiichi Tanabe
  • Publication number: 20040028954
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: September 25, 2003
    Publication date: February 12, 2004
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Publication number: 20040023077
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO3 buffer material in such an article, Jc's of up to 1.3×106 A/cm2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: March 28, 2002
    Publication date: February 5, 2004
    Inventors: Quanxi Jia, Stephen R. Foltyn, Paul N. Arendt, James R. Groves
  • Publication number: 20040018394
    Abstract: An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO3 buffer material in such an article, Jc's of up to 1.3×106 A/cm2 have been demonstrated with projected Ic's of over 200 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: September 11, 2002
    Publication date: January 29, 2004
    Inventors: Quanxi Jia, Stephen R. Foltyn, Paul N. Arendt, James R. Groves
  • Patent number: 6649570
    Abstract: A buffer layer structure based on doped ceria for providing optimized lattice match with a YBCO layer in a conductor, a lattice matching layer for use in said structure and process of manufacturing thereof. Said buffer layer comprises a CeO2 layer doped with a dopant, and has a superconductive layer of YBCO on said CeO2 layer. The invention is characterized in that the CeO2 layer is a lattice matching layer.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: November 18, 2003
    Assignee: Nexans
    Inventor: Christian Belouet
  • Publication number: 20030211948
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Application
    Filed: April 24, 2003
    Publication date: November 13, 2003
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Patent number: 6632539
    Abstract: The polycrystalline thin film is made of a composite oxide of a cubic crystal system which has a pyrochlore type crystalline structure of a composition represented as either AZrO or AHfO (A in the formula represents a rare earth element selected from among Y, Yb, Tm, Er, Ho, Dy, Eu, Gd, Sm, Nd, Pr, Ce and La) formed on the film forming surface of the polycrystalline substrate, wherein the grain boundary misalignment angle between the same crystal axes of different crystal grains in the polycrystalline thin film along a plane parallel to the film forming surface of the polycrystalline substrate are controlled within 30°.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: October 14, 2003
    Assignees: Fujikura Ltd., International Superconductivity Technology Center,
    Inventors: Yasuhiro Iijima, Mariko Kimura, Takashi Saitoh
  • Publication number: 20030176287
    Abstract: The present invention provides an oxide superconducting conductor A comprising an oxide buffer layer 2 on a base material 1 composed of a high melting point metal, a solid solution layer 4 having a structure similar to an oxide superconducting substance containing constituent elements of the oxide buffer layer 2 on the oxide buffer layer 2, and an oxide superconducting layer having a peritectic temperature lower than that of the solid solution layer 4 having a structure similar to an oxide superconducting substance on the solid solution layer 4 having a structure similar to an oxide superconducting substance.
    Type: Application
    Filed: February 13, 2003
    Publication date: September 18, 2003
    Inventors: Kazuomi Kakimoto, Toru Izumi, Natsuro Hobara, Yuichi Nakamura, Teruo Izumi, Yuh Shiohara
  • Patent number: 6617283
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: September 9, 2003
    Assignee: UT-Battelle, LLC
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Patent number: 6610632
    Abstract: The present invention provides a tape-form oxide superconductor having a high degree of c-axis alignment and in-plane alignment and an improved Jc value. On a tape-form metal substrate which is non-magnetic or weakly magnetic and has high strength, there are sequentially formed a first intermediate layer wherein YSZ or Zr2Rx2O7 particles are deposited from a target with ion irradiation from a direction inclined to the metal substrate, a second intermediate layer of CeO2 or Y2O3 is formed and an RE1+XBa2−XCu3OY superconducting layer is formed by coating metalorganic salts containing F, followed by thermal decomposition.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 26, 2003
    Assignees: International Superconductivity Technology Center, The Juridicial Foundation, Showa Electric Wire & Cable Co., Ltd., Fujikura Ltd., Railway Technical Research Institute, Kabushiki Kaisha Toshiba
    Inventors: Tetsuji Honjo, Hiroshi Fuji, Yuichi Nakamura, Teruo Izumi, Takeshi Araki, Yutaka Yamada, Izumi Hirabayashi, Yuh Shiohara, Yasuhiro Iijima, Kaoru Takeda
  • Patent number: 6610428
    Abstract: An oxide superconductor article is provided having an oxide superconductor film having a thickness of greater than 0.5 microns disposed on a substrate, said article having a transport critical current density (Jc) of greater than or equal to about 105 A/cm2 at 77K, zero field. The oxide superconductor film is characterized by high Jc and high volume percent of c-axis epitaxial oxide grains, even with thicknesses of up to 1 micron.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 26, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: John A. Smith, Michael I. Cima, Neville Sonnenberg
  • Publication number: 20030144150
    Abstract: A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer.
    Type: Application
    Filed: February 7, 2003
    Publication date: July 31, 2003
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Quanxi Jia
  • Patent number: 6596421
    Abstract: The superconductor structure has a metallic, biaxially textured mount, an intermediate layer system deposited on the mount and including at least two intermediate layers composed of different oxidic materials and, on this, a high-Tc superconducting layer of the M2Cu3Ox type (RE=rare earth; M=alkaline-earth metal). The intermediate layer which faces the mount is composed of Y2O3, and the relatively thinner intermediate layer which faces the superconducting layer is composed of CeO2. The layers are preferably grown heteroepitaxially.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: July 22, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wolfgang Schmidt, Gisela Sipos, Bernd Utz
  • Patent number: 6555256
    Abstract: The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: April 29, 2003
    Assignee: UT-Battelle, LLC
    Inventors: David K. Christen, Qing He
  • Patent number: 6542760
    Abstract: The invention relates a powder in tube type method of making an HTc superconductive multifilament strand having a silver-based matrix, in which: a first envelope is filled with powder reagents for an HTc superconductor; the resulting billet is drawn down into a monofilament strand; said monofilament strand is cut up into lengths and a secondary envelope is filled with the resulting lengths, thereby making a multifilament billet which is drawn down into a multifilament strand; said multifilament strand is cut up into lengths and a new envelope is filled with the resulting lengths, thereby making a new multifilament billet which is drawn down into a new multifilament strand; and it is shaped and subjected to heat treatment; according to the invention, at least one face of the monofilament strand is electrically insulated; and during the first multifilament step the secondary envelope is filled with the resulting insulated lengths.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: April 1, 2003
    Assignee: Nexans
    Inventors: Albert Leriche, Erick Beghin, Gérard Duperray, Denis Legat, Peter Friedrich Herrmann
  • Publication number: 20030059652
    Abstract: There is provided a reinforced superconducting tape. The reinforced tape includes a superconducting tape containing a superconducting ceramic material, a first metal reinforcing layer having a greater coefficient of thermal expansion than that of the superconducting tape, and a second metal reinforcing layer having a greater modulus of elasticity than the superconducting tape and the first reinforcing layer.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Inventors: Yu Wang, Evangelos Trifon Laskaris
  • Patent number: 6537689
    Abstract: The invention relates to multi-layer articles and methods of making such articles. The multi-layer superconductors can have one or more layers with an oriented termination plane. The methods include first conditioning the termination plane of an underlying layer, such as a buffer layer or a superconductor layer, then disposing a layer of material on the conditioned termination plane. The conditioned termination plane can be a high quality termination plane. Superconductor articles formed by these methods can exhibit relatively high critical current densities.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: March 25, 2003
    Assignee: American Superconductor Corporation
    Inventors: Urs-Detlev Schoop, Suresh Annavarapu, Martin W. Rupich, Xiaoping Li, Wei Zhang, Edward J. Siegal, Qi Li