Coating Patents (Class 505/470)
  • Patent number: 8409657
    Abstract: A production process of a thick-film tape-shaped RE-type (123) superconductor having a high critical current value. The production process has the steps of providing a composite substrate having Gd2Zr2O7 and CeO2 stacked in that order onto a Hastelloy substrate, coating a raw material solution prepared by dissolving a trifluoroacetate of Y and Ba and a naphthenate of Cu onto the composite substrate, heat treating the coated composite substrate by calcination, then subjecting the calcined assembly to intermediate heat-treatment at a temperature below the temperature of heat-treatment for superconductor production, and then heat treating the assembly in an argon gas atmosphere under conditions of highest heating temperature 760° C., water vapor partial pressure 13.5%, and oxygen partial pressure 0.09% for superconductor production to produce a tape-shaped RE-type (123) superconductor having a YBCO superconducting film having a thickness of more than about 2 ?m.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: April 2, 2013
    Assignees: The Jurical Foundation, SWCC Showa Cable Systems Co., Ltd.
    Inventors: Ryo Teranishi, Yuji Aoki, Junko Matsuda, Koichi Nakaoka, Teruo Izumi, Yuh Shiohara
  • Patent number: 8389045
    Abstract: An oxide superconductor film formed on a substrate includes an oxide containing at least one metal M selected from the group consisting of yttrium and lanthanoid metals, provided that cerium, praseodymium, promethium and ruthenium are excluded, and barium and copper, in which the film has an average thickness of 350 nm or more, an average amount of residual carbon of 3×1019 atoms/cc or more, and an amount of residual fluorine in a range of 5×1017 to 1×1019 atoms/cc, and in which, when divided the film into a plurality of regions from a surface of the film or from an interface between the film and the substrate, each region having a thickness of 10 nm, atomic ratios of copper, fluorine, oxygen and carbon between two adjacent regions are in a range of ? times to 5 times.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Araki
  • Patent number: 8389444
    Abstract: A method of producing a thin layer, high-temperature superconductor strip is disclosed. In the method, a metal salt solution is formed and coated onto a substrate including a high-temperature superconductor layer. Heat is then applied directly or indirectly to the solution. The metal salt solution may contain a metal-organic salt solution or a metal inorganic metal salt solution. When an inorganic metal salt solution is utilized, a reducing solution may also be applied to the HTSC layer prior to heating. In addition, nano-sized metal particles may be added to the metal salt solution and/or the reducing solution.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: March 5, 2013
    Assignee: BASF SE
    Inventor: Michael Baecker
  • Publication number: 20130053249
    Abstract: The present invention refers to obtaining a solution of metal-organic precursors with a maximum fluorine content of 10% using the solution previously described in patent ES2259919 B1 as the starting point. This modification enables carrying out the thermal treatment of superconducting decomposition layers (pyrolysis) and crystal growth in a single stage. In addition, the low fluorine content reduces the risks of toxicity and corrosion.
    Type: Application
    Filed: December 3, 2010
    Publication date: February 28, 2013
    Applicant: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
    Inventors: Susana Ricart Miró, Xavier Palmer Paricio, Alberto Pomar Barbeito, Teresa Puig Molina, Xavier Obradors Berenguer, Anna Palau Masoliver
  • Publication number: 20130035236
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 7, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Publication number: 20130029848
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes foaming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Patent number: 8354136
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Patent number: 8315678
    Abstract: Superconducting connections are provided to internal layers of a multi-layer circuit board structure, for example by superconducting vias.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 20, 2012
    Assignee: D-Wave Systems Inc.
