The Material Primarily Contains Compound Containing Both Metal And Oxygen (e.g., Silver Nitrate) Patents (Class 516/88)
-
Patent number: 10850233Abstract: The present invention describes a fluid which is suitable for the decontamination of heat engines which can carry out both the catalytic reduction of oxides of nitrogen (NOx) contained in exhaust gases and assist in the regeneration of the particulate filter (PF), said fluid being in the form of a stable suspension of colloidal particles, these colloidal particles being dispersed in an aqueous solution containing at least one reducing agent or at least one precursor of a reducing agent for NOx. The invention also describes several embodiments for the preparation of said fluid.Type: GrantFiled: October 20, 2016Date of Patent: December 1, 2020Assignee: IFP ENERGIES NOUVELLESInventors: Eric Lecolier, Patrick Gateau, Stephane Zinola, Nathalie Palazzo
-
Patent number: 9340738Abstract: A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion and a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles containing one or more metal ions (M), Ce1-xMxO2-?, wherein x has a value from about 0.001 to about 0.95 and ? has a value of about 0.0 to about 0.5.Type: GrantFiled: November 10, 2014Date of Patent: May 17, 2016Assignee: Cerion, LLCInventors: Albert Gary DiFrancesco, Richard K. Hailstone, Kenneth J. Reed, Gary R. Prok
-
Patent number: 9303223Abstract: A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, a source of hydroxide ion, at least one monoether carboxylic acid wherein the molar ratio of said monoether carboxylic acid to cerous ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles CeO2-?, wherein ? has a value of about 0.0 to about 0.5.Type: GrantFiled: November 11, 2014Date of Patent: April 5, 2016Assignee: Cerion, LLCInventors: Albert Gary Difrancesco, Richard K. Hailstone, Kenneth J. Reed, Gary R. Prok
-
Patent number: 9162901Abstract: Disclosed is a method of producing metal oxides, comprising electrodepositing a metal oxide from an electrolyte solution onto a substrate to coat at least a portion of the substrate, whereby metal oxide seed particles are released into the solution, and precipitating metal oxide particles from the solution. The precipitated metal oxide particles have a maximum particle size of less than 1 micron.Type: GrantFiled: March 14, 2013Date of Patent: October 20, 2015Assignee: PPG Industries Ohio, Inc.Inventors: Robin Peffer, Michael J. Pawlik, Jane Valenta
-
Patent number: 9012349Abstract: A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.Type: GrantFiled: November 1, 2013Date of Patent: April 21, 2015Assignee: UT-Battelle LLCInventors: Jae Soon Choi, Beth L. Armstrong, Viviane Schwartz
-
Patent number: 8883865Abstract: A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20° C. to about 95° C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-?, wherein “x” has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.Type: GrantFiled: May 13, 2010Date of Patent: November 11, 2014Assignee: Cerion Technology, Inc.Inventors: Albert Gary DiFrancesco, Richard K. Hailstone, Kenneth J. Reed, Gary R. Prok
-
Patent number: 8664143Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.Type: GrantFiled: October 25, 2011Date of Patent: March 4, 2014Assignee: Lawrence Livermore National Security, LLC.Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, Jr.
