Water Utilized In The Preliminary Reaction Patents (Class 518/704)
  • Publication number: 20140323599
    Abstract: A method and system for producing methanol that employs both an oxygen transport membrane (OTM) based reforming system together with a more traditional steam methane reforming (SMR) and/or autothermal (ATR) synthesis gas production system is disclosed. The dual mode system and method for producing the synthesis gas in a methanol production process optimizes the efficiency and productivity of the methanol plant by using the OTM based reforming system as an independent source of synthesis gas. The disclosed methods and systems are configurable either as a retrofit to existing methanol production facilities or as an integrated package into newly constructed methanol production facilities.
    Type: Application
    Filed: November 15, 2013
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Minish M. Shah, Raymond Francis Drnevich, Wladimir Y. Sarmiento-Darkin, Brian R. Kromer, Sean M. Kelly
  • Patent number: 8865780
    Abstract: Process for converting biogas to a gas rich in methane comprising the steps of: —mixing a carbon dioxide-comprising biogas with steam to form a mixture comprising carbon dioxide, methane and steam; electrolysing the mixture comprising carbon dioxide, methane and steam in a high temperature solid oxide electrolyser cell unit, to obtain a gas comprising mainly hydrogen and carbon monoxide; catalytically converting hydrogen and carbon monoxide in the gas comprising hydrogen and carbon monoxide to methane in one or more methanation steps to obtain a gas rich in methane.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 21, 2014
    Assignee: Haldor Topsoe A/S
    Inventor: John Bogild Hansen
  • Publication number: 20140288196
    Abstract: A system and method for increasing the production of Syngas from an SMR (Steam Methane Reforming) processing plant by providing CO2 as an additional feedstock, such as from an exhaust stream of a Corn-to-Ethanol plant, or from a power plant or industrial plant, like a cement plant. The CO2 steam and methane are introduced into the SMR reactor heated to about 870° C. and at about one atmosphere such that a reaction takes place that produces Syngas comprising CO, Hydrogen (H2) and carbon dioxide (CO2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor or other Bio-catalytic synthesis reactor to produce Ethanol or other high value liquid fuel.
    Type: Application
    Filed: March 25, 2014
    Publication date: September 25, 2014
    Inventors: Gary C. Young, Eric S. Wagner, John C. Wooley
  • Publication number: 20140275299
    Abstract: Systems and methods are provided for synthesizing low nitrogen concentration organic liquids from biomass, such as algae, the organic liquids being suitable for refining into fuels and other chemicals. The biomass together with a solvent that is immiscible with water at room temperature are subjected to a subcritical hydrothermal treatment to disrupt cell structure and transform the biomass into a gas phase, a bio-oil phase, an aqueous phase and a solid phase. The aqueous phase contains most of the nitrogen. The resulting multi-phasic mixture can be separated into four phases, including an aqueous phase and the organic liquid which consists of bio-oil dissolved in the solvent. Refined organic liquid can be recycled into the hydrothermal treatment as the solvent. The subcritical hydrothermal treatment can be performed at a generally low temperature and followed by a second hydrothermal treatment at a higher temperature.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: William Brian Bedwell, Matthew Atwood, Jin-Ping Lim, Esperanza Alvarez, Jordi Perez Mariano
  • Publication number: 20140272734
    Abstract: The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Robert J. Braun, William L. Becker, Michael Penev
  • Publication number: 20140249237
    Abstract: An integrated plant that includes a steam explosion process unit and biomass gasifier to generate syngas from biomass is discussed. A steam explosion process unit applies a combination of heat, pressure, and moisture to the biomass to make the biomass into a moist fine particle form. The steam explosion process unit applies steam with a high pressure to heat and pressurize any gases and fluids present inside the biomass to internally blow apart the bulk structure of the biomass via a rapid depressurization of the biomass with the increased moisture content. Those produced moist fine particles of biomass are subsequently fed to a feed section of the biomass gasifier, which reacts the biomass particles in a rapid biomass gasification reaction to produce syngas components.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: Sundrop Fuels, Inc.