    Inventor: Sergey V. Uchaykin
  • Patent number: 8306590
    Abstract: Disclosed is a three layer process for making contact points to a high transition temperature superconductor (HTSC), particularly to (Bi,Pb)2 Sr2 Ca2 CU3019+x with and without silver in the superconductor. The contact structure is a three layer configuration with a perforated silver foil (3) sandwiched between two metal spray gun deposited silver layers (2,5) and subsequent heat treatment in air. The contact has been made on tubes and rods (1). The silver contacts are capable of carrying a continuous current of 200 Amps without adding any substantial heat load to the cryogen used to cool the HTSC. The contact resistance at 4.2 K is in the range of 1.5×10 (hoch?8) to 8.5? 10 (hoch?8) OHM in zero applied filed.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Council of Scientific and Industrial Research
    Inventors: Shrikant Ekbote, Gursharan Kaur Padam, Narendra Kumar Arora, Mukul Sharma, Ramesh Sethi, Mrinal Kanti Banerjee
  • Patent number: 8304372
    Abstract: The present invention provides a process for joining oxide-superconducting tubes with a superconducting joint. The process involves the preparation of a partially preformed superconducting material, followed by cold isopressing of the powder of partially performed superconducting material into tube shape and further provided with grooves at both ends of the tubes with a subsequent deposition of a silver layer. The process further involves the lapping of one of the end faces of a pair of said tubes to be joined. These lapped end faces of both the tubes clubbed together on a common silver bush are coated with a paste of the same partially preformed superconducting material in organic formulation. Then these coated end faces are closed pressed together to form a joint. This joint portion and the end portions of the tubes are wrapped with a perforated silver foil followed by deposition of another layer of silver.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: November 6, 2012
    Assignee: Council of Scientific and Industrial Research
    Inventors: Shrikant Narayan Ekbote, Gursharan Kaur Padam, Narendra Kumar Arora, Mukul Sharma, Ramesh Sethi
  • Publication number: 20120264615
    Abstract: A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Inventors: Amit Goyal, Mariappan Parans Paranthaman, Sung Hun Wee
  • Publication number: 20120264612
    Abstract: A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A2B?B?O6, where A is rare earth or alkaline earth metal and B? and B? are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Inventors: Amit Goyal, Sung-Hun Wee
  • Publication number: 20120258864
    Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 11, 2012
    Inventors: Douglas J. Gilbert, Timothy S. Cale
  • Publication number: 20120252676
    Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to BSSCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: Ambature, LLC
    Inventors: Douglas J. Gilbert, Timothy S. Cale
  • Patent number: 8278249
    Abstract: Disclosed is a composition for forming a thick oxide superconductor film, the oxide being an RE-BA—Cu based oxide, wherein RE is at least one element selected from the group consisting of Y, Nd, Sm, Gd, Eu, Yb, Pr, and Ho. The composition contains an RE salt of a keto acid having 4 to 8 carbon atoms as an RE component, barium trifluoroacetate as a Ba component, at least one copper salt selected from the group consisting of a copper salt of a branched saturated aliphatic carboxylic acid having 6 to 16 carbon atoms and a copper salt of an alicyclic carboxylic acid having 6 to 16 carbon atoms as a Cu component, and an organic solvent dissolving these metal salt components. In the composition, the RE to Ba to Cu molar ratio is 1:1.3 to 2.2:2.4 to 3.6 and the content of the organic solvent is 25% to 80% by weight.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 2, 2012
    Assignee: Adeka Corporation
    Inventors: Tomotaka Goto, Atsuya Yoshinaka, Akimasa Yajima
  • Publication number: 20120238454
    Abstract: A substrate for an oxide superconductor including: a metal base; an interlayer of MgO formed on the metal base by ion beam assisted deposition method (IBAD METHOD); and a cap layer that is formed directly on the interlayer and has a higher degree of crystal orientation than that of the interlayer, in which the interlayer of MgO is subjected to a humidity treatment prior to formation of the cap layer.
    Type: Application
    Filed: April 25, 2012
    Publication date: September 20, 2012
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, FURUKAWA ELECTRIC CO., LTD., FUJIKURA LTD.