-
Patent number: 8646612Abstract: Monodisperse metal oxide nanopowders are prepared by treating a dispersion of crude metal oxide nanopowder with ultrasonication, allowing the dispersion to settle, and subjecting the remaining suspended portion to centrifugation to obtain a supernatant comprising metal oxide nanopowder.Type: GrantFiled: March 19, 2012Date of Patent: February 11, 2014Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
-
Patent number: 8613799Abstract: The present invention relates to dispersants containing at least two lipophilic groups (e.g., alkenyl-substituted acylating agent, such as, dodecyl succinic anhydride), and the dispersants contain a hydrophilic component (e.g., alkylene glycol, polyalkylene glycol) present in an amount sufficient to at least partially disperse the amphiphilic compound in aqueous media (e.g., 30 wt % to 80 wt %). The invention further provides for dispersants as phosphate, sulphonate, and phosphite derivatives thereof. The invention further provides for the use of the dispersants in tinter compositions (e.g., universal tinter) and reduced shade paints.Type: GrantFiled: August 7, 2007Date of Patent: December 24, 2013Assignee: Lubrizol LimitedInventors: Dean Thetford, John J. Mullay, Christopher J. Kolp, Rita A. Sweet
-
Patent number: 8501825Abstract: Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.Type: GrantFiled: January 7, 2010Date of Patent: August 6, 2013Inventors: Jack L. Collins, Rodney D. Hunt, Frederick C. Montgomery
-
Patent number: 8455554Abstract: A process for preparing a hydrosol of one or more metal oxides, e.g. titanium dioxide, comprising preparing a metal alkoxide solution in a water-miscible organic solvent, e.g. an alcohol; providing an aqueous solvent; mixing the metal alkoxide solution with the aqueous solvent in a volume or weight proportion to form a single-phase aqueous sol colloid (hydrosol) of hydrated metal oxide in absence of a non-ionic block polymer surfactant. Also disclosed is a corresponding hydrogel; water-insoluble particles encapsulated in hydrated metal oxide and a process for their encapsulation; uses of the encapsulation products.Type: GrantFiled: June 12, 2007Date of Patent: June 4, 2013Assignee: CaptiGel ABInventors: Vadim G. Kessler, Gulaim A. Seisenbaeva, Sebastian Håkansson, Maria Unell
-
Patent number: 8362094Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or ethanolic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE) and zinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.0166 ZnO nanoparticles wt %.Type: GrantFiled: July 30, 2012Date of Patent: January 29, 2013Assignee: King Abdulaziz City for Science and Technology (KACST)Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
-
Patent number: 8252256Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).Type: GrantFiled: January 1, 2012Date of Patent: August 28, 2012Assignee: King Abdulaziz City for Science and Technology (KACST)Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
-
Patent number: 8207085Abstract: A photocatalytic coating composition comprising photocatalytic titanium oxide, silver, copper and a quaternary ammonium hydroxide. The photocatalytic coating composition may include a photocatalytic titanium oxide sol dispersed in a binder. Furthermore, a photocatalytic member includes a substrate having a surface coated with the photocatalytic coating composition. The photocatalyst coating composition can contain highly antibacterial silver by skillfully utilizing copper and a quaternary ammonium hydroxide, and accordingly can show an antibacterial effect not only in a dark place simply due to silver, but also a higher antibacterial effect in a conventional application of employing ultraviolet sterilization by concomitantly using the photocatalyst titanium oxide sol according to the present invention and an ultraviolet sterilizer.Type: GrantFiled: December 20, 2010Date of Patent: June 26, 2012Assignees: Taki Chemical Co., Ltd., Toto Ltd.Inventors: Taketoshi Kuroda, Hiroyuki Izutsu, Isamu Yamaguchi, Yoshiyuki Nakanishi
-
Patent number: 8206680Abstract: Calco-magnesian aqueous suspension having particles of solid matter with, before being put into suspension, a specific surface area, calculated according to the BET method, which is less than or equal to 10 m2/g, and its method of preparation. Such an aqueous suspension of calco-magnesian solid matter can achieve a very low viscosity, making it possible to greatly increase the solid matter concentration of the suspension, or again to reduce the size of the particles in suspension, thus obtaining a concentrated and reactive milk of lime.Type: GrantFiled: July 27, 2004Date of Patent: June 26, 2012Assignee: S.A. Lhoist Recherche et DeveloppementInventors: Luis Alfredo Diaz Chavez, Timothy L. Salter, Ziad Habib, Henri-René Langelin