    Inventors: Francis Michael Ferraro, Jerrod Wayne Hohman, Robert S. Ampulski
  • Publication number: 20140243435
    Abstract: This invention relates to a process for making methanol and ethanol from carbon dioxide and hydrogen. The process includes contacting a mixture of carbon dioxide and hydrogen with a catalyst system containing a ruthenium compound—and optionally, a chloride or bromide-containing compound—dispersed in a low-melting tetraorganophosphonium chloride or bromide salt under conditions effective to produce methanol and ethanol. The invention also relates to a process for making methanol and ethanol from carbon monoxide and water using the same catalyst system.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Jan Hendrik BLANK, David John COLE-HAMILTON, Robert Thomas HEMBRE, James Allen PONASIK, JR.
  • Publication number: 20140235736
    Abstract: The present disclosure relates to an apparatus for a reduction reaction of carbon dioxide using solar energy and a reducing method of carbon dioxide for reacting carbon dioxide gas and hydrogen gas with each other by using solar energy.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: SOGANG UNIVERSITY RESEARCH FOUNDATION
    Inventor: Kyung Byung Yoon
  • Patent number: 8795597
    Abstract: A method and apparatus for converting natural gas from a source, such as a wellhead, pipeline, or a storage facility, into hydrocarbon liquid stable at room temperature, comprising a skid or trailer mounted portable gas to liquids reactor. The reactor includes a preprocessor which desulfurizes and dehydrates the natural gas, a first stage reactor which transforms the preprocessed natural gas into synthesis gas, and a liquid production unit using a Fischer-Tropsch or similar polymerization process. The hydrocarbon liquid may be stored in a portable tank for later transportation or further processed on site.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: August 5, 2014
    Assignee: Greenway Innovative Energy, Inc.
    Inventor: F. Conrad Greer
  • Publication number: 20140213669
    Abstract: A method and an apparatus is disclosed that uses a gas lift tubing arrangement to produce synthetic hydrocarbon related products. Using the Fischer Tropsch process as an example, the tubing is packed with a suitable catalyst and then hydrogen and carbon monoxide are injected into the top of the tubing in a fashion similar to a gas lift process. As the gases travel past the catalyst, synthetic hydrocarbons are formed and heat is rejected. The synthetic hydrocarbons and water flow out of the bottom of the tubing and travel up the annulus to the surface. In some embodiments, this process is carried out in a producing well or a in producing riser. In a producing well or a producing riser, the production from the well which flows up the annulus cools the synthetic hydrocarbon derived products. In additional and alternate embodiments, this process can be used in non-flowing wells.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Inventor: Robert P. Herrmann
  • Patent number: 8791166
    Abstract: The invention provides a method for producing methanol and its products exclusively from a geothermal source as the sole source material also using the needed energy from the geothermal energy source. The method includes separating or isolating carbon dioxide accompanying hot water or steam of the source, generating hydrogen from the water and subsequently preparing methanol from the carbon dioxide and hydrogen. The methanol can be further converted into dimethyl ether or other products.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: July 29, 2014
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 8791165
    Abstract: This invention discloses a method for making a dimethylether (DME) product from a synthesis gas (syngas) in the presence of a catalyst in a fluid pluralized bed reactor operating in the gas phase. The reactions generate a significant amount of heat and the heat management is balanced between supplying quench recycle syngas to the pluralized sections along the reactor and also by controlling the preheat temperature of the reactant streams. Gas phase fluidization of the catalyst is controlled so that the pluralized reactive zones are maintained in a backmix configuration.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Unitel Technologies, Inc.
    Inventors: Sarabjit S. Randhava, Richard L. Kao, Todd L. Harvey
  • Publication number: 20140206780
    Abstract: An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapours are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results is the maximum production of formulated syndiesel without the presence or formation of low value by-products.