    Inventors: Masateru YOSHIZUMI, Hiroyuki FUKUSHIMA, Hideyuki HATAKEYAMA, Yutaka YAMADA, Hiroshi TOBITA, Teruo IZUMI
  • Patent number: 8268386
    Abstract: A method for manufacturing a high-temperature superconducting conductor includes providing an elongate substrate to a reactor, the reactor having a longitudinal flow distributor. The longitudinal flow distributor has an entrance, a plurality of exits, and an interior distribution member provided between the entrance and the plurality of exits. The method further includes heating at least a portion of the substrate to a temperature sufficient to facilitate the formation of one of a superconducting material and a predecessor to a superconducting material. Further, the method includes flowing at least one precursor into the longitudinal flow distributor, through the entrance thereof, past an internal distribution member, and out through a plurality of exits, thereby longitudinally distributing the at least one precursor to form the superconducting material or predecessor thereof on the substrate.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: September 18, 2012
    Assignee: SuperPower Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Patent number: 8263531
    Abstract: Under one aspect, a laminated, spliced superconductor wire includes a superconductor joint, which includes (i) first and second superconductor wires, each wire including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer; and (ii) a conductive bridge, the conductive bridge including a substrate, a superconductor layer overlying the substrate, and a cap layer overlying the superconductor layer, wherein the cap layer of the conductive bridge is in electrically conductive contact with a portion of the cap layer of each of the first and second superconductor wires through an electrically conductive bonding material. The spliced wire also includes (b) a stabilizer structure surrounding at least a portion of the superconductor joint, wherein the superconductor joint is in electrical contact with the stabilizer structure; and (c) a substantially nonporous electrically conductive filler, wherein the filler substantially surrounds the superconductor joint.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 11, 2012
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Eric R. Podtburg
  • Publication number: 20120214673
    Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 23, 2012
    Inventor: Alexander Usoskin
  • Publication number: 20120208703
    Abstract: A metal laminated substrate for an oxide superconducting wire is produced by removing, in a state where a copper foil to which rolling is applied at a draft of 90% or more is held at a temperature below a recrystallization temperature, an absorbed material on a surface of the copper foil by applying sputter etching to the surface of the copper foil; removing an absorbed material on a surface of a nonmagnetic metal sheet by applying sputter etching to the surface of the nonmagnetic metal sheet; bonding the copper foil and the metal sheet to each other by reduction rolls at an applied pressure of 300 MPa to 1500 MPa; orienting crystals of the copper by heating a laminated body obtained by bonding at a crystal orientation temperature of copper or above; and forming a protective layer on a copper-side surface of the laminated body by coating.
    Type: Application
    Filed: July 8, 2010
    Publication date: August 16, 2012
    Applicants: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Hironao Okayama, Teppei Kurokawa, Kouji Nanbu, Yoshihiko Isobe, Takashi Koshiro, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuya Ohmastu
  • Patent number: 8236733
    Abstract: A method for forming a precursor solution for metal organic deposition includes dissolving an additive-free first precursor composed of a rare earth element, a second precursor comprising barium, and a third precursor composed of copper into an acid to form a compound solution; dissolving the compound solution into a solvent to form a pre-precursor solution; and evaporating the solvent from the pre-precursor solution to form a precursor solution having an increased viscosity; wherein at least one of the first precursor, the second precursor, and the third precursor is dissolved into a fluorine-free acid. A method for forming a superconducting thick film from the above precursor solution includes forming a thick film by a one-time coating of the precursor solution having an increased viscosity onto a biaxially-textured base followed by heat treating to form the superconducting thick film having a thickness of about 0.2 ?m or more and having no cracking.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: August 7, 2012
    Assignees: Seoul National University Industry Foundation, Sunam Co., Ltd.