-
Patent number: 8133535Abstract: An antipenetrating agent is to be added to a solvent ink for preventing penetration of the solvent ink into a medium to be printed. The antipenetrating agent includes inorganic fine particles and a resin soluble in an organic solvent.Type: GrantFiled: March 20, 2008Date of Patent: March 13, 2012Assignee: Mimaki Engineering Co., Ltd.Inventors: Tomotaka Furuhata, Satoshi Takezawa, Isao Tabayashi
-
Patent number: 8133616Abstract: A process for the production of nano-structured olivine lithium manganese phosphate (LiMnPO4) electrode material comprising of the following steps: sol gel preparation in a chelating environment; preparation of lithium manganese phosphate/carbon composite by ball-milling; and electrode preparation.Type: GrantFiled: February 14, 2006Date of Patent: March 13, 2012Assignee: Dow Global Technologies LLCInventors: Ivan Exnar, Thierry Drezen, Nam Hee Kwon-Roth, Motoshi Isono
-
Patent number: 8026287Abstract: The invention provides colloidal dispersions of calcium phosphate platelets comprising at least one polymer which complexes the calcium and in which the length of the platelets, L, is between 5 and 500 nm and in which the thickness of the platelets is between 0.5 and 20 nm. Another subject-matter of the invention is the calcium phosphate platelets obtained by drying the colloidal dispersion according to the invention. The invention also provides a process for preparing these colloidal dispersions of calcium phosphate platelets according to the invention. Finally, another subject-matter of the invention is the use of the abovementioned colloidal dispersions of platelets as food additive, reinforcing filler, thermal insulation filler, pharmaceutical excipient, polishing agent, building materials, additive for oral formulations, in particular dentifrices, or encapsulating agent.Type: GrantFiled: October 4, 2010Date of Patent: September 27, 2011Assignee: Innophos, Inc.Inventor: Jean-Yves Chane-Ching
-
Patent number: 7879757Abstract: A photocatalytic titanium oxide sol presents antibacterial properties in a dark place, and, in particular, relates to a photocatalytic titanium oxide sol which is stable and causes no discoloration by light even though containing silver, and relates to a coating composition and a member using the same. The photocatalytic titanium oxide sol includes silver, copper and a quaternary ammonium hydroxide, may be dispersed in a binder, and may be coated on the surface of a substrate.Type: GrantFiled: September 27, 2007Date of Patent: February 1, 2011Assignees: Taki Chemical Co., Ltd., Toto Ltd.Inventors: Taketoshi Kuroda, Hiroyuki Izutsu, Isamu Yamaguchi, Yoshiyuki Nakanishi
-
Patent number: 7807724Abstract: The invention provides colloidal dispersions of calcium phosphate platelets comprising at least one polymer which complexes the calcium and in which the length of the platelets, L, is between 5 and 500 nm and in which the thickness of the platelets is between 0.5 and 20 nm. Another subject-matter of the invention is the calcium phosphate platelets obtained by drying the colloidal dispersion according to the invention. The invention also provides a process for preparing these colloidal dispersions of calcium phosphate platelets according to the invention. Finally, another subject-matter of the invention is the use of the abovementioned colloidal dispersions of platelets as food additive, reinforcing filler, thermal insulation filler, pharmaceutical excipient, polishing agent, building materials, additive for oral formulations, in particular dentifrices, or encapsulating agent.Type: GrantFiled: June 28, 2004Date of Patent: October 5, 2010Assignee: Innophos, Inc.Inventor: Jean-Yves Chane-Ching
-
Patent number: 7772288Abstract: The invention provides a composition that is a dispersion made from a Group III nitride, a solvent system, and a dispersant. The dispersion can be used to prepare Group III nitride thin films on a wide range of substrates, for example, glass, silicon, silicon dioxide, silicon nitride, silicon carbide, aluminum nitride, sapphire, and organic polymers. The particle size of the Group III nitride used for producing the thin films can be controlled by adjusting centrifugation of the dispersion and selecting a desired layer of supernatant. The dispersant can be removed from the thin films by calcination. The Group III nitride can contain a dopant. Doped Group III nitride thin films can emit visible light upon irradiation. Green, red, and yellow light emissions result from irradiating erbium-, europium-, and cerium-doped gallium nitride, respectively.Type: GrantFiled: June 1, 2007Date of Patent: August 10, 2010Assignee: Cornell Research Foundation, Inc.Inventors: Huaqiang Wu, Michael G. Spencer, Emmanuel Giannelis, Athanasios Bourlinos
