Group Vib Metal Containing Catalyst Utilized For The Fischer-tropsch Reaction (i.e., Cr, Mo, Or W) Patents (Class 518/714)
  • Patent number: 8383691
    Abstract: This invention improves prior methods of making cobalt-molybdenum-sulfide catalysts for alcohol production from syngas. In one aspect, improved methods are provided for making preferred cobalt-molybdenum-sulfide compositions. In another aspect, processes utilizing these catalysts for producing at least one C1-C4 alcohol, such as ethanol, from syngas are described.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 26, 2013
    Assignee: Albemarle Corporation
    Inventors: Karl Kharas, Jason P. Durand, William A. May
  • Publication number: 20130045865
    Abstract: A catalyst composition contains an active metal on a support including a high surface area substrate and an interstitial compound, for example molybdenum carbide. Pt—Mo2C/Al2O3 catalysts are described. The catalyst systems and compositions are useful for carrying out reactions generally related to the water gas shift reaction (WGS) and to the Fischer-Tropsch Synthesis (FTS) process.
    Type: Application
    Filed: January 31, 2012
    Publication date: February 21, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Levi T. Thompson, Neil Schweitzer, Joshua Schaidle
  • Patent number: 8309616
    Abstract: A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 13, 2012
    Assignee: University of Kentucky Research Foundation
    Inventor: Gerald P. Huffman
  • Publication number: 20120283342
    Abstract: The present application includes alkali metal-promoted trimetallic catalysts for higher alcohol synthesis from synthesis gas, the catalyst comprising a catalyst of Formula (1): A-M1-M2-M3.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 8, 2012
    Applicant: UNIVERSITY OF SASKATCHEWAN
    Inventors: Ajay Kumar Dalai, Venkateswara Rao Surisetty
  • Patent number: 8283387
    Abstract: Process for converting carbon oxide(s) and hydrogen containing feedstocks to oxygen containing hydrocarbon compounds, in the presence of a particulate catalyst, by reacting carbon oxide(s) and hydrogen in the presence of a particulate catalyst in a conversion reactor to form products containing oxygen containing hydrocarbon compounds. Ether(s) selected from ethyl, propyl and butyl ether are added and reacted inside the conversion reactor.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 9, 2012
    Assignee: BP Chemicals Limited
    Inventors: Leslie W. Bolton, Benjamin P. Gracey
  • Publication number: 20120238647
    Abstract: Enhanced mixed metal catalysts are provided which allow high conversions of carbon dioxide to methane, in some cases up to about 100% conversion. Methods of preparing enhanced mixed metal catalysts comprise a series of steps involving combining nickel and chromium salts with a nucleation promoter in a base environment to form a gel, allowing the gel to digest to form a solid and a mother liquor, isolating the solid, washing the solid, drying the solid, and thermally treating the solid to form a nickel-chromium catalyst. Methanation processes using the catalysts are also provided. The enhanced mixed metal catalysts provide more efficient conversion and lower operating temperatures for carbon dioxide methanation when compared to conventional methanation catalysts. Additionally, these enhanced catalyst formulations allow realization of higher value product from captured carbon dioxide.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Scott A. Scholten, Joe D. Allison, Brian C. Dunn
  • Patent number: 8268897
    Abstract: A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: September 18, 2012
    Assignee: The University of Kentucky Research Foundation
    Inventor: Gerald P. Huffman
  • Patent number: 8263523
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto an acidic support to provide a catalyst comprising cobalt and the acidic support. The acidic support comprises a zeolite, a molecular sieve, or combinations thereof.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: September 11, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Publication number: 20120208903
    Abstract: The invention relates to a method for converting carbon dioxide to methane. The method comprises exposing carbon dioxide adsorbed on a nanoporous silicate matrix to light in the presence of a source of carbon dioxide and a source of hydrogen for a time and under conditions sufficient to convert carbon dioxide to methane. The matrix contains at least one photochromic metal oxide entity, and contains a C1 impurity site. The light has a wavelength of about 437 nm to about 1200 nm.