    Inventors: Sang-Im Yoo, Seung-Hyun Moon, Geo-Myung Shin
  • Publication number: 20120196752
    Abstract: A method of forming an underlying layer of an alignment film for an oxide superconducting conductor, includes arranging two or more kinds of targets along a lengthwise direction of a base material so as to face a surface of the base material; simultaneously irradiating an ion beam on surfaces of the two or more kinds of targets to deposit constituent particles of the targets on the surface of the base material in the order of the arrangement of the two or more kinds of targets; and forming a laminate in which two or more kinds of thin films are repeatedly laminated on the surface of the base material by passing the base material through a deposition region of the constituent particles a plurality of times so that the constituent particles of the targets are repeatedly deposited on the surface of the base material at each passage.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 2, 2012
    Applicant: FUJIKURA LTD.
    Inventors: Satoru HANYU, Yasuhiro IIJIMA
  • Patent number: 8227019
    Abstract: The present invention provides a high-throughput system for the ex-situ formation of a superconducting thin film, such as rare-earth-barium-copper-oxide (REBCO), atop a continuous length of buffered metal substrate tape by heating a buffered metal substrate tape coated with precursors of REBCO These precursors, when heated and introduced to water vapor within a process chamber, decompose to form a functional superconducting thin film epitaxial to the buffer layer. A chamber such as a metalorganic chemical vapor deposition (MOCVD) reactor having showerhead and substrate heater assemblies designed for the creation of a long and wide deposition zone is well suited for use in the process the system. The chamber could be of cold-wall type where the walls are not heated or could of hot-wall type where the walls are heated.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: July 24, 2012
    Assignee: SuperPower Inc.
    Inventor: Venkat Selvamanickam
  • Patent number: 8227082
    Abstract: A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: July 24, 2012
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 8216979
    Abstract: A method of manufacturing a superconducting thin film material includes a vapor phase step of forming a superconducting layer by a vapor phase method and a liquid phase step of forming a superconducting layer by a liquid phase method so that the latter superconducting layer is in contact with the former superconducting layer. Preferably, the method further includes the step of forming an intermediate layer between the former superconducting layer and a metal substrate. The metal substrate is made of a metal, and preferably the intermediate layer is made of an oxide having a crystal structure of any of rock type, perovskite type and pyrochlore type, and the former superconducting layer and the latter superconducting layer both have an RE123 composition. Accordingly, the critical current value can be improved.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: July 10, 2012
    Assignees: Sumitomo Electric Industries, Ltd., International Superconducticvity Technology Center
    Inventors: Shuji Hahakura, Kazuya Ohmatsu, Munetsugu Ueyama, Katsuya Hasegawa
  • Patent number: 8216978
    Abstract: This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: July 10, 2012
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Harold Wiesmann, Vyacheslav Solovyov
  • Publication number: 20120165200
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Publication number: 20120149579
    Abstract: A precursor for a Nb3Sn superconductor wire to be manufactured by the internal diffusion method. The precursor includes Nb-based single core wires, Sn-based single core wires, and a cylindrical diffusion barrier made of Ta or Nb. Each Nb-based single core wire includes a Nb-based core coated with a Cu-based coating made of a Cu-based matrix. Each Sn-based single core wire includes a Sn-based core coated with a Cu-based coating made of a Cu-based matrix. The Nb-based single core wires and the Sn-based single core wires are regularly disposed in the diffusion barrier. The Nb-based single core wires includes at least two kinds of Nb-based single core wires having different Cu/Nb ratios and the Cu/Nb ratio is a cross sectional area ratio of the Cu-based coating to the Nb-based core.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 14, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventors: Yoshihide Wadayama, Katsumi Ohata, Kazuhiko Nakagawa, Morio Kimura
  • Patent number: 8188010
    Abstract: A thin film superconductive wire material (16) and an electro conductive tape (15) are immersed in a solder bath (35) containing a solder, which includes Sn(tin) and Bi (bismuth), to bond the thin film superconductive wire material (16) and the electro conductive tape (15) and a composite superconductive wire material (10) is formed.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: May 29, 2012
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Center, The Juridical Foundation
    Inventors: Masashi Yagi, Hirao Hirata, Shinichi Mukoyama, Yuh Shiohara
  • Patent number: 8182862
    Abstract: An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: May 22, 2012
    Assignee: SuperPower Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Publication number: 20120108438
    Abstract: A method of manufacturing superconductors with critical temperature Tc>300K is disclosed. This method is from a theory of high-Tc superconductivity wherein the doping mechanism is found. A kind of superconductors composed by this method is the AlB2-type superconductors obtained by doping AlB2-type intermetallics such as Sr1-xCaxGa2. Another kind of superconductors composed by this method is the CaCu5-type superconductors obtained by doping CaCu5-type intermetallics such as L1-xAxCu5, LCu5(10x)Ni5x(A-Ca, Sr; L-La, Y, Mm,), Sr1-xCaxCu5, La1-xSrx(1-y)CaxCu5. In particular the CaCu5-type intermetallics LaNi5 and MmNi5 are superconductors with critical temperature Tc>300K. These CaCu5-type superconductors are with high critical current densities and thus are applicable for the transmission of electricity.