-
Patent number: 7767721Abstract: A soft agglomerate of copper oxide ultrafine particles which has an average primary particle diameter of not more than 100 nm and an average secondary particle diameter of not less than 0.2 ?m and of producing the soft agglomerate by (1) forming ultrafine copper oxide by reducing a cuprous carboxyl compound in an aqueous solution, with hydrazine and/or a hydrazine derivative, optionally with a base and optionally with organic compounds, such as alcohol (e.g., ethylene glycol or ethanol), ether, ester or amide; and simultaneously or separately applying an agglomerating force, e.g., agglomerating agent; to produce copper oxide soft agglomerate. Alternatively (2), forming a colloidal dispersion of cuprous oxide ultrafine particles by heating and reducing at least one copper compound (e.g., copper carboxyl, copper alkoxy and copper diketonate compound) at a temperature of not lower than 160 ° C.Type: GrantFiled: December 2, 2003Date of Patent: August 3, 2010Assignee: Asahi Kasei Kabushiki KaishaInventors: Mutsuhiro Maruyama, En-Hai Sun
-
Patent number: 7722804Abstract: In a method of manufacturing a pressed scandate dispenser cathode, firstly, scandium nitrate, barium nitrate, calcium nitrate, aluminum nitrate and ammonium metatungstate (AMT) are dissolved in de-ionized water, respectively, and then mixed with a solution of a cross-link agent such as citric acid and H2O2. After water bathing, the mixed aqueous solution turns into gel, and the powders are obtained after the gel calcination. Secondly, the calcined powders are reduced by hydrogen. Finally, the reduced powders are pressed into shapes and then sintered in the furnace with the atmosphere of hydrogen or by Spark Plasma Sintering (SPS 3.202-MK-V) in vacuum.Type: GrantFiled: August 8, 2007Date of Patent: May 25, 2010Assignee: Beijing University of TechnologyInventors: Jinshu Wang, Wei Liu, Meiling Zhou, Yiman Wang, Hongyi Li, Tieyong Zuo
-
Patent number: 7704414Abstract: A composition comprises a solvent, and an electroconductive substance and an amphiphilic block copolymers having a polyalkenyl ether repeating-unit structure, or a block copolymer enclosing an electroconductive substance. A black ink composition comprises a fine particulate metal having an average particle diameter of not more than 20 nm, an amphiphilic block copolymer, and a solvent. A method for forming an electroconductive pattern by applying the composition. A method for forming an electroconductive pattern by applying a composition comprises a block copolymer enclosing an electroconductive substance, system to form an electroconductive pattern on the substrate.Type: GrantFiled: May 2, 2005Date of Patent: April 27, 2010Assignee: Canon Kabushiki KaishaInventors: Koichi Sato, Tomoko Maruyama, Ikuo Nakazawa, Ryuji Higashi, Sakae Suda, Masayuki Ikegami, Keiichiro Tsubaki, Keiko Yamagishi
-
Patent number: 7666812Abstract: An improved gas diffusion electrode composed of a perovskite-type oxide dispersed in a mixture of carbon black and a hydrophobic binder polymer. An improved catalyst for use in the electrochemical reduction of oxygen comprising a perovskite-type compound having alpha and beta sites, and having a greater molar ratio of cations at the beta site. A particularly good reduction catalyst is a neodymium calcium manganite. An improved method of dispersing the catalysts with carbon in a reaction layer of the electrode improves performance of the electrode and the oxygen reduction process. This is provided by adding carbon black to an aqueous solution of metal salts before it is heated to a gel and then to a char and then calcined. Optionally, a quantity of the desired oxide catalyst can be premixed with a portion the carbon before adding the carbon to an aqueous solution of the metal salts to be heated.Type: GrantFiled: August 10, 2007Date of Patent: February 23, 2010Assignee: Ceramatec, Inc.Inventors: John Howard Gordon, Hachiya Toshinori, Shekar Balagopal, Sai Bhavaraju
-