    Type: Application
    Filed: August 20, 2010
    Publication date: August 16, 2012
    Applicant: Research Foundation Of City University of New York
    Inventor: Harry D. Gafney
  • Publication number: 20120208904
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, a process for obtaining it by preparing a metal mixture and subsequent sulphidation thereof and its use in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 16, 2012
    Applicant: ABENGOA BIOENERGIA NUEVAS TECNOLOGLAS S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martínez Feliu, Juan Luis Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Publication number: 20120202898
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, the process for obtaining it by sulphidation of a multi-metallic solid and use thereof in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 9, 2012
    Applicant: Abengoa Bioenergia Nuevas Technologias ,S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martinez Feliu, Juan Luis Sanz Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Patent number: 8216963
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto a support material to provide a catalyst comprising cobalt and the support material. The support material comprises one or more of alumina, silica, magnesia, titania, zirconia, ceria-zirconia, and magnesium aluminate.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 10, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Publication number: 20120115966
    Abstract: The present invention provides a process for preparing methanol, dimethyl ether, and low carbon olefins from syngas, wherein the process comprises the step of contacting syngas with a catalyst under the conditions for converting the syngas into methanol, dimethyl ether, and low carbon olefins, characterized in that, the catalyst contains an amorphous alloy consisting of a first component Al and a second component, said second component being one or more elements or oxides thereof selected from Group IA, IIIA, IVA, VA, IB, IIB, IVB, VB, VIIB, VIIB, VIII, and Lanthanide series of the Periodic Table of Elements, and said second component being different from the first component Al. According to the present process, the syngas can be converted into methanol, dimethyl ether, and low carbon olefins in a high CO conversion, a high selectivity of the target product, and high carbon availability.
    Type: Application
    Filed: November 26, 2009
    Publication date: May 10, 2012
    Applicants: Research Institute of Petroleum Processing, SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Qiang Fu, Xiaoxin Zhang, Yibin Luo, Xuhong Mu, Baoning Zong
  • Publication number: 20120065279
    Abstract: Carried catalysts for producing alcohols from gaseous mixtures containing hydrogen and carbon monoxide, e.g., syngas, are made from precursors of a particulate inert porous catalyst substrate impregnated with the oxides or salts of molybdenum, cobalt, and a promoter alkali or alkaline earth metal, in a molybdenum to cobalt molar ratio of from about 2:1 to about 1:1, preferably about 1.5:1, and in a cobalt to alkali metal molar ratio of from about 1:0.08 to about 1:0.30, preferably about 1:0.26-0.28. The catalysts are “activated” by reducing the catalyst precursor material in a reducing environment at from about 600° C. to about 900° C., preferably about 800° C. Alcohols are produced by passing gas mixtures containing at least CO and H2 in ratios of from 1:1 to 3:1 through a reactor containing the catalyst, at from about 240° C. to about 270° C., and a pressure of 1000-1200 psi.
    Type: Application
    Filed: June 22, 2009
    Publication date: March 15, 2012
    Applicant: SYNTHENOL ENERGY CORPORATION
    Inventor: Caili Su
  • Patent number: 8129436
    Abstract: The present invention provides a method for simplifying manufacture of a mixed alcohol or mixed oxygenate product from synthesis gas. The mixed alcohol or mixed oxygenate product contains ethanol and other oxygenates with two or more carbon atoms per molecule. The method includes stripping a portion of carbon dioxide and inert gases contained in a mixed alcohol synthesis reaction product using a methanol-containing stream, such as one produced as part of the method, as a medium to absorb said carbon dioxide and inert gases and recycling light products and heavy products to one or more of synthesis gas generation, mixed alcohol synthesis and separation of desired mixed alcohol or mixed oxygenate products from other components of a mixed alcohol synthesis stream.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: March 6, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Max M. Tirtowidjojo, Barry B. Fish, Hendrik L. Pelt, Dennis W. Jewell, Mark D. Bearden, John G. Pendergast, Jr., Jon H. Siddall, Brien A. Stears, Haivan D. Tran, Jan W. Verwijs, Aaltje Verwijs-van den Brink, legal representative, Lena Verwijs, legal representative, Hendrika Gerrita Verwijs, legal representative, Richard M. Wehmeyer
  • Patent number: 8114917
    Abstract: A process is disclosed for the production of ethanol whereby synthesis gas is reacted to produce ethanol and carbon dioxide in the presence of a compound catalyst at a temperature in the range of 250° C. to 350° C. and a pressure of 1 atm. to 20 atm.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 14, 2012
    Inventor: John E. Stauffer
  • Publication number: 20110319505
    Abstract: A process for sulfiding a cobalt-molybdenum bulk catalyst precursor to form a bulk sulfided alcohol synthesis catalyst. The process steps include contacting an oxidic bulk cobalt-molybdenum catalyst precursor with an amount of a sulfur-containing compound which is in the range of about 1 to about 10 moles of sulfur per mole of metals, at one or more temperatures at or in excess of about 300° C. in a medium which is substantially devoid of added hydrogen, so as to form a sulfided bulk cobalt-molybdenum catalyst product. Also described are processes for forming the catalyst precursor, processes for producing an alcohol using the catalyst product and the catalyst product itself.