    Type: Application
    Filed: May 5, 2013
    Publication date: July 24, 2014
    Inventor: Steve KRESNYAK
  • Patent number: 8779013
    Abstract: Embodiments of the present invention are directed to apparatus and methods for converting carbon dioxide and/or methane into higher alkanes and hydrogen gas in a single reaction chamber using a catalyst and microwave radiation.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: July 15, 2014
    Assignee: Amiren LLC
    Inventor: Ben Zion Livneh
  • Publication number: 20140194539
    Abstract: A process for converting carbon dioxide to hydrocarbon fuels using solar energy harnessed with a solar thermal power system to create thermal energy and electricity, using the thermal energy to heat a fuel feed stream, the heated fuel feed stream comprising carbon dioxide and water, the carbon dioxide captured from a flue gas stream, converting the carbon dioxide and water in a syngas production cell, the syngas production cell comprising a solid oxide electrolyte, to create carbon monoxide and hydrogen, and converting the carbon monoxide and hydrogen to hydrocarbon fuels in a catalytic reactor. In at least one embodiment, the syngas production cell is a solid oxide fuel cell. In at least one embodiment, the syngas production cell is a solid oxide electrolyzer cell.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Applicant: Saudi Arabian Oil Company
    Inventors: Ahmad D. Hammad, Zaki Yusuf, Stamatios Souentie, Nayif A. Al-Rasheedi, Bandar A. Fadhel, Atef Saeed Al-Zahrani
  • Patent number: 8772360
    Abstract: In various implementations, methanol is produced using a (CO+H2) containing synthesis gas produced from a combined PDX plus EHTR or a combined ATR plus EHTR at a pressure of 70 bar to 100 bar at the correct stoichiometric composition for methanol synthesis so that no feed gas compressor is required for the feed to the methanol synthesis reactor loop.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 8, 2014
    Assignee: GTLpetrol LLC
    Inventor: Rodney J. Allam
  • Patent number: 8773118
    Abstract: A magnetometer which includes an elongate reactor in which a sample can be secured in a sample support zone and which is located within a magnetic field space of a magnetic field generator and one or more signal pickup coils. Movement generating means is provided for generating relative movement in a generally linear direction between the reactor and at least one of the magnetic field and pickup coil, preferably by moving the reactor in its length. The magnetometer is characterised in that the reactor is a metal tube having a length which permits its ends to remain external of the signal pickup device during the relative movement.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: July 8, 2014
    Assignee: University of Cape Town
    Inventors: Michael Christian Maximilian Claeys, Eric Wilhelmus Josephus Van Steen, Jacobus Lucas Visagie, Jan van de Loosdrecht
  • Patent number: 8759406
    Abstract: The invention is directed to a process for the production of hydrocarbon products from a methane comprising feedstock comprising of the steps of: preparing a feed syngas comprising hydrogen and carbon monoxide having a hydrogen/carbon monoxide molar feed ratio in a syngas manufacturing process and using the feed syngas in a Fischer-Tropsch process using one or more fixed bed catalyst beds as present in one or more syngas conversion reactors thereby obtaining the hydrocarbon product and an residual tail gas. The manufacturing process comprises of two parallel operated syngas manufacturing processes starting from the same gaseous methane comprising feedstock.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: June 24, 2014
    Assignee: Shell Oil Company
    Inventors: Maarten Bracht, Martin John Fernie
  • Patent number: 8741971
    Abstract: The invention relates to a method and a system for operating a Fischer-Tropsch synthesis, wherein a feed gas comprising CO and H2 from coal gasification (1) is desulfurized and subsequently fed into a Fischer-Tropsch synthesis as an input gas, wherein hydrocarbons are formed from carbonic oxides and hydrogen by catalytic reactions. The hydrocarbons are separated as liquid products (4), and a gas flow comprising CO and CO2 exiting the Fischer-Tropsch synthesis unit (3) is compressed and fed into a conversion stage, wherein CO and steam are transformed into H2 and CO2. In the method according to the invention, the gas exiting the conversion stage is fed back into the Fischer-Tropsch synthesis unit as a gas rich in H2, together with the desulfurized input gas, after the gas is prepared in that CO2 and/or further components other than H2 are removed.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: June 3, 2014
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Patent number: 8729141
    Abstract: Disclosed is a method for methanol synthesis using synthesis gas obtained from reforming of natural gas with carbon dioxide. First, synthesis gas is obtained from steam carbon dioxide reforming of methane, in which steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane, by using a catalyst (Ni/Ce/MgAlOx, or Ni/Ce—Zr/MgAlOx) and processing condition capable of maintaining a predetermined ratio of carbon monoxide, carbon dioxide, and hydrogen [H2/(2CO+3CO2)=0.85-1.15]. Next, methanol synthesis is carried out by using the obtained synthesis gas and a catalyst system suitable for methanol synthesis with minimum byproduct formation (a catalyst system including a Cu—Zn—Al oxide containing CuO, ZnO, and Al2O3 at a predetermined ratio in combination with a cerium-zirconium oxide obtained by a sol-gel process).