Publication number: 20100041775Abstract: A method for producing an inorganic nanoparticle dispersion liquid, including: substituting a first dispersion medium serving to disperse inorganic nanoparticles in an inorganic nanoparticle dispersion liquid by a second dispersion medium with a third dispersion medium intervening between the first dispersion medium and the second dispersion medium, wherein an absolute value of the difference in solubility parameter values (SP values) between the third dispersion medium and the second dispersion medium is smaller than 3.Type: ApplicationFiled: July 16, 2009Publication date: February 18, 2010Applicant: FUJIFILM CorporationInventor: Koukichi Waki
-
Publication number: 20090170962Abstract: Methods for controlling dispersion of aqueous suspensions involving providing a solvent, and adding at least an additive, an ion source, and a particle source selected from a partially dissolving colloid or a non-dissolving colloid, to the solvent to produce the aqueous suspension where the additive is added to the solvent prior to the ion source and the particle source when the particle source is the partially dissolving colloid.Type: ApplicationFiled: December 20, 2007Publication date: July 2, 2009Inventors: Glen Harold Kirby, Brett Allen Boutwell
-
Patent number: 7528177Abstract: An environmentally friendly method for preparing zinc oxide (zincite) nanoparticle sol having more than 90% visible light transmission at 20 wt % solid; comprises of the neutralizing, under specific pH, an inorganic zinc salt with an inorganic alkali, both dissolved in ethylene glycol, and thermally aging the precipitates afterward.Type: GrantFiled: September 29, 2005Date of Patent: May 5, 2009Assignee: Headway Advanced Materials Co., LtdInventors: Anthony Shiaw-Tseh Chiang, Chih-Tsung Hsu, Ching-Ping Yang
-
Publication number: 20090108233Abstract: A method for preparing a suspension of LDH particles comprises the steps of preparing LDH precipitates by coprecipitation to form a mixture of LDH precipitates and solution; separating the LDH precipitates from the solution; washing the LDH precipitates to remove residual ions; mixing the LDH precipitates with water; and subjecting the mixture of LDH particles and water from step (d) to a hydrothermal treatment step by heating to a temperature of from greater than 80° C. to 150° C. for a period of about 1 hour to about 144 hours to form a well dispersed suspension of LDH particles in water.Type: ApplicationFiled: December 12, 2005Publication date: April 30, 2009Applicant: The Univeristy of QueenslandInventors: Gaoqing Lu, Zhiping Xu
-
Patent number: 7517915Abstract: A method for preparing a ceramic powder suspension is disclosed. A dispersant having a following structural formula is provided: wherein D is H or COOR1; R1 is a hydrogen atom, or an alkyl group, a cyclic aliphatic group, an aryl group, having 1 to 10 carbon atoms, or a cationic salt group; R2 is an alkyl group having 1 to 10 carbon atoms, a cyclic aliphatic having 1 to 10 carbon atoms or an aryl group having 1 to 10 carbon atoms; R3 is a hydrogen atom or a methyl group; Z is an oxygen atom or an NH group; A is —COO —SO3 or an acid form; a is an integer between 1 to 5000; and p and q are integers between 1 to 10. The dispersant is dissolved in a solvent. Ceramic powder is further added into the solvent with the dispersant.Type: GrantFiled: October 5, 2006Date of Patent: April 14, 2009Assignee: National Taiwan Normal UniversityInventors: Kung-Chung Hsu, Lung-Pin Chen, Dao-Shinn Hwung, Kuo-Liang Ying, Wen-Cheng Wei, Sea-Fue Wang
-
Patent number: 7514065Abstract: A layered ruthenic acid compound is converted to a protonic layered ruthenic acid hydrate, which is then converted to a layered alkylammonium-ruthenic acid intercalation compound to obtain a colloid containing ruthenic acid nanosheets having a thickness of 1 nm or smaller. Thereby, a ruthenic acid nanosheet is obtained.Type: GrantFiled: March 26, 2004Date of Patent: April 7, 2009Inventors: Yoshio Takasu, Yasushi Murakami, Wataru Sugimoto
-
Patent number: 7495032Abstract: A method for processing a ceramic powder suspension includes providing a dispersant having the following structure: wherein R1 is an H+ ion, an Na+ ion, an NH4+ ion or other cationic group; R2 is an H+ ion, an Na+ ion. an NH4+ ion or other cationic group; m is an integer from 10 to 5000 ; and n is an integer from 10 to 3000 . The dispersant is dissolved in a solvent. Ceramic powder is further added into the solvent with the dispersant.Type: GrantFiled: October 5, 2006Date of Patent: February 24, 2009Inventors: Kung-Chung Hsu, Lung-Pin Chen, Dao-Shinn Hwung, Kuo-Liang Ying, Wen-Cheng Wei, Sea-Fue Wang
-