    Type: Application
    Filed: March 5, 2010
    Publication date: December 29, 2011
    Applicant: Albemarle Europe SPRL
    Inventors: Stephan Janbroers, Bob Gerardus Oogjen, Frans Lodewijk Plantenga, Harmannus Willem Homan Free, Sona Eijsbouts-Spickova, Edgar Evert Steenwinkel, Edwin Nuberg
  • Publication number: 20110306685
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Publication number: 20110281961
    Abstract: The present invention relates to an improved process for the conversion of carbon oxide(s) et hydrogen containing feedstocks to oxygen containing hydrocarbon compounds in the presence of a particulate catalyst. In particular, the present invention relates to an improved process for the conversion of carbon oxide(s) (CO et CO2) et hydrogen containing feedstocks, e.g. Synthesis gas or syngas, to alcohols in the presence of a particulate modified molybdenum sulphide based catalyst and/or a modified methanol based catalyst and/or a modified Fischer-Tropsch catalyst and/or a precious metal based catalyst (e.g. rhodium).
    Type: Application
    Filed: May 25, 2007
    Publication date: November 17, 2011
    Inventors: Leslie William Bolton, Benjamin Patrick Gracey
  • Patent number: 8048933
    Abstract: At least one embodiment of the inventive technology focuses on a new composition that comprises hexagonally close packed molybdenum carbide crystals, in addition to metallic nickel crystals and/or sodium, and having use as a catalyst in a Fischer-Tropsch process to produce alcohol. At least one embodiment of a related aspect of the inventive technology is a Fischer-Tropsch reaction to produce alcohols from carbon monoxide and hydrogen using the aforementioned composition to catalyze reactions producing higher alcohols.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 1, 2011
    Assignee: University of Wyoming Research Corporation
    Inventors: Andrew J. Lucero, Vijay K. Sethi, William H. Tuminello
  • Patent number: 7994366
    Abstract: Provided is a process for continuously preparing methyl mercaptan by reacting a reactant mixture comprising solid, liquid and/or gaseous carbon- and/or hydrogen-containing compounds with air or oxygen, and/or water and sulfur.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 9, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Jan-Olaf Barth, Hubert Redlingshoefer, Caspar-Heinrich Finkeldei, Christoph Weckbecker, Klaus Huthmacher
  • Publication number: 20110160316
    Abstract: A process of form hydrocarbons boiling to the gasoline range and reducing or eliminating net CO2 production during isosynthesis over a ZnO—Cr2O3 plus ZSM-5 catalyst by adding from about 5% to about 15% CO2 to the synthesis gas mixture prior to contact to with catalyst.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 30, 2011
    Inventor: Charles L. Kibby
  • Publication number: 20110160317
    Abstract: The present invention provides methods and compositions for the chemical conversion of syngas to alcohols. The invention includes catalyst compositions, methods of making the catalyst compositions, and methods of using the catalyst compositions. Certain embodiments teach compositions for catalyzing the conversion of syngas into products comprising at least one C1-C4 alcohol, such as ethanol. These compositions generally include cobalt, molybdenum, and sulfur. Preferred catalyst compositions for converting syngas into alcohols include cobalt associated with sulfide in certain preferred stoichiometries as described and taught herein.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 30, 2011
    Applicant: Range Fuels, Inc.