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 20, 2014
    Assignees: Hyundai Heavy Industries Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Jong Wook Bae, Jong Hyeok Oh, Ki Won Jun, Yun Jo Lee, Jun-ho Ko, Seok-Lyong Song, Keh-Sik Min
  • Publication number: 20140128484
    Abstract: Herein disclosed is a catalyst composition for producing organic compounds comprising (a) a catalyst that promotes the oxidative coupling of methane (OCM) and a methane steam reforming (MSR) catalyst, wherein the catalyst composition causes oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (b) a catalyst that promotes syngas generation (SG) and a Fischer-Tropsch (FT) catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (c) a SG catalyst, a MSR catalyst, and a FT catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (d) a FT catalyst and a MSR catalyst wherein the catalyst composition causes reforming reactions and chain growing reactions to produce the organic compounds.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Publication number: 20140128485
    Abstract: Herein disclosed is a reactor comprising a housing; an inlet tube having a section with perforations along its length, wherein the inlet tube section is within the reactor housing; an outlet tube having a section with perforations along its length, wherein the outlet tube section is within the reactor housing; and at least one cylinder made of sintered metal contained within the reactor housing, wherein the sintered metal is catalytically active. In some cases, the sintered metal in the reactor comprises a porous metallic multifunctional (PMM) catalyst. Other reactor designs and the method of use are also described herein.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Patent number: 8710107
    Abstract: A method and apparatus for synthesizing ethanol using synthetic routes via synthesis gas are disclosed. A method and apparatus for gasifying biomass, such as biomass, in a steam gasifier that employs a fluidized bed and heating using hot flue gases from the combustion of synthesis gas is described. Methods and apparatus for converting synthesis gas into ethanol are also disclosed, using stepwise catalytic reactions to convert the carbon monoxide and hydrogen into ethanol using catalysts including iridium acetate.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 29, 2014
    Assignee: Woodland Biofuels Inc.
    Inventors: Larry Jack Melnichuk, Karen Venita Kelly, Robert S. Davis
  • Publication number: 20140107234
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 17, 2014
    Applicant: Fulcrum BioEnergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Publication number: 20140102943
    Abstract: A method of increasing the hydrogen/carbon monoxide (H2/CO) ratio in a syngas stream derived from a carbonaceous fuel including coal, brown coal, peat, and heavy residual oil fractions, preferably coal. The fuel-derived syngas stream is divided into at least two sub-streams, one of which undergoes a catalytic water shift conversion reaction. The so-obtained converted sub-stream is combined with the non-converted sub-stream(s) to form a second syngas stream with an increased H2/CO ratio. The method of the present invention can provide a syngas with a H2/CO ratio more suitable for efficient hydrocarbon synthesis carried out on a given catalyst, such as in one or more Fischer-Tropsch reactors, as well as being able to accommodate variation in the H2/CO ratio of syngas formed from different qualities of feedstock fuels.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 17, 2014
    Applicant: Shell Oil Company
    Inventors: Joachim ANSORGE, Scott A. BILTON, Henrik Jan VAN DER PLOEG, Arold Marcel Albert ROUTIER, Cornelis Jacobus SMIT
  • Patent number: 8697759
    Abstract: A method for producing methanol from a methane source such as methane from natural (shale) gas by first reacting one equivalent of methane with oxygen from the air to result in complete combustion to produce carbon dioxide and water in a molar ratio of 1:2; then conducting a bi-reforming process with a mixture of methane:carbon dioxide:water having a ratio of 3:1:2 to produce metgas, a mixture of hydrogen and carbon monoxide having a molar ratio of 2:1 to 2.1:1; and finally converting metgas exclusively to methanol. The thus produced methanol can be dehydrated to form dimethyl ether, with water produced being recycled back to the bi-reforming process, if necessary.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 15, 2014
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 8691881
    Abstract: This invention relates to a process for the conversion of carbon containing feedstock to a liquid chemical product, particularly a liquid fuel product, wherein carbon dioxide emissions are minimized.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 8, 2014
    Assignee: University of the Witwatersrand
    Inventor: Shehzaad Kauchali
  • Publication number: 20140088205
    Abstract: A method and process is described for producing negative carbon fuel. In its broadest form, a carbon-containing input is converted to combustible fuels, refinery feedstock, or chemicals and a carbonaceous solid concurrently in separate and substantially uncontaminated form. In an embodiment of the invention, biomass is converted via discrete increasing temperatures under pressure to blendable combustible fuels and a carbonaceous solid. The carbonaceous solid may be reacted to synthesis gas, sold as charcoal product, carbon credits, used for carbon offsets, or sequestered.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: Cool Planet Energy Systems, Inc.