Patent number: 7482384Abstract: Iron composite particles for purifying soil or ground water, comprise ?-Fe and magnetite, and having a ratio of a diffraction intensity D110 of (110) plane of ?-Fe to a sum of a diffraction intensity D311 of (311) plane of magnetite and the diffraction intensity D110 (D110/(D311+D110)) of 0.30 to 0.95 as measured from X-ray diffraction spectrum of the iron composite particles, an Al content of 0.10 to 1.50% by weight and an S content of 3500 to 7000 ppm; a process for producing the iron composite particles; a purifying agent containing the iron composite particles; a process for producing the purifying agent; and a method for purifying soil or ground water.Type: GrantFiled: June 8, 2004Date of Patent: January 27, 2009Assignee: Toda Kogyo CorporationInventors: Masayuki Uegami, Junichi Kawano, Koji Kakuya, Tomoko Okita, Kenji Okinaka
-
Patent number: 7476695Abstract: There is provided a stable sol comprising modified stannic oxide-zirconium oxide complex colloidal particles, wherein the particles are formed by coating as nuclei stannic oxide-zirconium oxide complex colloidal particles in which stannic oxide colloidal particles obtained by a reaction of metal tin, an organic acid and hydrogen peroxide is bonded to zirconium oxide colloidal particles with tungsten oxide-stannic oxide-silicon dioxide complex colloidal particles. The sol has a high refractive index and is improved in water resistance, moisture resistance and weather resistance, and can be used by mixing with a hard coating paint as a component for improving properties of a hard coating film applied on a plastic lens surface.Type: GrantFiled: March 9, 2005Date of Patent: January 13, 2009Assignee: Nissan Chemical Industries, Ltd.Inventors: Yoshinari Koyama, Motoko Asada
-
Publication number: 20080255254Abstract: The invention includes a composition for stabilizing chlorinated water to sunlight decomposition, and methods of preparing compositions. The composition is a slurry composition of a monoalkali metal cyanurate, of low viscosity. Two methods of preparing the slurry are described, in which cyanuric acid or cyanuric acid wetcake is mixed with a monoalkali metal base. One method dry blends cyanuric acid or cyanuric acid wetcake with a monoalkali metal base. The invention also describes a method of preparing a dry, solid monoalkali metal cyanurate.Type: ApplicationFiled: April 16, 2007Publication date: October 16, 2008Inventors: Michael S. Harvey, Jonathan N. Howarth
-
Patent number: 7435758Abstract: Described is an additive for producing the positive active material for lead-acid storage batteries on the basis of finely divided tetrabasic lead sulfate. The additive contains a tetrabasic lead sulfate of an average particle size smaller than about 3 ?m as well as finely divided silicic acid for preventing an agglomeration of the particles of the tetrabasic lead sulfate. During maturation, this additive ensures the formation of the structure of a tetrabasic lead sulfate crystal with a very narrow bandwidth of crystal sizes and a very homogeneous distribution. In a subsequent electrochemical formation to lead oxide, this leads to particularly efficient lead-acid storage batteries. Furthermore, the invention relates to a method of making the additive according to the invention as well as its advantageous use in the positive material for the maturation and drying of singled and not singled plates in the production of lead-acid storage batteries.Type: GrantFiled: December 23, 2003Date of Patent: October 14, 2008Assignee: Penarroya Oxide GmbHInventors: Ian Klein, Werner Nitsche
-
Publication number: 20080242746Abstract: A dispersion of metal oxide fine particles, containing metal oxide fine particles, a strong acid and an aqueous solution, wherein the metal oxide fine particles and the strong acid are dispersed in an aqueous solution containing alcohol, and the dispersion of metal oxide fine particles has a light transmittance at 800 nm wavelength of 90% or more.Type: ApplicationFiled: March 25, 2008Publication date: October 2, 2008Applicant: FUJIFILM CorporationInventors: Kimiyasu MORIMURA, Yoshio Tadakuma, Yoichi Maruyama
-
Publication number: 20080242745Abstract: An aqueous dispersion of metal oxide fine particles, including metal oxide fine particles, a carboxylic compound and an acid compound containing a bulky anion having B value of ?0.01 or less in Equation (1), wherein the metal oxide fine particles, the carboxylic compound and the acid compound containing a bulky anion are dispersed in an aqueous solution, and the aqueous dispersion of metal oxide fine particles has a light transmittance at 800 nm wavelength of 90% or more: ?=?0(1+A?c+Bc) ??Equation (1) where ? represents a viscosity of a solution, ?0 represents a viscosity of a solvent, A and B respectively represent an inherent constant value of an acid, and c represents a concentration of the solution.Type: ApplicationFiled: February 25, 2008Publication date: October 2, 2008Applicant: FUJIFILM CorporationInventor: Kimiyasu Morimura