    Type: Application
    Filed: October 5, 2011
    Publication date: May 3, 2012
    Inventor: Sze Kui Ng
  • Publication number: 20120100203
    Abstract: Fabrication of yarns or other shaped articles from materials in powder form (or nanoparticles or nanofibers) using carbon nanotube/nanofiber sheet as a platform (template). This includes methods for fabricating biscrolled yarns using carbon nanotube/nanofiber sheets and biscrolled fibers fabricated thereby.
    Type: Application
    Filed: May 27, 2010
    Publication date: April 26, 2012
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Shaoli Fang, Marcio Dias Lima, Xavier N. Lepro-Chavez, Javier Carretero-Gonzalez, Elizabeth Castillo-Martinez, Raquel Ovalle-Robles, Carter Sebastian Haines, David Michael Novitski, Mohammad H. Haque, Chihye Lewis-Azad, Mikhail Kozlov, Anvar A. Zakhidov, Ray H. Baughman
  • Publication number: 20120077680
    Abstract: Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g.
    Type: Application
    Filed: May 27, 2011
    Publication date: March 29, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Karl K. Berggren, Xiaolong Hu, Daniele Masciarelli
  • Publication number: 20120065073
    Abstract: A magnetic field source is provided comprising a support structure upon which is positioned a conducting surface path of superconductor material. The support structure has an at least partially radially overlapping layer of material arranged in a spiral. A corresponding conducting surface path of superconductor material is arranged on the surface of the support structure such that the conducting path has a first point for the introduction of current and a second point for the extraction of current.
    Type: Application
    Filed: March 5, 2010
    Publication date: March 15, 2012
    Applicant: 3-CS LTD
    Inventors: Eamonn Maher, Ian Leitch McDougall
  • Publication number: 20120065072
    Abstract: A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 15, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Charles C. Hays
  • Patent number: 8124568
    Abstract: An oxide superconductor with superconduction properties being improved by effectively introducing a pinning center thereinto and its fabrication method are disclosed. The superconductor has a high-crystallinity oxide superconductor film which is formed on a substrate with a <001> direction of crystal grain being oriented almost perpendicularly to the substrate and with (100) planes of neighboring crystal grains being oriented to form an oblique angle ranging from 0 to 4 degrees or 86 to 90 degrees. The film has a multilayer structure including a plurality of high-density magnetic field trap layers stacked in almost parallel to the substrate and a low-density magnetic field trap layer sandwiched therebetween. An average grain boundary width of the high-density trap layers in a cross-section horizontal to the substrate is 80 nm or less. The width is less than an average grain boundary width of the low-density trap layer in its cross-section horizontal to the substrate.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Hayashi, Takeshi Araki
  • Patent number: 8124170
    Abstract: A method for forming a superconducting wire with a tape substrate comprises dispensing the tape substrate, providing at least one reactor chamber to form at least one buffer material on the tape substrate based on determining at least one of a type of tape substrate, a type of superconductor material, and a type of buffer material, providing another reactor chamber to continuously form a layer of the superconductor material on a layer of the buffer material, and spooling the tape substrate with the layer of superconductor material.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: February 28, 2012
    Assignee: Metal Oxide Technologies, Inc
    Inventors: Alex Ignatiev, Xin Zhang, Alexander A. Molodyk, Louis D. Castellani
  • Patent number: 8119571
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 21, 2012
    Inventors: Amit Goyal, Sukill Kang
  • Publication number: 20120035057