    Inventors: Michael C. CHEIKY, Ronald A. SILLS
  • Publication number: 20140080928
    Abstract: An integrated plant is provided to improve carbon utilization of carbon molecules from gasified woody biomass to be converted into methanol. Detectors ensure a minimized sulfur content of less than 0.05% by dry weight of the woody biomass. A biomass gasifier reacts woody biomass in a rapid gasification reaction to produce a syngas composition having a ratio of hydrogen to carbon dioxide that is higher than needed for methanol synthesis. Parallel to the gasifier, a hydrocarbon reforming reactor provides a syngas composition having a ratio of hydrogen to carbon monoxide that is higher than needed for methanol synthesis. The combined syngas mixture from the biomass gasifier and the hydrocarbon reforming reactor comprises feed to a methanol synthesis plant, such that a majority of the carbon dioxide produced by the biomass gasification reaction and the hydrogen produced by the hydrocarbon reforming reactor are synthesized into methanol.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: Sundrop Fuels, Inc.
    Inventors: Renus Constantyn Kelfkens, Herbert Mark Kosstrin
  • Publication number: 20140080927
    Abstract: The invention relates to a process for generating hydrogen. In this process an aqueous liquid is exposed to carbon dioxide and a current is passed through the aqueous liquid so as to generate hydrogen.
    Type: Application
    Filed: June 25, 2013
    Publication date: March 20, 2014
    Inventor: Russell Beckett
  • Patent number: 8669294
    Abstract: Streams (11) of natural gas contaminated with significant amounts of carbon dioxide can be efficiently and economically processed to create Syngas (16). An available source (1) of flue gas that might otherwise be dispersed into the atmosphere in conjunction with such a CO2-laden natural gas stream (11) renders the process even more economical and efficient through the creation of multiple feedstreams (14, 27, 34) that are combined to deliver a composite near equal mixture of methane and CO2 to a plasma reactor (15) or the like that will generate Syngas. When coupled with a Fischer-Tropsch reactor (40), the overall process provides a particularly efficient and economical process for producing synthetic liquid hydrocarbons.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: March 11, 2014
    Assignee: Eco Technol Pty Ltd
    Inventors: Larry Lien, James M. Tranquilla, Tony Picaro
  • Patent number: 8658705
    Abstract: A process for reducing the carbon oxide content in natural gas, by producing a carbon oxide containing natural gas from a geological formation through a natural gas delivery system; providing a reaction zone containing at least one catalyst suitable for hydrocarbon conversion in the natural gas delivery system; introducing hydrogen into the carbon oxide containing natural gas to form a reaction mixture; and passing the reaction mixture to the catalyst in the reaction zone to convert at least a portion of the carbon oxides in the natural gas to hydrocarbons.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: David Thomas, Rod Travis, Michael Moppert, Christopher John Kalli, Gerald M. Elphingstone, Jr., David L. Charlesworth
  • Patent number: 8653149
    Abstract: The present invention relates to processes and apparatuses for generating light olefins, methane and other higher-value gaseous hydrocarbons from “liquid” heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 18, 2014
    Assignee: GreatPoint Energy, Inc.