-
Publication number: 20080188574Abstract: This invention provides a disperse system having fine powder-typed inorganic metal oxide dispersed in water and preparing method for the same and more particularly, it provides a method for preparing a disperse system having fine powder-typed inorganic metal oxide dispersed in water characterized in that a) a hydrophobically treated fine powder-typed inorganic metal oxide; b) a sulfosuccinate or sulfosuccinamate or an alkoxylated alcohol dispersant; and c) water are mixed and dispersed by a high-speed bead mill and a disperse system having fine powder-typed inorganic metal oxide dispersed in water prepared by the same. The disperse system having fine powder-typed inorganic metal oxide dispersed in water of the present invention has excellent characteristics in that it has high transparency in the visible ray spectrum, it has excellent UV protection ability when applied to cosmetics, it provides better feelings than oil dispersions, and it has better water-proof property than existing water dispersions.Type: ApplicationFiled: May 21, 2007Publication date: August 7, 2008Applicants: SUNJIN CHEMICAL Co., Ltd., RANCO CO., Ltd.Inventors: Sung-Ho Lee, Woo-Kyu Kang
-
Patent number: 7312252Abstract: A composition of matter comprising anionic clay having the general formula [M2+1-xM3+x(OH)2]x+(x/n)An?·yH2O??(I) or [M1+M3+2(OH)6]1+(1/n)An?·yH2O;??(II) where M1+ is a mono-valent metal; M2+ is a divalent metal; and M3+ is a trivalent metal; A is an inorganic or organic anion, chosen such that the rule of charge neutrality is obeyed; n is an integer; x is any rational number between 0 and 1; and y is any rational number between 0 and 10; where the anionic clay is in the form of particles having a volume weighted mean particle size diameter of less than 500 nm. Stable colloidal dispersions comprise such anionic clay particles having a volume weighted mean particle size diameter of less than 500 nm dispersed in a liquid medium.Type: GrantFiled: May 20, 2004Date of Patent: December 25, 2007Assignee: Eastman Kodak CompanyInventors: Joseph F. Bringley, Craig A. Morris
-
Patent number: 7157024Abstract: The present invention relates to a metal oxide particle comprising tin atom, zinc atom, antimony atom and oxygen atom, having a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00 and having a primary particle diameter of 5 to 500 nm; and a process for producing the metal oxide particle comprising the steps of: mixing a tin compound, a zinc compound and an antimony compound in a molar ratio SnO2:ZnO:Sb2O5 of 0.01–1.00:0.80–1.20:1.00; and calcining the mixture at a temperature of 300 to 900° C. The metal oxide particle is used for several purposes such as antistatic agents, UV light absorbers, heat radiation absorbers or sensors for plastics or glass, etc.Type: GrantFiled: May 24, 2004Date of Patent: January 2, 2007Assignee: Nissan Chemical Industries, Ltd.Inventors: Tadayuki Isaji, Osamu Fujimoto
-
Patent number: 7091250Abstract: The present invention is an additive for producing a positive active material for lead-acid storage batteries on the basis of finely divided tetrabasic lead sulfate. The additive contains a tetrabasic lead sulfate of an average particle size less than about 3 ?m as well as finely divided hydrophobic silicic acid for preventing agglomeration of the particles of the tetrabasic lead sulfate. During maturation, this additive ensures the formation of the structure of a tetrabasic lead sulfate crystal with a very narrow bandwidth of crystal sizes and a very homogeneous distribution. In the subsequent electrochemical formation to lead oxide, this leads to particularly efficient lead-acid storage batteries. Furthermore, the invention relates to a method of making the additive according to the invention as well as its advantageous use in the positive material for the maturation and drying of plates in the production of lead-acid storage batteries.Type: GrantFiled: April 3, 2003Date of Patent: August 15, 2006Assignee: PENOX GmbHInventors: Ian Klein, Werner Nitsche
-
Patent number: 7053125Abstract: Comb polymers are used as dispersants to increase the stability of colloidal suspensions containing multivalent or high concentrations of monovalent ions. Stabilized colloidal suspensions and methods of forming stabilized colloidal suspensions are described, including suspensions containing ceramic precursors or bioactive agents useful in forming ceramic substrates or pharmaceutical compositions, respectively.Type: GrantFiled: January 3, 2003Date of Patent: May 30, 2006Assignees: The Board of Trustees of the University of Illinois, W.R. Grace & Co.-Conn.Inventors: Jennifer A. Lewis, Glen Kirby, Josephine Ho-Wah Cheung, Ara Avedis Jeknavorian