    Abstract: Methods and apparatus characterized by distinct operating modes are provided. A thin graphite material defined by graphene layers is supported on a silicon substrate. The graphite material is defined by edge sites at the interface with the silicon. The graphite material is characterized by electrical superconductive-like behavior at room-temperatures while electrical current flows there through in a first direction. The graphite material is further characterized by a transition to Ohmic behavior while electrical current flows there through in a second direction opposite to the first. Devices exhibiting diode-like behavior can be formed accordingly.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 9, 2012
    Inventors: Alexandre Bratkovski, Iakov Kopelevitch
  • Publication number: 20120028810
    Abstract: Method of depositing a layer of oxide of at least one metal element on a curved surface of a textured metal substrate, said method comprising the following steps: (1) a layer of a precursor of at least one oxide of a metal is deposited using an organic solution of at least one precursor of said metal, this solution preferably having a viscosity, measured at the temperature of the method, of between 1 mPa s and 20 mPa s, and even more preferentially between 2 mPa s and 10 mPa s. (2) said layer of oxide precursor is left to dry, (3) heat treatment is carried out in order to pyrolyse said oxide precursor and to form the oxide, at least part of said heat treatment being carried out under a flow of reducing gas, said reducing gas preferably having a flow rate greater than 0.005 cm/s, preferentially between 0.012 cm/s and 0.1 cm/s, and even more preferentially between 0.04 cm/s and 0.08 cm/s.
    Type: Application
    Filed: December 18, 2009
    Publication date: February 2, 2012
    Inventors: Philippe Odier, Stéphanie Morlens, Cyril Millon, Sarah Petil, Tristan Caroff, Carmen Jimenez, Jean-Louis Soubeyroux, Arnaud Allais, Mark Rikel
  • Patent number: 8105981
    Abstract: This invention provides a thin superconducting oxide film, which can realize a high critical current, and a superconducting member having a high level of electric power resistance. The superconducting member comprises a sapphire R face substrate, a buffer layer formed of grain lumps of an oxide provided on the sapphire R face substrate, and a superconducting layer provided on the buffer layer. The nearest neighbor distance between oxygen atoms in the oxide and the grain diameter of grain lumps of the oxide have been specified. The superconducting member can be used as a member for superconducting filters.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Mutsuki Yamazaki
  • Publication number: 20120015818
    Abstract: A method for producing a high temperature superconductor (=HTS) coated conductor (12), wherein a buffer layer (2; 22) and an HTS layer (4; 24; 65) are deposited on a substrate (1; 21), with the following steps: a) after depositing the buffer layer (2; 22), the surface (2a) is locally roughened, resulting in a roughened surface (13), b) a non-superconducting, closed intermediate layer (3; 23) is deposited on top of the roughened surface (13), c) and the HTS layer (4; 24; 65) is deposited on top of the intermediate layer (3; 23). A simple method for producing a HTS coated conductor with reduced losses, and with improved critical current and critical magnetic field is thereby provided.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 19, 2012
    Applicant: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Publication number: 20120015817
    Abstract: A coated conductor is provided with improved electrical connection between the conductive layers such as the high temperature superconductor layer and a metal protection layer applied onto the high temperature superconductor layer and the substrate. A method includes obtaining such electrical connection, in particular, creating a coated conductor wherein the substrate is a core covered with the layers all around its periphery.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Inventors: Arnaud Allais, Mark O. Rikel, Jürgen Ehrenberg
  • Publication number: 20110287316
    Abstract: The invention relates generally to carbon nano-tube composites and particularly to carbon nano-tube compositions for electrochemical energy storage devices and a method for making the same.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Applicant: ADA TECHNOLOGIES, INC.