    Inventors: Earl T. Robinson, Pattabhi K. Raman, Wenyuan Wu
  • Patent number: 8642667
    Abstract: A process for increasing the hydrogen content of a synthesis gas containing one or more sulphur compounds is described, comprising the steps of (i) heating the synthesis gas and (ii) passing at least part of the heated synthesis gas and steam through a reactor containing a sour shift catalyst, wherein the synthesis gas is heated by passing it through a plurality of tubes disposed within said catalyst in a direction co-current to the flow of said synthesis gas through the catalyst. The resulting synthesis gas may be passed to one or more additional reactors containing sour shift catalyst to maximize the yield of hydrogen production, or used for methanol production, for the Fischer-Tropsch synthesis of liquid hydrocarbons or for the production of synthetic natural gas.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 4, 2014
    Assignee: Johnson Matthey PLC
    Inventor: Peter Edward James Abbott
  • Patent number: 8641991
    Abstract: The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 4, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Publication number: 20140024726
    Abstract: A plant for the generation of methanol and for providing output power, preferably in the form of heat and/or electric energy. The plant comprises: (1) a water electrolysis facility which can be supplied by electric energy and water and which is designed in order to produce hydrogen gas and oxygen gas. The water electrolysis facility comprises a hydrogen gas outlet and an oxygen gas outlet; (2) a thermal engine with at least one combustion chamber designed for maintaining an oxygen-based combustion process in order to provide output power.
    Type: Application
    Filed: October 14, 2011
    Publication date: January 23, 2014
    Applicant: SILCON FIRE AG
    Inventor: Roland Meyer-Pittroff
  • Publication number: 20140018450
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 8629188
    Abstract: Configurations, systems, and methods for a gas-to-liquids plant are presented in which the energy demand for natural gas reformation is provided at least in part by biomass gasification to reduce or eliminate net carbon emissions. Preferred plants, systems, and methods may recycle various process streams to further reduce water demand, improve the hydrogen/carbon ratio of a feed stream to a Fischer-Tropsch process, and recover and/or recycle carbon dioxide.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 14, 2014
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Brian DeSousa
  • Patent number: 8623925
    Abstract: Techniques, methods and systems for preparation liquid fuels from hydrocarbon and carbon dioxide are disclosed. The present invention can transform hydrocarbon and carbon dioxide generated from organic feed stocks or other industrial emissions into renewable engineered liquid fuels and store them in a cost-efficient way. The method of the present invention includes: supplying hydrocarbon and carbon dioxide to a heated area of a reaction chamber in controlled volumes; forming carbon monoxide by the energy provided by the heated area; transporting carbon monoxide and hydrogen to an reactor in controlled volumes; supplying additional hydrogen to the reactor; regulating the pressure in the reactor by adjusting the controlled volumes in order to achieve a predetermined object; forming the liquid fuel in the reactor according to the predetermined object; and, storing the liquid fuel in a storage device.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 7, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20140005284
    Abstract: A process for reducing the carbon oxide content in natural gas, by producing a carbon oxide containing natural gas from a geological formation through a natural gas delivery system; providing a reaction zone containing at least one catalyst suitable for hydrocarbon conversion in the natural gas delivery system; introducing hydrogen into the carbon oxide containing natural gas to form a reaction mixture; and passing the reaction mixture to the catalyst in the reaction zone to convert at least a portion of the carbon oxides in the natural gas to hydrocarbons.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: CHEVRON U.S.A., INC.
    Inventors: David Thomas, Rod Travis, Michael Moppert, Christopher John Kalli, Gerald M. Elphingstone, JR., David L. Charlesworth
  • Publication number: 20130345326
    Abstract: Disclosed herein are processes for producing a synthesis gas mixture and for producing an organic chemical product. The process can comprise: (i) steam reforming a feed gas stream comprising one or more hydrocarbons to produce a reformed synthesis gas mixture comprising H2, CO and CO2; (ii) cooling reformed synthesis gas mixture obtained in (i) and removing H2O from the reformed gas mixture; (iii) subjecting reformed synthesis gas mixture obtained in (ii) to a reverse water gas shift reaction so as to decrease the H2/CO molar ratio of the reformed synthesis gas mixture; and (iv) removing CO2 from synthesis gas mixture obtained in (iii). A first stream of CO2 is added to the gas mixture in step (i) and a second stream of CO2 is added to the gas mixture in step (iii), and wherein the first and/or second streams comprise recycled CO2 removed in step (iv).