    Inventors: Karl KHARAS, Jason P. Durand
  • Patent number: 7955588
    Abstract: Methods and apparatus relate to catalysts and preparation of the catalysts, which are defined by sulfides of a transition metal, such as one of molybdenum, tungsten, and vanadium. Precursors for the catalysts include a metal ion source compound, such as molybdenum trioxide, and a sulfide ion source compound, such as thioacetamide. Once the precursors are dissolved if solid and combined in a mixture, homogenous precipitation from the mixture forms the catalysts. Exemplary uses of the catalysts include packing for a methanation reactor that converts carbon monoxide and hydrogen into methane.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Madhu Anand, Brian C. Dunn, Glenn W. Dodwell
  • Patent number: 7943673
    Abstract: A process is described for converting synthesis gas containing carbon monoxide and hydrogen to hydrocarbons via methanol as an intermediate, by contacting the synthesis gas with a catalyst system containing a mixture of gallium silicate zeolite catalyst and a methanol catalyst. The process results in reduced amounts of undesirable low carbon number hydrocarbons, e.g., C4 and lower, undesirable high carbon number hydrocarbons, e.g., C10 and higher, and aromatic hydrocarbons. The process provides higher yields of useful, high octane hydrocarbons boiling in the gasoline range.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 17, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Allen W. Burton, Jr., Alfred Haas, Simon Holz
  • Publication number: 20110098368
    Abstract: Methods and apparatus relate to catalysts and preparation of the catalysts, which are defined by sulfides of a transition metal, such as one of molybdenum, tungsten, and vanadium. Precipitation forms the catalysts and occurs in a slurry media in which the pH is adjusted. Exemplary uses of the catalysts include packing for a methanation reactor that converts carbon monoxide and hydrogen into methane.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 28, 2011
    Applicant: ConocoPhillips Company
    Inventor: Madhu Anand
  • Patent number: 7879749
    Abstract: Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: February 1, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Harry W. Rollins, Lucia M. Petkovic, Daniel M. Ginosar
  • Publication number: 20100317750
    Abstract: At least one embodiment of the inventive technology focuses on a new composition that comprises hexagonally close packed molybdenum carbide crystals, in addition to metallic nickel crystals and/or sodium, and having use as a catalyst in a Fischer-Tropsch process to produce alcohol. At least one embodiment of a related aspect of the inventive technology is a Fischer-Tropsch reaction to produce alcohols from carbon monoxide and hydrogen using the aforementioned composition to catalyze reactions producing higher alcohols.
    Type: Application
    Filed: April 27, 2007
    Publication date: December 16, 2010
    Applicant: University of Wyoming Research Corporate d/b/a Western Research Institute
    Inventors: Andrew J. Lucero, Vijay K. Sethi, William H. Tuminello
  • Patent number: 7846978
    Abstract: The present invention relates to a method of producing methanol from a methane source by oxidizing methane under conditions sufficient to a mixture of methanol and formaldehyde while minimizing the formation of formic acid and carbon dioxide. The oxidation step is followed by treatment step in which formaldehyde is converted into methanol and formic acid which itself can further be converted into methanol via catalytic hydrogenation of intermediately formed methyl formate.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 7, 2010
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 7816415
    Abstract: Gasses containing carbon monoxide and hydrogen are converted into hydrocarbons using a reactor vessel having a liquid, a catalyst dispersed in the liquid, and a sonic mixing system interfaced with the reactor vessel. The sonic mixing system is used to agitate the mixture. In combination with the catalysts, the agitation increases reaction kinetics, thereby promoting chemical reactions used to efficiently convert gasses containing carbon monoxide and hydrogen into hydrocarbons.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: October 19, 2010
    Assignee: InEnTec LLC
    Inventors: William J. Quapp, Jeffrey E. Surma, James A. Batdorf
  • Publication number: 20100210741
    Abstract: The present invention provides methods and compositions for the chemical conversion of syngas to alcohols. The invention includes catalyst compositions, methods of making the catalysts, and methods of using the catalysts including techniques to maintain catalyst stability. Certain embodiments teach compositions for catalyzing the conversion of syngas into products comprising at least one C1-C4 alcohol, such as ethanol. These compositions generally include cobalt, molybdenum, and sulfur, and avoid metal carbides both initially and during reactor operation.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 19, 2010
    Applicant: Range Fuels, Inc.
    Inventor: Karl KHARAS
  • Publication number: 20100144907
    Abstract: A process is described for converting synthesis gas containing carbon monoxide and hydrogen to hydrocarbons via methanol as an intermediate, by contacting the synthesis gas with a catalyst system containing a mixture of gallium silicate zeolite catalyst and a methanol catalyst. The process results in reduced amounts of undesirable low carbon number hydrocarbons, e.g., C4 and lower, undesirable high carbon number hydrocarbons, e.g., C10 and higher, and aromatic hydrocarbons. The process provides higher yields of useful, high octane hydrocarbons boiling in the gasoline range.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Inventors: Charles L. Kibby, Allen W. Burton, JR., Alfred Hass, Simon Holz
  • Patent number: 7705059
    Abstract: The present invention relates to a method of producing methanol from a methane source by oxidizing methane under conditions sufficient to a mixture of methanol and formaldehyde while minimizing the formation of formic acid and carbon dioxide. The oxidation step is followed by treatment step in which formaldehyde is converted into methanol and formic acid which itself can further be converted into methanol via catalytic hydrogenation of intermediately formed methyl formate.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: April 27, 2010
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Publication number: 20100016453
    Abstract: The present invention relates to an improved process for the conversion of carbon oxide(s) and hydrogen containing feedstocks to oxygen containing hydrocarbon compounds in the presence of a particulate catalyst. In particular, the present invention relates to an improved process for the conversion of carbon oxide(s) (CO and CO2) and hydrogen containing feedstocks, e.g. synthesis gas or syngas, to alcohols in the presence of a particulate modified molybdenum sulphide based catalyst, or a modified methanol based catalyst and/or a modified Fischer-Tropsch catalyst and/or a precious metal (e.g. rhodium) based catalyst.