-
Patent number: 6955771Abstract: Disclosed are metal oxide sols made by mixing at least one metal alkoxide, wherein the metal is a transition metal, a post-transition metal, an alkali metal, or alkaline earth metal; at least one organosilane; at least one boron oxide compound selected from the group consisting of boric acid, alkoxy boron compounds, hydrocarbyl boric acids, hydrocarbyl hydroxy boron alkoxides, and hydroxy boron alkoxides; and a liquid. Also disclosed are composites containing a polymer and the metal oxide sols.Type: GrantFiled: January 7, 2003Date of Patent: October 18, 2005Assignee: APS LaboratoryInventor: Hong-Son Ryang
-
Patent number: 6884753Abstract: The present invention provides a method for producing a ceramic dispersion composition, the method comprising the step of heating a mixture of a ceramic powder having a photocatalytic activity, a dispersant and a solvent at a temperature of about 70° C. or higher without substantially letting the solvent out of the reaction system. The ceramic dispersion composition can be used for providing a film showing a high hydrophilicity by light irradiation.Type: GrantFiled: May 16, 2003Date of Patent: April 26, 2005Assignee: Sumitomo Chemical Company, LimitedInventors: Yoshiaki Sakatani, Kensen Okusako, Hironobu Koike
-
Patent number: 6838486Abstract: Disclosed are nanocomposites made of guest metal nanoparticles and metal oxide sols made by mixing at least one metal alkoxide, at least one organosilane, at least one boron oxide compound, and a liquid. Also disclosed are dielectric composites containing a dielectric material such as a polymer and the nanocomposites.Type: GrantFiled: April 30, 2003Date of Patent: January 4, 2005Assignee: APS LaboratoryInventor: Hong-Son Ryang
-
Publication number: 20040248997Abstract: A method of manufacturing a ceramic coating material which includes stirring a material including a complex oxide in the presence of a catalyst containing platinum group elements. The material is a sol-gel material which includes at least one of a hydrolysate and a polycondensate of the complex oxide.Type: ApplicationFiled: March 25, 2004Publication date: December 9, 2004Applicant: SEIKO EPSON CORPORATIONInventors: Takeshi Kijima, Eiji Natori
-
Publication number: 20040159824Abstract: Disclosed are metal oxide sols made by mixing at least one metal alkoxide, wherein the metal is a transition metal, a post-transition metal, an alkali metal, or alkaline earth metal; at least one organosilane; at least one boron oxide compound selected from the group consisting of boric acid, alkoxy boron compounds, hydrocarbyl boric acids, hydrocarbyl hydroxy boron alkoxides, and hydroxy boron alkoxides; and a liquid. Also disclosed are composites containing a polymer and the metal oxide sols.Type: ApplicationFiled: January 7, 2003Publication date: August 19, 2004Inventor: Hong-Son Ryang
-
Patent number: 6710091Abstract: A method for the preparation of nano size zinc oxide particles having an average primary particle diameter of less than or equal to 15 nm, which are redispersible in organic solvents and/or water, by basic hydrolysis of at least one zinc compound in alcohol or an alcohol/water mixture. The hydrolysis is carried out with substoichiometric amounts of base, based on the zinc compound. The precipitate which originally forms during hydrolysis is left to mature until the zinc oxide has completely flocculated. This precipitate is then thickened to give a gel and separated off from the supernatant phase.Type: GrantFiled: August 21, 2001Date of Patent: March 23, 2004Assignee: Bayer AktiengesellschaftInventors: Hermann-Jens Womelsdorf, Werner Hoheisel, Gerd Passing
-
Patent number: 6656976Abstract: A procedure for making well dispersed suspensions containing mixtures of powders displaying a low viscosity which remain stable over an extended period of time includes suspensions prepared in aqueous and/or ethanolic media using a cationic polyelectrolyte at the inherent pH of the mixture. The method is particularly useful for making robust slurries for subsequent spray drying of free flowing granules to be used in the fabrication of cemented carbide or cermet bodies.Type: GrantFiled: April 26, 2001Date of Patent: December 2, 2003Assignee: Sandvik AktiebolagInventors: Lennart Bergström, Eric Laarz