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Mubarik Ali Bashir, Ijaz Chaudary
  • Patent number: 8614257
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 24, 2013
    Assignee: Fulcrum BioEnergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Patent number: 8609738
    Abstract: The present invention relates to a process for producing aliphatic and aromatic C2-C6 hydrocarbons by submitting a reformed gas to Fischer-Tropsch synthesis. The reformed gas used in the present process is produced by autothermal dry reforming of a hydrocarbon feed over a Ni/La catalyst and essentially consists of syngas (H2 and CO), oxygen (O2) and optionally a further component selected from the group consisting of methane (CH4), carbon dioxide (CO2) and inert gas.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 17, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin Mamedov, Saleh Al-Sayari
  • Publication number: 20130331469
    Abstract: A system and method for producing Syngas from the CO2 in a gaseous stream, such as an exhaust stream, from a power plant or industrial plant, like a cement kiln, is disclosed. A preferred embodiment includes providing the gaseous stream to pyrolysis reactor along with a carbon source such as coke. The CO2 and carbon are heated to about 1330° C. and at about one atmosphere with reactants such as steam such that a reaction takes place that produces Syngas, carbon dioxide (CO2) and hydrogen (H2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor to produce Ethanol or Bio-catalytic synthesis reactor.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: GYCO, INC.
    Inventor: Gary C. Young
  • Patent number: 8604088
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Fulcrum Bioenergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Patent number: 8604089
    Abstract: Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Fulcrum Bioenergy, Inc.
    Inventors: Stephen H. Lucas, Peter G. Tiverios, James R. Jones, Jr.
  • Patent number: 8598237
    Abstract: A method for adjusting hydrogen to carbon monoxide ratio of syngas contaminated by sulfur impurities involving a water gas shift (WGS) reaction. In light of the presence of the sulfur impurities, the WGS can be implemented as a sour gas shift. WGS can provide good results by using a non-sulfided catalyst. Conditions can be employed which contribute to further enhanced CO-conversion in the reaction. The hydrocarbons or derivatives thereof obtainable from the method can further be refined and used for production of fuels or lubricants for combustion engines.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Neste Oil Oyj
    Inventors: Isto Eilos, Jukka Koskinen, Marja Tiitta, Sami Toppinen, Heli Vuori
  • Patent number: 8592492
    Abstract: In the production of fuel such as ethanol from carbonaceous feed material such as biomass, a stream comprising hydrogen and carbon monoxide is added to the raw gas stream derived from the feed material, and the resulting combined stream is converted into fuel and a gaseous byproduct such as by a Fischer-Tropsch reaction. The gaseous byproduct may be utilized in the formation of the aforementioned stream comprising hydrogen and carbon monoxide.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 26, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Shrikar Chakravarti, Raymond Francis Drnevich, Dante Patrick Bonaquist, Gregory Panuccio
  • Patent number: 8586640
    Abstract: A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the hydrocarbon synthesis reaction apparatus is provided with: a reactor which contains the slurry; a synthesis gas introduction part which introduces the synthesis gas into the reactor; and a synthesis gas heating part which is provided in the synthesis gas introduction part to heat the synthesis gas introduced into the reactor to the decomposition temperature of carbonyl compounds or higher.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 19, 2013
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yasuhiro Onishi, Eiichi Yamada
  • Publication number: 20130303637
    Abstract: A method of converting coal into a liquid hydrocarbon fuel utilizes a high pressure, high temperature reactor which operates upon a blend of micronized coal, a catalyst, and steam. Microwave power is directed into the reactor. The catalyst, preferably magnetite, will act as a heating media for the microwave power and the temperature of the reactor will rise to a level to efficiently convert the coal and steam into hydrogen and carbon monoxide.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventor: Ronald Kyle