    Type: Application
    Filed: May 25, 2007
    Publication date: January 21, 2010
    Inventors: Leslie W. Bolton, Benjamin P. Gracey
  • Patent number: 7615578
    Abstract: This invention is directed to a process for making a methanol product from a synthesis gas (syngas) feed using a fast fluid bed reactor. The reactor is operated at substantially plug flow type behavior. The heat from circulated catalyst is sufficient to initiate the reaction process with little to no preheating of feed required. In addition, little if any internal reactor cooling is needed.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: James R. Lattner
  • Publication number: 20090270518
    Abstract: The present invention provides a catalyst carrier, catalyst and catalyst precursor comprising a refractory metal oxide and support structure comprising a wire gauze having between 1002 to 6002 openings per inch2, and having a wire thickness in the range of 20 micrometer to 110 micrometer. The volume of the support structure is less than 50% of the volume of the catalyst carrier and at least 70% of said openings are filled with the refractory metal oxide.
    Type: Application
    Filed: November 25, 2008
    Publication date: October 29, 2009
    Inventors: Gerrit Leendert Bezemer, Hans Peter Alexander Calis, Ronald Jan Dogterom
  • Patent number: 7598295
    Abstract: According to the present invention there is provided the use of a source of chromium in combination with a precipitated iron catalyst in a high temperature Fischer-Tropsch process to convert CO and H2 to hydrocarbons and possibly oxygenates thereof. In the process CO and H2 are contacted with the source of chromium in combination with the precipitated iron catalyst in a high temperature Fischer-Tropsch reaction. The invention also relates to the use of a source of chromium in the preparation of a precipitated iron catalyst for use in high temperature Fischer-Tropsch process and to a precipitated iron catalyst suitable for use in a high temperature Fischer-Tropsch process which contains a source of chromium.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: October 6, 2009
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Tracy Carolyn Bromfield, Rentia Visagie
  • Patent number: 7579383
    Abstract: This invention is directed to a process for making a methanol product from a synthesis gas (syngas) feed using a fluid bed reactor. Internal reactor heat transfer is balanced between feed preheat and catalyst bed temperature using appropriate backmixing of feed and catalyst. Backmixing can be appropriately controlled using a number of control points, including any one or more of superficial gas velocity, catalyst density in the reactor, reactor height to diameter ratio (preferably at least in the region of the dense catalyst bed), and catalyst particle size.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: August 25, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: James R. Lattner
  • Patent number: 7566678
    Abstract: The present invention relates to a process for the conversion of synthesis gas to hydrocarbons in the presence of a modified supported Fischer-Tropsch catalyst composition.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 28, 2009
    Assignees: BP Exploration Operating Company Limited, Davy Process Technology Limited
    Inventors: Josephus Johannes Helena Maria Font Freide, Lawrence Trevor Hardy
  • Patent number: 7560496
    Abstract: The invention relates to a catalytically active composition for the selective methanation of carbon monoxide which comprises at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt as active component and a support material based on carbon. The invention further provides for the use of this catalytically active composition for the selective methanation of carbon monoxide and in the production of hydrogen for fuel cell applications.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: July 14, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Christian Kuhrs, Markus Hoelzle, Till Gerlach, Michael Hesse
  • Publication number: 20090156697
    Abstract: In one aspect of this invention, catalytic compositions produced by calcining intermediates of the formula [NR4]x[M12M2S8] are provided, wherein M1 is Mo or W; M2 is Co, Ni, or Pd; x is 2 or 3; and R is a C3-C8 alkyl group. Another aspect provides catalytic compositions produced by calcining intermediates of the formula Ax[M12M2S8], wherein A is selected from K, Rb, Cs, Sr, and Ba. Also provided are methods for making the compositions, and methods of using the compositions for the catalytic conversion of syngas into C1-C4 alcohols such as ethanol.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 18, 2009
    Applicant: Range Fuels, Inc.