    Inventors: Wen Lu, Joshua Buettner-Garrett, Michael Krysiak
  • Patent number: 8061016
    Abstract: A method of fabricating a superconducting coil is provided which includes fabricating individual coil windings by depositing, shaping and texturing superconductive material in situ on a former which has a substantially curved surface.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: November 22, 2011
    Assignee: 3-CS Ltd
    Inventor: Eamonn Maher
  • Publication number: 20110281734
    Abstract: Disclosed is a three layer process for making contact points to a high transition temperature superconductor (HTSC), particularly to (Bi,Pb)2 Sr2 Ca2 CU3019+x with and without silver in the superconductor. The contact structure is a three layer configuration with a perforated silver foil (3) sandwiched between two metal spray gun deposited silver layers (2,5) and subsequent heat treatment in air. The contact has been made on tubes and rods (1). The silver contacts are capable of carrying a continuous current of 200 Amps without adding any substantial heat load to the cryogen used to cool the HTSC. The contact resistance at 4.2K is in the range of 1.5×10(hoch?8) to 8.5? 10(hoch?8)OHM in zero applied filed.
    Type: Application
    Filed: July 23, 2010
    Publication date: November 17, 2011
    Inventors: Shrikant EKBOTE, Gursharan Kaur PADAM, Narendra Kumar ARORA, Mukul SHARMA, Ramesh SETHI, Mrinal Kanti BANERJEE
  • Patent number: 8048475
    Abstract: An object of the present invention is to provide a method of fabricating a superconducting wire that can reduce the fabrication cost and increase the mechanical strength of the superconducting wire, and a superconducting apparatus including a superconducting wire obtained by the method. The present invention provides a method of fabricating a superconducting wire including the steps of forming a superconducting layer on a substrate or an intermediate layer formed on the substrate, forming a silver stabilization layer on the superconducting layer, immersing the substrate in a copper sulfate solution after the superconducting layer and the silver stabilization layer are formed thereon, and forming a copper stabilization layer on the silver stabilization layer by electroplating with the copper sulfate solution as a plating bath. A superconducting apparatus including a superconducting wire obtained by the method is also provided.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Munetsugu Ueyama, Kazuya Ohmatsu
  • Publication number: 20110263433
    Abstract: A high-temperature superconductor layer arrangement includes at least one substrate and one textured buffer layer made of oxidic material. The buffer layer displays at least one further constituent forming a homogeneous mixed-crystal layer. The further constituent is a transition metal from the first subgroup and/or forming at least a partial melt with the oxidic buffer material at an annealing temperature of ?1,600 degrees Celsius. The further constituent can particularly be copper and/or silver.
    Type: Application
    Filed: March 14, 2009
    Publication date: October 27, 2011
    Applicant: ZENERGY POWER GMBH
    Inventors: Michael Baecker, Oliver Brunkahl, Martina Falter
  • Patent number: 8034746
    Abstract: Disclosed herein is a method of manufacturing round wire using superconducting tape, including the steps of: slitting superconducting tape into superconducting tape strips; silver-coating the slit superconducting tape strips; laminating the silver-coated superconducting tape strips to form a superconducting tape laminate having a square cross-section; holding the superconducting tape laminate; heat-treating the fixed superconducting tape laminate to cause diffusion junction between silver; and copper-plating the heat-treated superconducting tape laminate to have a circular section.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 11, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Dong Woo Ha, Rock Kil Ko, Ho Sup Kim
  • Patent number: 8034745
    Abstract: Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 11, 2011
    Inventor: Amit Goyal