The Metal Present In The Greatest Amount Is Antimony, Bismuth, Or Arsenic Patents (Class 516/91)
  • Patent number: 9181425
    Abstract: Disclosed is a thermoplastic resin composition comprising A) 100 parts by weight of a basic resin comprising 11 to 89% by weight of an acrylonitrile-butadiene-styrene copolymer and 89 to 11% by weight of a styrene-acrylonitrile copolymer, B) 10 to 40 parts by weight of a bromine organic flame retardant, and C) 0.1 to 10 parts by weight of a coated antimony compound.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 10, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Je Sun Yoo, Ki Young Nam, Yong Yeon Hwang, Min Sul Jang, Jae Young Sim
  • Patent number: 7897138
    Abstract: The invention relates to a process for producing diantimony pentoxide having a high oxidation purity. A process for producing an aqueous sol of diantimony pentoxide, which comprises mixing diantimony trioxide (Sb2O3) and an aqueous hydrogen peroxide solution in an aqueous medium, and after the temperature has reached from 50 to 80° C., reacting the diantimony trioxide with the aqueous hydrogen peroxide solution while keeping the reaction temperature at a level not higher by at least 10° C. than a desired set temperature in the temperature range, to thereby obtain a sol having dispersed in the aqueous medium diantimony pentoxide particles which have a primary particle size of from 2 to 50 nm and which have a diantimony trioxide/diantimony pentoxide weight ratio of not higher than 5 wt %.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: March 1, 2011
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Teruyuki Koshi, Makoto Kawashima, Keitaro Suzuki
  • Patent number: 7704315
    Abstract: Aqueous dispersion containing a metal oxide powder with a fine fraction and a coarse fraction, in which—the metal oxide powder is silicon dioxide, aluminum oxide, titanium dioxide, zirconium dioxide, cerium oxide or a mixed oxide of two or more of the aforementioned metal oxides,—the fine fraction is present in aggregated form and has a mean aggregate diameter in the dispersion of less than 200 nm,—the coarse fraction consists of particles with a mean diameter of 1 to 20 ?m, —the ratio of fine fraction to coarse fraction is 2:98 to 30:70, and—the content of metal oxide powder is 50 to 85 wt. %, referred to the total amount of the dispersion. The aqueous dispersion is produced by a process comprising the steps:—production of a fine fraction dispersion by dispersing the pulverulent fine fraction in water by means of an energy input of at least 200 KJ/m3?, and—introducing the coarse fraction in the form of a powder into the fine fraction dispersion under dispersing conditions at a low energy input.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: April 27, 2010
    Assignee: Degussa AG
    Inventors: Monika Oswald, Corinna Kissner, Roland Weiss, Andreas Lauer
  • Patent number: 7683098
    Abstract: Methods for manufacturing nanomaterial dispersions, such as nanomaterial concentrates, and related nanotechnology are provided. The nanomaterial concentrates provided can be more cheaply stored and transported compared to non-concentrate nanomaterial forms.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 23, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7563827
    Abstract: It is to provide a sol useful as a component of a hard coating agent to be applied on the surface of a plastic lens or useful for other applications, and its production process. A sol containing modified metal oxide particles which comprise, as nuclei, colloidal particles (A) being stannic oxide particles or composite particles comprising stannic oxide particles and zirconium oxide particles, containing these oxides in a weight ratio of ZrO2:SnO2 of from 0:1 to 0.50:1 and having particle sizes of from 4 to 50 nm, and as a coating covering the surface of the nuclei, alkylamine-containing Sb2O5 colloidal particles, an oligomer thereof or a mixture thereof (B1), or composite colloidal particles comprising diantimony pentaoxide and silica, an oligomer thereof or a mixture thereof (B2), in a weight ratio of (B)/(A) of from 0.01 to 0.50 based on the weights of the metal oxides, and have particle sizes of from 4.5 to 60 nm. A coating composition containing a silicon-containing substance and the above particles.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: July 21, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshinari Koyama, Motoko Asada
  • Patent number: 7291652
    Abstract: A sol having high oxidation purity and containing diantimony pentoxide particles having a primary particle size of from 2 to 50 nm and a Sb2O3/Sb2O5 weight ratio of at most 4 wt % is prepared by reacting a diantimony trioxide with an aqueous hydrogen peroxide solution in the presence of tunastate or molybdate.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: November 6, 2007
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Keitaro Suzuki, Yoshinari Koyama
  • Patent number: 7157024
    Abstract: The present invention relates to a metal oxide particle comprising tin atom, zinc atom, antimony atom and oxygen atom, having a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00 and having a primary particle diameter of 5 to 500 nm; and a process for producing the metal oxide particle comprising the steps of: mixing a tin compound, a zinc compound and an antimony compound in a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00; and calcining the mixture at a temperature of 300 to 900° C. The metal oxide particle is used for several purposes such as antistatic agents, UV light absorbers, heat radiation absorbers or sensors for plastics or glass, etc.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: January 2, 2007
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Tadayuki Isaji, Osamu Fujimoto
  • Patent number: 6962946
    Abstract: Nanometer-sized particles comprise a mixed oxide of titanium and antimony and are characterized by rutile-like crystal phases. The particles are easily prepared by hydrothemal processing, and may be used as colloids, or in various compositions and articles.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 8, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, David S. Arney, Robert W. Ferguson, James A. Higgins, Charles J. Studiner, IV
  • Patent number: 6626987
    Abstract: A stable modified metal oxide sol which contains from 2 to 50 wt %, as calculated as metal oxides, of particles (c) comprising colloidal particles (a) of a metal oxide having primary particle diameters of from 2 to 60 nm, as nuclei, and a coating material (b) consisting of colloidal particles of an acidic oxide coated on the surface of the particles (a), and which has primary particle diameters of from 2 to 100 nm.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: September 30, 2003
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Keitaro Suzuki, Yoshinari Koyama, Motoko Iijima
  • Patent number: 6040371
    Abstract: Process for preparing an aqueous dispersion of antimony pentoxide sol useful for flame retardancy consisting of the steps forming an aqueous dispersion of phosphated antimony pentoxide sol; mixing the aqueous dispersion with a water-soluble alkanol amine; and concentrating the dispersion to provide an aqueous dispersion containing at least 50 percent by weight of antimony pentoxide; and aqueous antimony pentoxide sol dispersions prepared thereby.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: March 21, 2000
    Assignee: Nyacol Products, Inc.
    Inventor: David L. Catone
  • Patent number: 5906679
    Abstract: The invention relates to coating compositions employing zinc antimonate anhydride comprising zinc antimonate anhydride particles and a liquid of a part-hydrolyzed silane coupling agent, a liquid of hydrolyzed ethylsilicate, a liquid of hydrolyzed methylsilicate, or a resin emulsion. The zinc antimonate anhydride particle having a ZnO/Sb.sub.2 O.sub.5 molar ratio in a range of from 0.8 to 1.2, a crystal structure of zinc antimonate anhydride (Zn Sb.sub.2 0.sub.5), and a primary particle size in a range of from 5 to 500 nm. The particle production method comprises the steps of mixing a zinc compound with a colloidal antimony oxide at a ZnO/Sb.sub.2 O.sub.5 molar rate in a range of from 0.8 to 1.2, followed by calcining the mixture within a temperature range of from 500 to 1100.degree. C. The particles are applicable as a flame retardant for plastics, a smoke suppressant, antistatic agent for plastics and glasses, and resistor.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: May 25, 1999
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshitane Watanabe, Keitaro Suzuki, Yoshinari Koyama