    Inventor: Karl Kharas
  • Publication number: 20090124712
    Abstract: Process for the production of hybrid catalysts formed by mixing two catalysts; one active in Fischer-Tropsch synthesis, the other being bifunctional. Such hybrid catalyst thus formed is active both in hydrocracking and in hydroisomerisation reactions. The present invention in addition provides obtainment of a hybrid catalyst and application thereof conjointly with FT catalysts in Fischer-Tropsch synthesis reactions. The hybrid catalyst of the present invention is capable of producing in conditions typically such as those utilised in Fischer-Tropsch synthesis branched hydrocarbons in diverse bands relating to the products thereof (for example naphtha and diesel), reducing or even eliminating necessity for a subsequent hydrotreatment stage in such synthesis reactions.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 14, 2009
    Applicant: PETROLEO BRASILEIRO S.A.- PETROBRAS
    Inventors: Alexandre DE FIGUEIREDO COSTA, Agustin Martines Feliu, Joan Rollan Martinez, Henrique Soares Cerqueira, Joberto Ferreira Dias Junior, Eduardo Falabella Sousa Aguiar
  • Publication number: 20090054538
    Abstract: Chemical production processes are provided than can include exposing a reactant composition to a catalyst composition to form a product composition, with the reactant composition including a multihydric alcohol compound and product composition including a carbonyl compound. The catalyst composition can include one or more elements of groups 5 and 6 of the periodic table of elements. Catalyst compositions are provided that can include one or more of niobia, hydrated niobia, tungstic acid, phosphotungstic acid, and phosphomolybdic acid.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Johnathon E. Holladay, Todd A. Werpy
  • Patent number: 7435759
    Abstract: A method for producing DME, which comprises separating a CO2 rich stream from a crude product stream containing DME and CO2 obtained by a DME synthesis from a feed syn gas; introducing the CO2 rich stream to a reverse water gas shift (RWGS) reactor wherein it is reacted with hydrogen in the presence of an oxide catalyst of either ZnO or NiO to provide a CO rich stream, and recycling the CO rich stream to the step of the methanol synthesis step.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: October 14, 2008
    Assignee: Korea Institute of Science and Technology
    Inventors: Kwang-Deog Jung, Oh-Shim Joo, Jun-Woo Oh
  • Patent number: 7402612
    Abstract: This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 22, 2008
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza, Nithya Srinivasan, Olga P. Ionkina
  • Patent number: 7393877
    Abstract: In a process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst comprising a metal and a support comprising silicon carbide, the support comprises more than 50% by weight of silicon carbide in the beta form. A process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst the effluent thus obtained are also disclosed.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 1, 2008
    Assignees: Total France, Total S.A.
    Inventors: Sabine Savin-Poncet, Marc-Jacques Ledoux, Cuong Pham-Huu, Jacques Bousquet, Behrang Madani
  • Patent number: 7393876
    Abstract: Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 1, 2008
    Assignee: Eltron Research, Inc.
    Inventors: James H. White, Jesse W. Taylor
  • Publication number: 20080146684
    Abstract: The present invention relates to a process for the conversion of synthesis gas to hydrocarbons in the presence of a modified supported Fischer-Tropsch catalyst composition.
    Type: Application
    Filed: February 9, 2006
    Publication date: June 19, 2008
    Inventors: Josephus Johannes Helena Maria Font Freide, Lawrence Trevor Hardy
  • Publication number: 20080139676
    Abstract: The invention relates to a catalytically active composition for the selective methanation of carbon monoxide which comprises at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt as active component and a support material based on carbon. The invention further provides for the use of this catalytically active composition for the selective methanation of carbon monoxide and in the production of hydrogen for fuel cell applications.
    Type: Application
    Filed: January 19, 2006
    Publication date: June 12, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Christian Kuhrs, Markus Holzle, Till Gerlach, Michael Hesse
  • Patent number: 7384985
    Abstract: This invention is directed to a process for producing methanol. The methanol product that is produced according to this invention is achieved with a high conversion of synthesis gas. The high conversion of synthesis gas is achieved by flowing a liquid layer across a plurality of catalyst beds countercurrent to the gas flow. The gas containing methanol product exiting each bed flows through the liquid layer. The liquid acts to extract methanol from the gas, as well as cool the gas.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: James R. Lattner