Plural (e.g., Memory Matrix, Etc.): (class 365/161) Patents (Class 505/834)
  • Patent number: 5388068
    Abstract: Superconducting-semiconducting hybrid memories are disclosed. These superconducting-semiconducting hybrid memories utilize semiconductor circuits to store information, and either superconducting or semiconducting or combinations of superconducting and semiconducting circuits, with at least some superconducting circuitry used, to write and read information. The state of memory cells in the hybrid memories is determined by utilizing superconductor current sensing schemes to detect currents in the bit-line, thereby avoiding any bit-line charging delays and other problems associated with purely semiconductor memories. Additional features of the superconducting-semiconducting hybrid memories include wide margins, dense packing of memory cells, low power dissipation and fast access times. Interface curcuitry for converting superconducting signals to signals compatible with semiconductor circuits and for converting semiconductor signals to signals compatible with superconducting circuits is also disclosed.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: February 7, 1995
    Assignee: Microelectronics & Computer Technology Corp.
    Inventors: Uttam S. Ghoshal, Harry Kroger
  • Patent number: 5079219
    Abstract: Information-bearing signals are stored using high-temperature superconducting materials. Type II semiconductors, such as materials in the perovskite class, are used for recording. A vortex of electrical current is induced in a layer of the super-conductive materials which causing a magnetic field extending from the axis of the vortex. One or more vortices can be used to record one bit of information. The induced magnetic field is sensed for reading the stored information.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: January 7, 1992
    Assignee: University of Colorado Foundation, Inc.
    Inventor: Frank S. Barnes